mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-23 16:53:58 -05:00
crypto: caam - add support for RSA algorithm
Add RSA support to caam driver. Initial author is Yashpal Dutta <yashpal.dutta@freescale.com>. Signed-off-by: Tudor Ambarus <tudor-dan.ambarus@nxp.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
parent
57763f5ec7
commit
8c419778ab
9 changed files with 789 additions and 1 deletions
|
@ -99,6 +99,18 @@ config CRYPTO_DEV_FSL_CAAM_AHASH_API
|
|||
To compile this as a module, choose M here: the module
|
||||
will be called caamhash.
|
||||
|
||||
config CRYPTO_DEV_FSL_CAAM_PKC_API
|
||||
tristate "Register public key cryptography implementations with Crypto API"
|
||||
depends on CRYPTO_DEV_FSL_CAAM && CRYPTO_DEV_FSL_CAAM_JR
|
||||
default y
|
||||
select CRYPTO_RSA
|
||||
help
|
||||
Selecting this will allow SEC Public key support for RSA.
|
||||
Supported cryptographic primitives: encryption, decryption,
|
||||
signature and verification.
|
||||
To compile this as a module, choose M here: the module
|
||||
will be called caam_pkc.
|
||||
|
||||
config CRYPTO_DEV_FSL_CAAM_RNG_API
|
||||
tristate "Register caam device for hwrng API"
|
||||
depends on CRYPTO_DEV_FSL_CAAM && CRYPTO_DEV_FSL_CAAM_JR
|
||||
|
|
|
@ -10,6 +10,8 @@ obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_JR) += caam_jr.o
|
|||
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API) += caamalg.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API) += caamhash.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_API) += caamrng.o
|
||||
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_PKC_API) += caam_pkc.o
|
||||
|
||||
caam-objs := ctrl.o
|
||||
caam_jr-objs := jr.o key_gen.o error.o
|
||||
caam_pkc-y := caampkc.o pkc_desc.o
|
||||
|
|
607
drivers/crypto/caam/caampkc.c
Normal file
607
drivers/crypto/caam/caampkc.c
Normal file
|
@ -0,0 +1,607 @@
|
|||
/*
|
||||
* caam - Freescale FSL CAAM support for Public Key Cryptography
|
||||
*
|
||||
* Copyright 2016 Freescale Semiconductor, Inc.
|
||||
*
|
||||
* There is no Shared Descriptor for PKC so that the Job Descriptor must carry
|
||||
* all the desired key parameters, input and output pointers.
|
||||
*/
|
||||
#include "compat.h"
|
||||
#include "regs.h"
|
||||
#include "intern.h"
|
||||
#include "jr.h"
|
||||
#include "error.h"
|
||||
#include "desc_constr.h"
|
||||
#include "sg_sw_sec4.h"
|
||||
#include "caampkc.h"
|
||||
|
||||
#define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + sizeof(struct rsa_pub_pdb))
|
||||
#define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \
|
||||
sizeof(struct rsa_priv_f1_pdb))
|
||||
|
||||
static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
|
||||
struct akcipher_request *req)
|
||||
{
|
||||
dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
|
||||
dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
|
||||
|
||||
if (edesc->sec4_sg_bytes)
|
||||
dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
|
||||
DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
|
||||
struct akcipher_request *req)
|
||||
{
|
||||
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct caam_rsa_key *key = &ctx->key;
|
||||
struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
|
||||
|
||||
dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
|
||||
dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
|
||||
struct akcipher_request *req)
|
||||
{
|
||||
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct caam_rsa_key *key = &ctx->key;
|
||||
struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
|
||||
|
||||
dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
|
||||
dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
/* RSA Job Completion handler */
|
||||
static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
|
||||
{
|
||||
struct akcipher_request *req = context;
|
||||
struct rsa_edesc *edesc;
|
||||
|
||||
if (err)
|
||||
caam_jr_strstatus(dev, err);
|
||||
|
||||
edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
|
||||
|
||||
rsa_pub_unmap(dev, edesc, req);
|
||||
rsa_io_unmap(dev, edesc, req);
|
||||
kfree(edesc);
|
||||
|
||||
akcipher_request_complete(req, err);
|
||||
}
|
||||
|
||||
static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err,
|
||||
void *context)
|
||||
{
|
||||
struct akcipher_request *req = context;
|
||||
struct rsa_edesc *edesc;
|
||||
|
||||
if (err)
|
||||
caam_jr_strstatus(dev, err);
|
||||
|
||||
edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
|
||||
|
||||
rsa_priv_f1_unmap(dev, edesc, req);
|
||||
rsa_io_unmap(dev, edesc, req);
|
||||
kfree(edesc);
|
||||
|
||||
akcipher_request_complete(req, err);
|
||||
}
|
||||
|
||||
static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
|
||||
size_t desclen)
|
||||
{
|
||||
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct device *dev = ctx->dev;
|
||||
struct rsa_edesc *edesc;
|
||||
gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
|
||||
CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
|
||||
int sgc;
|
||||
int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
|
||||
int src_nents, dst_nents;
|
||||
|
||||
src_nents = sg_nents_for_len(req->src, req->src_len);
|
||||
dst_nents = sg_nents_for_len(req->dst, req->dst_len);
|
||||
|
||||
if (src_nents > 1)
|
||||
sec4_sg_len = src_nents;
|
||||
if (dst_nents > 1)
|
||||
sec4_sg_len += dst_nents;
|
||||
|
||||
sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
|
||||
|
||||
/* allocate space for base edesc, hw desc commands and link tables */
|
||||
edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes,
|
||||
GFP_DMA | flags);
|
||||
if (!edesc)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
sgc = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
|
||||
if (unlikely(!sgc)) {
|
||||
dev_err(dev, "unable to map source\n");
|
||||
goto src_fail;
|
||||
}
|
||||
|
||||
sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
|
||||
if (unlikely(!sgc)) {
|
||||
dev_err(dev, "unable to map destination\n");
|
||||
goto dst_fail;
|
||||
}
|
||||
|
||||
edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
|
||||
|
||||
sec4_sg_index = 0;
|
||||
if (src_nents > 1) {
|
||||
sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
|
||||
sec4_sg_index += src_nents;
|
||||
}
|
||||
if (dst_nents > 1)
|
||||
sg_to_sec4_sg_last(req->dst, dst_nents,
|
||||
edesc->sec4_sg + sec4_sg_index, 0);
|
||||
|
||||
/* Save nents for later use in Job Descriptor */
|
||||
edesc->src_nents = src_nents;
|
||||
edesc->dst_nents = dst_nents;
|
||||
|
||||
if (!sec4_sg_bytes)
|
||||
return edesc;
|
||||
|
||||
edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
|
||||
sec4_sg_bytes, DMA_TO_DEVICE);
|
||||
if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
|
||||
dev_err(dev, "unable to map S/G table\n");
|
||||
goto sec4_sg_fail;
|
||||
}
|
||||
|
||||
edesc->sec4_sg_bytes = sec4_sg_bytes;
|
||||
|
||||
return edesc;
|
||||
|
||||
sec4_sg_fail:
|
||||
dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
|
||||
dst_fail:
|
||||
dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE);
|
||||
src_fail:
|
||||
kfree(edesc);
|
||||
return ERR_PTR(-ENOMEM);
|
||||
}
|
||||
|
||||
static int set_rsa_pub_pdb(struct akcipher_request *req,
|
||||
struct rsa_edesc *edesc)
|
||||
{
|
||||
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct caam_rsa_key *key = &ctx->key;
|
||||
struct device *dev = ctx->dev;
|
||||
struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
|
||||
int sec4_sg_index = 0;
|
||||
|
||||
pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
|
||||
if (dma_mapping_error(dev, pdb->n_dma)) {
|
||||
dev_err(dev, "Unable to map RSA modulus memory\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
|
||||
if (dma_mapping_error(dev, pdb->e_dma)) {
|
||||
dev_err(dev, "Unable to map RSA public exponent memory\n");
|
||||
dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
if (edesc->src_nents > 1) {
|
||||
pdb->sgf |= RSA_PDB_SGF_F;
|
||||
pdb->f_dma = edesc->sec4_sg_dma;
|
||||
sec4_sg_index += edesc->src_nents;
|
||||
} else {
|
||||
pdb->f_dma = sg_dma_address(req->src);
|
||||
}
|
||||
|
||||
if (edesc->dst_nents > 1) {
|
||||
pdb->sgf |= RSA_PDB_SGF_G;
|
||||
pdb->g_dma = edesc->sec4_sg_dma +
|
||||
sec4_sg_index * sizeof(struct sec4_sg_entry);
|
||||
} else {
|
||||
pdb->g_dma = sg_dma_address(req->dst);
|
||||
}
|
||||
|
||||
pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
|
||||
pdb->f_len = req->src_len;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
|
||||
struct rsa_edesc *edesc)
|
||||
{
|
||||
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct caam_rsa_key *key = &ctx->key;
|
||||
struct device *dev = ctx->dev;
|
||||
struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
|
||||
int sec4_sg_index = 0;
|
||||
|
||||
pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
|
||||
if (dma_mapping_error(dev, pdb->n_dma)) {
|
||||
dev_err(dev, "Unable to map modulus memory\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
|
||||
if (dma_mapping_error(dev, pdb->d_dma)) {
|
||||
dev_err(dev, "Unable to map RSA private exponent memory\n");
|
||||
dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
if (edesc->src_nents > 1) {
|
||||
pdb->sgf |= RSA_PRIV_PDB_SGF_G;
|
||||
pdb->g_dma = edesc->sec4_sg_dma;
|
||||
sec4_sg_index += edesc->src_nents;
|
||||
} else {
|
||||
pdb->g_dma = sg_dma_address(req->src);
|
||||
}
|
||||
|
||||
if (edesc->dst_nents > 1) {
|
||||
pdb->sgf |= RSA_PRIV_PDB_SGF_F;
|
||||
pdb->f_dma = edesc->sec4_sg_dma +
|
||||
sec4_sg_index * sizeof(struct sec4_sg_entry);
|
||||
} else {
|
||||
pdb->f_dma = sg_dma_address(req->dst);
|
||||
}
|
||||
|
||||
pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int caam_rsa_enc(struct akcipher_request *req)
|
||||
{
|
||||
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct caam_rsa_key *key = &ctx->key;
|
||||
struct device *jrdev = ctx->dev;
|
||||
struct rsa_edesc *edesc;
|
||||
int ret;
|
||||
|
||||
if (unlikely(!key->n || !key->e))
|
||||
return -EINVAL;
|
||||
|
||||
if (req->dst_len < key->n_sz) {
|
||||
req->dst_len = key->n_sz;
|
||||
dev_err(jrdev, "Output buffer length less than parameter n\n");
|
||||
return -EOVERFLOW;
|
||||
}
|
||||
|
||||
/* Allocate extended descriptor */
|
||||
edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
|
||||
if (IS_ERR(edesc))
|
||||
return PTR_ERR(edesc);
|
||||
|
||||
/* Set RSA Encrypt Protocol Data Block */
|
||||
ret = set_rsa_pub_pdb(req, edesc);
|
||||
if (ret)
|
||||
goto init_fail;
|
||||
|
||||
/* Initialize Job Descriptor */
|
||||
init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);
|
||||
|
||||
ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req);
|
||||
if (!ret)
|
||||
return -EINPROGRESS;
|
||||
|
||||
rsa_pub_unmap(jrdev, edesc, req);
|
||||
|
||||
init_fail:
|
||||
rsa_io_unmap(jrdev, edesc, req);
|
||||
kfree(edesc);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int caam_rsa_dec(struct akcipher_request *req)
|
||||
{
|
||||
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct caam_rsa_key *key = &ctx->key;
|
||||
struct device *jrdev = ctx->dev;
|
||||
struct rsa_edesc *edesc;
|
||||
int ret;
|
||||
|
||||
if (unlikely(!key->n || !key->d))
|
||||
return -EINVAL;
|
||||
|
||||
if (req->dst_len < key->n_sz) {
|
||||
req->dst_len = key->n_sz;
|
||||
dev_err(jrdev, "Output buffer length less than parameter n\n");
|
||||
return -EOVERFLOW;
|
||||
}
|
||||
|
||||
/* Allocate extended descriptor */
|
||||
edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
|
||||
if (IS_ERR(edesc))
|
||||
return PTR_ERR(edesc);
|
||||
|
||||
/* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
|
||||
ret = set_rsa_priv_f1_pdb(req, edesc);
|
||||
if (ret)
|
||||
goto init_fail;
|
||||
|
||||
/* Initialize Job Descriptor */
|
||||
init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);
|
||||
|
||||
ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req);
|
||||
if (!ret)
|
||||
return -EINPROGRESS;
|
||||
|
||||
rsa_priv_f1_unmap(jrdev, edesc, req);
|
||||
|
||||
init_fail:
|
||||
rsa_io_unmap(jrdev, edesc, req);
|
||||
kfree(edesc);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void caam_rsa_free_key(struct caam_rsa_key *key)
|
||||
{
|
||||
kzfree(key->d);
|
||||
kfree(key->e);
|
||||
kfree(key->n);
|
||||
key->d = NULL;
|
||||
key->e = NULL;
|
||||
key->n = NULL;
|
||||
key->d_sz = 0;
|
||||
key->e_sz = 0;
|
||||
key->n_sz = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* caam_read_raw_data - Read a raw byte stream as a positive integer.
|
||||
* The function skips buffer's leading zeros, copies the remained data
|
||||
* to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns
|
||||
* the address of the new buffer.
|
||||
*
|
||||
* @buf : The data to read
|
||||
* @nbytes: The amount of data to read
|
||||
*/
|
||||
static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
|
||||
{
|
||||
u8 *val;
|
||||
|
||||
while (!*buf && *nbytes) {
|
||||
buf++;
|
||||
(*nbytes)--;
|
||||
}
|
||||
|
||||
val = kzalloc(*nbytes, GFP_DMA | GFP_KERNEL);
|
||||
if (!val)
|
||||
return NULL;
|
||||
|
||||
memcpy(val, buf, *nbytes);
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
static int caam_rsa_check_key_length(unsigned int len)
|
||||
{
|
||||
if (len > 4096)
|
||||
return -EINVAL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
|
||||
unsigned int keylen)
|
||||
{
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct rsa_key raw_key = {0};
|
||||
struct caam_rsa_key *rsa_key = &ctx->key;
|
||||
int ret;
|
||||
|
||||
/* Free the old RSA key if any */
|
||||
caam_rsa_free_key(rsa_key);
|
||||
|
||||
ret = rsa_parse_pub_key(&raw_key, key, keylen);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Copy key in DMA zone */
|
||||
rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL);
|
||||
if (!rsa_key->e)
|
||||
goto err;
|
||||
|
||||
/*
|
||||
* Skip leading zeros and copy the positive integer to a buffer
|
||||
* allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
|
||||
* expects a positive integer for the RSA modulus and uses its length as
|
||||
* decryption output length.
|
||||
*/
|
||||
rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
|
||||
if (!rsa_key->n)
|
||||
goto err;
|
||||
|
||||
if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
|
||||
caam_rsa_free_key(rsa_key);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
rsa_key->e_sz = raw_key.e_sz;
|
||||
rsa_key->n_sz = raw_key.n_sz;
|
||||
|
||||
memcpy(rsa_key->e, raw_key.e, raw_key.e_sz);
|
||||
|
||||
return 0;
|
||||
err:
|
||||
caam_rsa_free_key(rsa_key);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
|
||||
unsigned int keylen)
|
||||
{
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct rsa_key raw_key = {0};
|
||||
struct caam_rsa_key *rsa_key = &ctx->key;
|
||||
int ret;
|
||||
|
||||
/* Free the old RSA key if any */
|
||||
caam_rsa_free_key(rsa_key);
|
||||
|
||||
ret = rsa_parse_priv_key(&raw_key, key, keylen);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Copy key in DMA zone */
|
||||
rsa_key->d = kzalloc(raw_key.d_sz, GFP_DMA | GFP_KERNEL);
|
||||
if (!rsa_key->d)
|
||||
goto err;
|
||||
|
||||
rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL);
|
||||
if (!rsa_key->e)
|
||||
goto err;
|
||||
|
||||
/*
|
||||
* Skip leading zeros and copy the positive integer to a buffer
|
||||
* allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
|
||||
* expects a positive integer for the RSA modulus and uses its length as
|
||||
* decryption output length.
|
||||
*/
|
||||
rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
|
||||
if (!rsa_key->n)
|
||||
goto err;
|
||||
|
||||
if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
|
||||
caam_rsa_free_key(rsa_key);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
rsa_key->d_sz = raw_key.d_sz;
|
||||
rsa_key->e_sz = raw_key.e_sz;
|
||||
rsa_key->n_sz = raw_key.n_sz;
|
||||
|
||||
memcpy(rsa_key->d, raw_key.d, raw_key.d_sz);
|
||||
memcpy(rsa_key->e, raw_key.e, raw_key.e_sz);
|
||||
|
||||
return 0;
|
||||
|
||||
err:
|
||||
caam_rsa_free_key(rsa_key);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static int caam_rsa_max_size(struct crypto_akcipher *tfm)
|
||||
{
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct caam_rsa_key *key = &ctx->key;
|
||||
|
||||
return (key->n) ? key->n_sz : -EINVAL;
|
||||
}
|
||||
|
||||
/* Per session pkc's driver context creation function */
|
||||
static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
|
||||
{
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
|
||||
ctx->dev = caam_jr_alloc();
|
||||
|
||||
if (IS_ERR(ctx->dev)) {
|
||||
dev_err(ctx->dev, "Job Ring Device allocation for transform failed\n");
|
||||
return PTR_ERR(ctx->dev);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Per session pkc's driver context cleanup function */
|
||||
static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
|
||||
{
|
||||
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
||||
struct caam_rsa_key *key = &ctx->key;
|
||||
|
||||
caam_rsa_free_key(key);
|
||||
caam_jr_free(ctx->dev);
|
||||
}
|
||||
|
||||
static struct akcipher_alg caam_rsa = {
|
||||
.encrypt = caam_rsa_enc,
|
||||
.decrypt = caam_rsa_dec,
|
||||
.sign = caam_rsa_dec,
|
||||
.verify = caam_rsa_enc,
|
||||
.set_pub_key = caam_rsa_set_pub_key,
|
||||
.set_priv_key = caam_rsa_set_priv_key,
|
||||
.max_size = caam_rsa_max_size,
|
||||
.init = caam_rsa_init_tfm,
|
||||
.exit = caam_rsa_exit_tfm,
|
||||
.base = {
|
||||
.cra_name = "rsa",
|
||||
.cra_driver_name = "rsa-caam",
|
||||
.cra_priority = 3000,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_ctxsize = sizeof(struct caam_rsa_ctx),
|
||||
},
|
||||
};
|
||||
|
||||
/* Public Key Cryptography module initialization handler */
|
||||
static int __init caam_pkc_init(void)
|
||||
{
|
||||
struct device_node *dev_node;
|
||||
struct platform_device *pdev;
|
||||
struct device *ctrldev;
|
||||
struct caam_drv_private *priv;
|
||||
u32 cha_inst, pk_inst;
|
||||
int err;
|
||||
|
||||
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
|
||||
if (!dev_node) {
|
||||
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
|
||||
if (!dev_node)
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
pdev = of_find_device_by_node(dev_node);
|
||||
if (!pdev) {
|
||||
of_node_put(dev_node);
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
ctrldev = &pdev->dev;
|
||||
priv = dev_get_drvdata(ctrldev);
|
||||
of_node_put(dev_node);
|
||||
|
||||
/*
|
||||
* If priv is NULL, it's probably because the caam driver wasn't
|
||||
* properly initialized (e.g. RNG4 init failed). Thus, bail out here.
|
||||
*/
|
||||
if (!priv)
|
||||
return -ENODEV;
|
||||
|
||||
/* Determine public key hardware accelerator presence. */
|
||||
cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
|
||||
pk_inst = (cha_inst & CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
|
||||
|
||||
/* Do not register algorithms if PKHA is not present. */
|
||||
if (!pk_inst)
|
||||
return -ENODEV;
|
||||
|
||||
err = crypto_register_akcipher(&caam_rsa);
|
||||
if (err)
|
||||
dev_warn(ctrldev, "%s alg registration failed\n",
|
||||
caam_rsa.base.cra_driver_name);
|
||||
else
|
||||
dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static void __exit caam_pkc_exit(void)
|
||||
{
|
||||
crypto_unregister_akcipher(&caam_rsa);
|
||||
}
|
||||
|
||||
module_init(caam_pkc_init);
|
||||
module_exit(caam_pkc_exit);
|
||||
|
||||
MODULE_LICENSE("Dual BSD/GPL");
|
||||
MODULE_DESCRIPTION("FSL CAAM support for PKC functions of crypto API");
|
||||
MODULE_AUTHOR("Freescale Semiconductor");
|
70
drivers/crypto/caam/caampkc.h
Normal file
70
drivers/crypto/caam/caampkc.h
Normal file
|
@ -0,0 +1,70 @@
|
|||
/*
|
||||
* caam - Freescale FSL CAAM support for Public Key Cryptography descriptors
|
||||
*
|
||||
* Copyright 2016 Freescale Semiconductor, Inc.
|
||||
*
|
||||
* There is no Shared Descriptor for PKC so that the Job Descriptor must carry
|
||||
* all the desired key parameters, input and output pointers.
|
||||
*/
|
||||
|
||||
#ifndef _PKC_DESC_H_
|
||||
#define _PKC_DESC_H_
|
||||
#include "compat.h"
|
||||
#include "pdb.h"
|
||||
|
||||
/**
|
||||
* caam_rsa_key - CAAM RSA key structure. Keys are allocated in DMA zone.
|
||||
* @n : RSA modulus raw byte stream
|
||||
* @e : RSA public exponent raw byte stream
|
||||
* @d : RSA private exponent raw byte stream
|
||||
* @n_sz : length in bytes of RSA modulus n
|
||||
* @e_sz : length in bytes of RSA public exponent
|
||||
* @d_sz : length in bytes of RSA private exponent
|
||||
*/
|
||||
struct caam_rsa_key {
|
||||
u8 *n;
|
||||
u8 *e;
|
||||
u8 *d;
|
||||
size_t n_sz;
|
||||
size_t e_sz;
|
||||
size_t d_sz;
|
||||
};
|
||||
|
||||
/**
|
||||
* caam_rsa_ctx - per session context.
|
||||
* @key : RSA key in DMA zone
|
||||
* @dev : device structure
|
||||
*/
|
||||
struct caam_rsa_ctx {
|
||||
struct caam_rsa_key key;
|
||||
struct device *dev;
|
||||
};
|
||||
|
||||
/**
|
||||
* rsa_edesc - s/w-extended rsa descriptor
|
||||
* @src_nents : number of segments in input scatterlist
|
||||
* @dst_nents : number of segments in output scatterlist
|
||||
* @sec4_sg_bytes : length of h/w link table
|
||||
* @sec4_sg_dma : dma address of h/w link table
|
||||
* @sec4_sg : pointer to h/w link table
|
||||
* @pdb : specific RSA Protocol Data Block (PDB)
|
||||
* @hw_desc : descriptor followed by link tables if any
|
||||
*/
|
||||
struct rsa_edesc {
|
||||
int src_nents;
|
||||
int dst_nents;
|
||||
int sec4_sg_bytes;
|
||||
dma_addr_t sec4_sg_dma;
|
||||
struct sec4_sg_entry *sec4_sg;
|
||||
union {
|
||||
struct rsa_pub_pdb pub;
|
||||
struct rsa_priv_f1_pdb priv_f1;
|
||||
} pdb;
|
||||
u32 hw_desc[];
|
||||
};
|
||||
|
||||
/* Descriptor construction primitives. */
|
||||
void init_rsa_pub_desc(u32 *desc, struct rsa_pub_pdb *pdb);
|
||||
void init_rsa_priv_f1_desc(u32 *desc, struct rsa_priv_f1_pdb *pdb);
|
||||
|
||||
#endif
|
|
@ -35,8 +35,11 @@
|
|||
#include <crypto/md5.h>
|
||||
#include <crypto/internal/aead.h>
|
||||
#include <crypto/authenc.h>
|
||||
#include <crypto/akcipher.h>
|
||||
#include <crypto/scatterwalk.h>
|
||||
#include <crypto/internal/skcipher.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/internal/rsa.h>
|
||||
#include <crypto/internal/akcipher.h>
|
||||
|
||||
#endif /* !defined(CAAM_COMPAT_H) */
|
||||
|
|
|
@ -453,6 +453,8 @@ struct sec4_sg_entry {
|
|||
#define OP_PCLID_PUBLICKEYPAIR (0x14 << OP_PCLID_SHIFT)
|
||||
#define OP_PCLID_DSASIGN (0x15 << OP_PCLID_SHIFT)
|
||||
#define OP_PCLID_DSAVERIFY (0x16 << OP_PCLID_SHIFT)
|
||||
#define OP_PCLID_RSAENC_PUBKEY (0x18 << OP_PCLID_SHIFT)
|
||||
#define OP_PCLID_RSADEC_PRVKEY (0x19 << OP_PCLID_SHIFT)
|
||||
|
||||
/* Assuming OP_TYPE = OP_TYPE_DECAP_PROTOCOL/ENCAP_PROTOCOL */
|
||||
#define OP_PCLID_IPSEC (0x01 << OP_PCLID_SHIFT)
|
||||
|
|
|
@ -77,6 +77,13 @@ static inline void init_job_desc(u32 *desc, u32 options)
|
|||
init_desc(desc, CMD_DESC_HDR | options);
|
||||
}
|
||||
|
||||
static inline void init_job_desc_pdb(u32 *desc, u32 options, size_t pdb_bytes)
|
||||
{
|
||||
u32 pdb_len = (pdb_bytes + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ;
|
||||
|
||||
init_job_desc(desc, (((pdb_len + 1) << HDR_START_IDX_SHIFT)) | options);
|
||||
}
|
||||
|
||||
static inline void append_ptr(u32 *desc, dma_addr_t ptr)
|
||||
{
|
||||
dma_addr_t *offset = (dma_addr_t *)desc_end(desc);
|
||||
|
|
|
@ -1,12 +1,13 @@
|
|||
/*
|
||||
* CAAM Protocol Data Block (PDB) definition header file
|
||||
*
|
||||
* Copyright 2008-2012 Freescale Semiconductor, Inc.
|
||||
* Copyright 2008-2016 Freescale Semiconductor, Inc.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef CAAM_PDB_H
|
||||
#define CAAM_PDB_H
|
||||
#include "compat.h"
|
||||
|
||||
/*
|
||||
* PDB- IPSec ESP Header Modification Options
|
||||
|
@ -476,4 +477,52 @@ struct dsa_verify_pdb {
|
|||
u8 *ab; /* only used if ECC processing */
|
||||
};
|
||||
|
||||
/* RSA Protocol Data Block */
|
||||
#define RSA_PDB_SGF_SHIFT 28
|
||||
#define RSA_PDB_E_SHIFT 12
|
||||
#define RSA_PDB_E_MASK (0xFFF << RSA_PDB_E_SHIFT)
|
||||
#define RSA_PDB_D_SHIFT 12
|
||||
#define RSA_PDB_D_MASK (0xFFF << RSA_PDB_D_SHIFT)
|
||||
|
||||
#define RSA_PDB_SGF_F (0x8 << RSA_PDB_SGF_SHIFT)
|
||||
#define RSA_PDB_SGF_G (0x4 << RSA_PDB_SGF_SHIFT)
|
||||
#define RSA_PRIV_PDB_SGF_F (0x4 << RSA_PDB_SGF_SHIFT)
|
||||
#define RSA_PRIV_PDB_SGF_G (0x8 << RSA_PDB_SGF_SHIFT)
|
||||
|
||||
#define RSA_PRIV_KEY_FRM_1 0
|
||||
|
||||
/**
|
||||
* RSA Encrypt Protocol Data Block
|
||||
* @sgf: scatter-gather field
|
||||
* @f_dma: dma address of input data
|
||||
* @g_dma: dma address of encrypted output data
|
||||
* @n_dma: dma address of RSA modulus
|
||||
* @e_dma: dma address of RSA public exponent
|
||||
* @f_len: length in octets of the input data
|
||||
*/
|
||||
struct rsa_pub_pdb {
|
||||
u32 sgf;
|
||||
dma_addr_t f_dma;
|
||||
dma_addr_t g_dma;
|
||||
dma_addr_t n_dma;
|
||||
dma_addr_t e_dma;
|
||||
u32 f_len;
|
||||
} __packed;
|
||||
|
||||
/**
|
||||
* RSA Decrypt PDB - Private Key Form #1
|
||||
* @sgf: scatter-gather field
|
||||
* @g_dma: dma address of encrypted input data
|
||||
* @f_dma: dma address of output data
|
||||
* @n_dma: dma address of RSA modulus
|
||||
* @d_dma: dma address of RSA private exponent
|
||||
*/
|
||||
struct rsa_priv_f1_pdb {
|
||||
u32 sgf;
|
||||
dma_addr_t g_dma;
|
||||
dma_addr_t f_dma;
|
||||
dma_addr_t n_dma;
|
||||
dma_addr_t d_dma;
|
||||
} __packed;
|
||||
|
||||
#endif
|
||||
|
|
36
drivers/crypto/caam/pkc_desc.c
Normal file
36
drivers/crypto/caam/pkc_desc.c
Normal file
|
@ -0,0 +1,36 @@
|
|||
/*
|
||||
* caam - Freescale FSL CAAM support for Public Key Cryptography descriptors
|
||||
*
|
||||
* Copyright 2016 Freescale Semiconductor, Inc.
|
||||
*
|
||||
* There is no Shared Descriptor for PKC so that the Job Descriptor must carry
|
||||
* all the desired key parameters, input and output pointers.
|
||||
*/
|
||||
#include "caampkc.h"
|
||||
#include "desc_constr.h"
|
||||
|
||||
/* Descriptor for RSA Public operation */
|
||||
void init_rsa_pub_desc(u32 *desc, struct rsa_pub_pdb *pdb)
|
||||
{
|
||||
init_job_desc_pdb(desc, 0, sizeof(*pdb));
|
||||
append_cmd(desc, pdb->sgf);
|
||||
append_ptr(desc, pdb->f_dma);
|
||||
append_ptr(desc, pdb->g_dma);
|
||||
append_ptr(desc, pdb->n_dma);
|
||||
append_ptr(desc, pdb->e_dma);
|
||||
append_cmd(desc, pdb->f_len);
|
||||
append_operation(desc, OP_TYPE_UNI_PROTOCOL | OP_PCLID_RSAENC_PUBKEY);
|
||||
}
|
||||
|
||||
/* Descriptor for RSA Private operation - Private Key Form #1 */
|
||||
void init_rsa_priv_f1_desc(u32 *desc, struct rsa_priv_f1_pdb *pdb)
|
||||
{
|
||||
init_job_desc_pdb(desc, 0, sizeof(*pdb));
|
||||
append_cmd(desc, pdb->sgf);
|
||||
append_ptr(desc, pdb->g_dma);
|
||||
append_ptr(desc, pdb->f_dma);
|
||||
append_ptr(desc, pdb->n_dma);
|
||||
append_ptr(desc, pdb->d_dma);
|
||||
append_operation(desc, OP_TYPE_UNI_PROTOCOL | OP_PCLID_RSADEC_PRVKEY |
|
||||
RSA_PRIV_KEY_FRM_1);
|
||||
}
|
Loading…
Add table
Reference in a new issue