1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 09:13:20 -05:00

[CRYPTO] aes-generic: Coding style cleanup

Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Sebastian Siewior 2007-11-08 20:39:26 +08:00 committed by Herbert Xu
parent 41fdab3dd3
commit be5fb27012

View file

@ -63,8 +63,7 @@
/*
* #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
*/
static inline u8
byte(const u32 x, const unsigned n)
static inline u8 byte(const u32 x, const unsigned n)
{
return x >> (n << 3);
}
@ -88,55 +87,25 @@ static u32 it_tab[4][256];
static u32 fl_tab[4][256];
static u32 il_tab[4][256];
static inline u8 __init
f_mult (u8 a, u8 b)
static inline u8 __init f_mult(u8 a, u8 b)
{
u8 aa = log_tab[a], cc = aa + log_tab[b];
return pow_tab[cc + (cc < aa ? 1 : 0)];
}
#define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
#define ff_mult(a, b) (a && b ? f_mult(a, b) : 0)
#define f_rn(bo, bi, n, k) \
bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
#define i_rn(bo, bi, n, k) \
bo[n] = it_tab[0][byte(bi[n],0)] ^ \
it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
#define ls_box(x) \
( fl_tab[0][byte(x, 0)] ^ \
fl_tab[1][byte(x, 1)] ^ \
fl_tab[2][byte(x, 2)] ^ \
fl_tab[3][byte(x, 3)] )
#define f_rl(bo, bi, n, k) \
bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
#define i_rl(bo, bi, n, k) \
bo[n] = il_tab[0][byte(bi[n],0)] ^ \
il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
static void __init
gen_tabs (void)
static void __init gen_tabs(void)
{
u32 i, t;
u8 p, q;
/* log and power tables for GF(2**8) finite field with
0x011b as modular polynomial - the simplest primitive
root is 0x03, used here to generate the tables */
/*
* log and power tables for GF(2**8) finite field with
* 0x011b as modular polynomial - the simplest primitive
* root is 0x03, used here to generate the tables
*/
for (i = 0, p = 1; i < 256; ++i) {
pow_tab[i] = (u8) p;
@ -170,9 +139,9 @@ gen_tabs (void)
fl_tab[2][i] = rol32(t, 16);
fl_tab[3][i] = rol32(t, 24);
t = ((u32) ff_mult (2, p)) |
t = ((u32) ff_mult(2, p)) |
((u32) p << 8) |
((u32) p << 16) | ((u32) ff_mult (3, p) << 24);
((u32) p << 16) | ((u32) ff_mult(3, p) << 24);
ft_tab[0][i] = t;
ft_tab[1][i] = rol32(t, 8);
@ -187,10 +156,10 @@ gen_tabs (void)
il_tab[2][i] = rol32(t, 16);
il_tab[3][i] = rol32(t, 24);
t = ((u32) ff_mult (14, p)) |
((u32) ff_mult (9, p) << 8) |
((u32) ff_mult (13, p) << 16) |
((u32) ff_mult (11, p) << 24);
t = ((u32) ff_mult(14, p)) |
((u32) ff_mult(9, p) << 8) |
((u32) ff_mult(13, p) << 16) |
((u32) ff_mult(11, p) << 24);
it_tab[0][i] = t;
it_tab[1][i] = rol32(t, 8);
@ -199,53 +168,80 @@ gen_tabs (void)
}
}
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
#define imix_col(y,x) \
u = star_x(x); \
v = star_x(u); \
w = star_x(v); \
t = w ^ (x); \
(y) = u ^ v ^ w; \
(y) ^= ror32(u ^ t, 8) ^ \
ror32(v ^ t, 16) ^ \
ror32(t,24)
/* initialise the key schedule from the user supplied key */
#define loop4(i) \
{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
}
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
#define loop6(i) \
{ t = ror32(t, 8); t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
}
#define imix_col(y,x) do { \
u = star_x(x); \
v = star_x(u); \
w = star_x(v); \
t = w ^ (x); \
(y) = u ^ v ^ w; \
(y) ^= ror32(u ^ t, 8) ^ \
ror32(v ^ t, 16) ^ \
ror32(t, 24); \
} while (0)
#define loop8(i) \
{ t = ror32(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
t = E_KEY[8 * i + 4] ^ ls_box(t); \
E_KEY[8 * i + 12] = t; \
t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
}
#define ls_box(x) \
fl_tab[0][byte(x, 0)] ^ \
fl_tab[1][byte(x, 1)] ^ \
fl_tab[2][byte(x, 2)] ^ \
fl_tab[3][byte(x, 3)]
#define loop4(i) do { \
t = ror32(t, 8); \
t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[4 * i]; \
E_KEY[4 * i + 4] = t; \
t ^= E_KEY[4 * i + 1]; \
E_KEY[4 * i + 5] = t; \
t ^= E_KEY[4 * i + 2]; \
E_KEY[4 * i + 6] = t; \
t ^= E_KEY[4 * i + 3]; \
E_KEY[4 * i + 7] = t; \
} while (0)
#define loop6(i) do { \
t = ror32(t, 8); \
t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[6 * i]; \
E_KEY[6 * i + 6] = t; \
t ^= E_KEY[6 * i + 1]; \
E_KEY[6 * i + 7] = t; \
t ^= E_KEY[6 * i + 2]; \
E_KEY[6 * i + 8] = t; \
t ^= E_KEY[6 * i + 3]; \
E_KEY[6 * i + 9] = t; \
t ^= E_KEY[6 * i + 4]; \
E_KEY[6 * i + 10] = t; \
t ^= E_KEY[6 * i + 5]; \
E_KEY[6 * i + 11] = t; \
} while (0)
#define loop8(i) do { \
t = ror32(t, 8); \
t = ls_box(t) ^ rco_tab[i]; \
t ^= E_KEY[8 * i]; \
E_KEY[8 * i + 8] = t; \
t ^= E_KEY[8 * i + 1]; \
E_KEY[8 * i + 9] = t; \
t ^= E_KEY[8 * i + 2]; \
E_KEY[8 * i + 10] = t; \
t ^= E_KEY[8 * i + 3]; \
E_KEY[8 * i + 11] = t; \
t = E_KEY[8 * i + 4] ^ ls_box(t); \
E_KEY[8 * i + 12] = t; \
t ^= E_KEY[8 * i + 5]; \
E_KEY[8 * i + 13] = t; \
t ^= E_KEY[8 * i + 6]; \
E_KEY[8 * i + 14] = t; \
t ^= E_KEY[8 * i + 7]; \
E_KEY[8 * i + 15] = t; \
} while (0)
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
unsigned int key_len)
{
struct aes_ctx *ctx = crypto_tfm_ctx(tfm);
const __le32 *key = (const __le32 *)in_key;
@ -268,14 +264,14 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
case 16:
t = E_KEY[3];
for (i = 0; i < 10; ++i)
loop4 (i);
loop4(i);
break;
case 24:
E_KEY[4] = le32_to_cpu(key[4]);
t = E_KEY[5] = le32_to_cpu(key[5]);
for (i = 0; i < 8; ++i)
loop6 (i);
loop6(i);
break;
case 32:
@ -284,7 +280,7 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
E_KEY[6] = le32_to_cpu(key[6]);
t = E_KEY[7] = le32_to_cpu(key[7]);
for (i = 0; i < 7; ++i)
loop8 (i);
loop8(i);
break;
}
@ -294,7 +290,7 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
D_KEY[3] = E_KEY[3];
for (i = 4; i < key_len + 24; ++i) {
imix_col (D_KEY[i], E_KEY[i]);
imix_col(D_KEY[i], E_KEY[i]);
}
return 0;
@ -302,18 +298,34 @@ static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
/* encrypt a block of text */
#define f_nround(bo, bi, k) \
f_rn(bo, bi, 0, k); \
f_rn(bo, bi, 1, k); \
f_rn(bo, bi, 2, k); \
f_rn(bo, bi, 3, k); \
k += 4
#define f_rn(bo, bi, n, k) do { \
bo[n] = ft_tab[0][byte(bi[n], 0)] ^ \
ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
} while (0)
#define f_lround(bo, bi, k) \
f_rl(bo, bi, 0, k); \
f_rl(bo, bi, 1, k); \
f_rl(bo, bi, 2, k); \
f_rl(bo, bi, 3, k)
#define f_nround(bo, bi, k) do {\
f_rn(bo, bi, 0, k); \
f_rn(bo, bi, 1, k); \
f_rn(bo, bi, 2, k); \
f_rn(bo, bi, 3, k); \
k += 4; \
} while (0)
#define f_rl(bo, bi, n, k) do { \
bo[n] = fl_tab[0][byte(bi[n], 0)] ^ \
fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ *(k + n); \
} while (0)
#define f_lround(bo, bi, k) do {\
f_rl(bo, bi, 0, k); \
f_rl(bo, bi, 1, k); \
f_rl(bo, bi, 2, k); \
f_rl(bo, bi, 3, k); \
} while (0)
static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
@ -329,25 +341,25 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
b0[3] = le32_to_cpu(src[3]) ^ E_KEY[3];
if (ctx->key_length > 24) {
f_nround (b1, b0, kp);
f_nround (b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
}
if (ctx->key_length > 16) {
f_nround (b1, b0, kp);
f_nround (b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
}
f_nround (b1, b0, kp);
f_nround (b0, b1, kp);
f_nround (b1, b0, kp);
f_nround (b0, b1, kp);
f_nround (b1, b0, kp);
f_nround (b0, b1, kp);
f_nround (b1, b0, kp);
f_nround (b0, b1, kp);
f_nround (b1, b0, kp);
f_lround (b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
f_nround(b1, b0, kp);
f_nround(b0, b1, kp);
f_nround(b1, b0, kp);
f_lround(b0, b1, kp);
dst[0] = cpu_to_le32(b0[0]);
dst[1] = cpu_to_le32(b0[1]);
@ -357,18 +369,34 @@ static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
/* decrypt a block of text */
#define i_nround(bo, bi, k) \
i_rn(bo, bi, 0, k); \
i_rn(bo, bi, 1, k); \
i_rn(bo, bi, 2, k); \
i_rn(bo, bi, 3, k); \
k -= 4
#define i_rn(bo, bi, n, k) do { \
bo[n] = it_tab[0][byte(bi[n], 0)] ^ \
it_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
it_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
} while (0)
#define i_lround(bo, bi, k) \
i_rl(bo, bi, 0, k); \
i_rl(bo, bi, 1, k); \
i_rl(bo, bi, 2, k); \
i_rl(bo, bi, 3, k)
#define i_nround(bo, bi, k) do {\
i_rn(bo, bi, 0, k); \
i_rn(bo, bi, 1, k); \
i_rn(bo, bi, 2, k); \
i_rn(bo, bi, 3, k); \
k -= 4; \
} while (0)
#define i_rl(bo, bi, n, k) do { \
bo[n] = il_tab[0][byte(bi[n], 0)] ^ \
il_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
il_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ *(k + n); \
} while (0)
#define i_lround(bo, bi, k) do {\
i_rl(bo, bi, 0, k); \
i_rl(bo, bi, 1, k); \
i_rl(bo, bi, 2, k); \
i_rl(bo, bi, 3, k); \
} while (0)
static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
@ -385,25 +413,25 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
b0[3] = le32_to_cpu(src[3]) ^ E_KEY[key_len + 27];
if (key_len > 24) {
i_nround (b1, b0, kp);
i_nround (b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
}
if (key_len > 16) {
i_nround (b1, b0, kp);
i_nround (b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
}
i_nround (b1, b0, kp);
i_nround (b0, b1, kp);
i_nround (b1, b0, kp);
i_nround (b0, b1, kp);
i_nround (b1, b0, kp);
i_nround (b0, b1, kp);
i_nround (b1, b0, kp);
i_nround (b0, b1, kp);
i_nround (b1, b0, kp);
i_lround (b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
i_nround(b1, b0, kp);
i_nround(b0, b1, kp);
i_nround(b1, b0, kp);
i_lround(b0, b1, kp);
dst[0] = cpu_to_le32(b0[0]);
dst[1] = cpu_to_le32(b0[1]);
@ -411,7 +439,6 @@ static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
dst[3] = cpu_to_le32(b0[3]);
}
static struct crypto_alg aes_alg = {
.cra_name = "aes",
.cra_driver_name = "aes-generic",
@ -426,9 +453,9 @@ static struct crypto_alg aes_alg = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
}
}
};