When a secret memory region is active, memfd_secret disables hibernation.
One of the goals is to keep the secret data from being written to
persistent-storage.
It accomplishes this by maintaining a reference count to
`secretmem_users`. Once this reference is held your system can not be
hibernated due to the check in `hibernation_available()`. However,
because `secretmem_users` is of type `atomic_t`, reference counter
overflows are possible.
As you can see there's an `atomic_inc` for each `memfd` that is opened in
the `memfd_secret` syscall. If a local attacker succeeds to open 2^32
memfd's, the counter will wrap around to 0. This implies that you may
hibernate again, even though there are still regions of this secret
memory, thereby bypassing the security check.
In an attempt to fix this I have used `refcount_t` instead of `atomic_t`
which prevents reference counter overflows.
Link: https://lkml.kernel.org/r/20210820043339.2151352-1-jordy@pwning.systems
Signed-off-by: Jordy Zomer <jordy@pwning.systems>
Cc: Kees Cook <keescook@chromium.org>,
Cc: Jordy Zomer <jordy@jordyzomer.github.io>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of hard-coding ((1UL << NR_PAGEFLAGS) - 1) everywhere, introducing
PAGEFLAGS_MASK to make the code clear to get the page flags.
Link: https://lkml.kernel.org/r/20210819150712.59948-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the obsolete and ambiguos macro in_irq() with new macro
in_hardirq().
Link: https://lkml.kernel.org/r/20210813145245.86070-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [kmemleak]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kmap_atomic() disables preemption and pagefaults for historical reasons.
The conversion to kmap_local(), which only disables migration, cannot be
done wholesale because quite some call sites need to be updated to
accommodate with the changed semantics.
On PREEMPT_RT enabled kernels the kmap_atomic() semantics are problematic
due to the implicit disabling of preemption which makes it impossible to
acquire 'sleeping' spinlocks within the kmap atomic sections.
PREEMPT_RT replaces the preempt_disable() with a migrate_disable() for
more than a decade. It could be argued that this is a justification to do
this unconditionally, but PREEMPT_RT covers only a limited number of
architectures and it disables some functionality which limits the coverage
further.
Limit the replacement to PREEMPT_RT for now.
Link: https://lkml.kernel.org/r/20210810091116.pocdmaatdcogvdso@linutronix.de
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
early_ioremap_reset() reserved a weak function so that architectures can
provide a specific cleanup. Now no architectures use it, remove this
redundant function.
Link: https://lkml.kernel.org/r/20210901082917.399953-1-o451686892@gmail.com
Signed-off-by: Weizhao Ouyang <o451686892@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to execute from iomem (and most platforms it is
impossible anyway), so add the pgprot_nx() call similar to vmap.
Link: https://lkml.kernel.org/r/20210824091259.1324527-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "small ioremap cleanups".
The first patch moves a little code around the vmalloc/ioremap boundary
following a bigger move by Nick earlier. The second enforces
non-executable mapping on ioremap just like we do for vmap. No driver
currently uses executable mappings anyway, as they should.
This patch (of 2):
This keeps it together with the implementation, and to remove the
vmap_range wrapper.
Link: https://lkml.kernel.org/r/20210824091259.1324527-1-hch@lst.de
Link: https://lkml.kernel.org/r/20210824091259.1324527-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
nommu ioremap is an inline stub in asm-generic/io.h.
Link: https://lkml.kernel.org/r/20210825072036.GA29161@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a READ_ONCE() in the macro of compound_head(), which will prevent
compiler from optimizing the code when there are more than once calling of
it in a function. Remove the redundant calling of compound_head() from
page_to_index() and page_add_file_rmap() for better code generation.
Link: https://lkml.kernel.org/r/20210811101431.83940-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Cleanup and fixups for memory hotplug".
This series contains cleanup to use helper function to simplify the code.
Also we fix some potential bugs. More details can be found in the
respective changelogs.
This patch (of 3):
Use helper zone_is_zone_device() to simplify the code and remove some
explicit CONFIG_ZONE_DEVICE codes.
Link: https://lkml.kernel.org/r/20210821094246.10149-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210821094246.10149-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Chris Goldsworthy <cgoldswo@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the "auto-movable" online policy does not allow for hotplugged
KERNEL (ZONE_NORMAL) memory to increase the amount of MOVABLE memory we
can have, primarily, because there is no coordiantion across memory
devices and we don't want to create zone-imbalances accidentially when
unplugging memory.
However, within a single memory device it's different. Let's allow for
KERNEL memory within a dynamic memory group to allow for more MOVABLE
within the same memory group. The only thing we have to take care of is
that the managing driver avoids zone imbalances by unplugging MOVABLE
memory first, otherwise there can be corner cases where unplug of memory
could result in (accidential) zone imbalances.
virtio-mem is the only user of dynamic memory groups and recently added
support for prioritizing unplug of ZONE_MOVABLE over ZONE_NORMAL, so we
don't need a new toggle to enable it for dynamic memory groups.
We limit this handling to dynamic memory groups, because:
* We want to keep the runtime overhead for collecting stats when
onlining a single memory block small. We tend to have only a handful of
dynamic memory groups, but we can have quite some static memory groups
(e.g., 256 DIMMs).
* It doesn't make too much sense for static memory groups, as we try
onlining all applicable memory blocks either completely to ZONE_MOVABLE
or not. In ordinary operation, we won't have a mixture of zones within
a static memory group.
When adding memory to a dynamic memory group, we'll first online memory to
ZONE_MOVABLE as long as early KERNEL memory allows for it. Then, we'll
online the next unit(s) to ZONE_NORMAL, until we can online the next
unit(s) to ZONE_MOVABLE.
For a simple virtio-mem device with a MOVABLE:KERNEL ratio of 3:1, it will
result in a layout like:
[M][M][M][M][M][M][M][M][N][M][M][M][N][M][M][M]...
^ movable memory due to early kernel memory
^ allows for more movable memory ...
^-----^ ... here
^ allows for more movable memory ...
^-----^ ... here
While the created layout is sub-optimal when it comes to contiguous zones,
it gives us the maximum flexibility when dynamically growing/shrinking a
device; we can grow small VMs really big in small steps, and still shrink
reliably to e.g., 1/4 of the maximum VM size in this example, removing
full memory blocks along with meta data more reliably.
Mark dynamic memory groups in the xarray such that we can efficiently
iterate over them when collecting stats. In usual setups, we have one
virtio-mem device per NUMA node, and usually only a small number of NUMA
nodes.
Note: for now, there seems to be no compelling reason to make this
behavior configurable.
Link: https://lkml.kernel.org/r/20210806124715.17090-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use memory groups to improve our "auto-movable" onlining policy:
1. For static memory groups (e.g., a DIMM), online a memory block MOVABLE
only if all other memory blocks in the group are either MOVABLE or could
be onlined MOVABLE. A DIMM will either be MOVABLE or not, not a mixture.
2. For dynamic memory groups (e.g., a virtio-mem device), online a
memory block MOVABLE only if all other memory blocks inside the
current unit are either MOVABLE or could be onlined MOVABLE. For a
virtio-mem device with a device block size with 512 MiB, all 128 MiB
memory blocks wihin a 512 MiB unit will either be MOVABLE or not, not
a mixture.
We have to pass the memory group to zone_for_pfn_range() to take the
memory group into account.
Note: for now, there seems to be no compelling reason to make this
behavior configurable.
Link: https://lkml.kernel.org/r/20210806124715.17090-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's use a single dynamic memory group.
Link: https://lkml.kernel.org/r/20210806124715.17090-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Although dax/kmem users often disable auto-onlining and instead online
memory manually (usually to ZONE_MOVABLE), there is still value in having
auto-onlining be aware of the relationship of memory blocks.
Let's treat one probed unit as a single static memory device, similar to a
single ACPI memory device.
Link: https://lkml.kernel.org/r/20210806124715.17090-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's group all memory we add for a single memory device - we want a
single node for that (which also seems to be the sane thing to do).
We won't care for now about memory that was already added to the system
(e.g., via e820) -- usually *all* memory of a memory device was already
added and we'll fail acpi_memory_enable_device().
Link: https://lkml.kernel.org/r/20210806124715.17090-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's track all present pages in each memory group. Especially, track
memory present in ZONE_MOVABLE and memory present in one of the kernel
zones (which really only is ZONE_NORMAL right now as memory groups only
apply to hotplugged memory) separately within a memory group, to prepare
for making smart auto-online decision for individual memory blocks within
a memory group based on group statistics.
Link: https://lkml.kernel.org/r/20210806124715.17090-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In our "auto-movable" memory onlining policy, we want to make decisions
across memory blocks of a single memory device. Examples of memory
devices include ACPI memory devices (in the simplest case a single DIMM)
and virtio-mem. For now, we don't have a connection between a single
memory block device and the real memory device. Each memory device
consists of 1..X memory block devices.
Let's logically group memory blocks belonging to the same memory device in
"memory groups". Memory groups can span multiple physical ranges and a
memory group itself does not contain any information regarding physical
ranges, only properties (e.g., "max_pages") necessary for improved memory
onlining.
Introduce two memory group types:
1) Static memory group: E.g., a single ACPI memory device, consisting
of 1..X memory resources. A memory group consists of 1..Y memory
blocks. The whole group is added/removed in one go. If any part
cannot get offlined, the whole group cannot be removed.
2) Dynamic memory group: E.g., a single virtio-mem device. Memory is
dynamically added/removed in a fixed granularity, called a "unit",
consisting of 1..X memory blocks. A unit is added/removed in one go.
If any part of a unit cannot get offlined, the whole unit cannot be
removed.
In case of 1) we usually want either all memory managed by ZONE_MOVABLE or
none. In case of 2) we usually want to have as many units as possible
managed by ZONE_MOVABLE. We want a single unit to be of the same type.
For now, memory groups are an internal concept that is not exposed to user
space; we might want to change that in the future, though.
add_memory() users can specify a mgid instead of a nid when passing the
MHP_NID_IS_MGID flag.
Link: https://lkml.kernel.org/r/20210806124715.17090-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When onlining without specifying a zone (using "online" instead of
"online_kernel" or "online_movable"), we currently select a zone such that
existing zones are kept contiguous. This online policy made sense in the
past, where contiguous zones where required.
We'd like to implement smarter policies, however:
* User space has little insight. As one example, it has no idea which
memory blocks logically belong together (e.g., to a DIMM or to a
virtio-mem device).
* Drivers that add memory in separate memory blocks, especially
virtio-mem, want memory to get onlined right from the kernel when
adding.
So we really want to have onlining to differing zones managed in the
kernel, configured by user space.
We see more and more cases where we might eventually hotplug a lot of
memory in the future (e.g., eventually grow a 2 GiB VM to 64 GiB),
however:
* Resizing happens dynamically, in smaller steps in both directions
(e.g., 2 GiB -> 8 GiB -> 4 GiB -> 16 GiB ...)
* We still want as much flexibility as possible, especially,
hotunplugging as much memory as possible later.
We can really only use "online_movable" if we know that the amount of
memory we are going to hotplug upfront, and we know that it won't result
in a zone imbalance. So in our example, a 2 GiB VM that could grow to 64
GiB could currently not use "online_movable", and instead, "online_kernel"
would have to be used, resulting in worse (no) memory hotunplug
reliability.
Let's add a new "auto-movable" online policy that considers the current
zone ratios (global, per-node) to determine, whether we a memory block can
be onlined to ZONE_MOVABLE:
MOVABLE : KERNEL
However, internally we'll only consider the following ratio for now:
MOVABLE : KERNEL_EARLY
For now, we don't allow for hotplugged KERNEL memory to allow for more
MOVABLE memory, because there is no coordination across memory devices.
In follow-up patches, we will allow for more KERNEL memory within a memory
device to allow for more MOVABLE memory within the same memory device --
which only makes sense for special memory device types.
We base our calculation on "present pages", see the code comments for
details. Hotplugged memory will get online to ZONE_MOVABLE if the
configured ratio allows for it. Depending on the setup, this can result
in fragmented zones, which can make compaction slower and dynamic
allocation of gigantic pages when not using CMA less reliable (... which
is already pretty unreliable).
The old policy will be the default and called "contig-zones". In
follow-up patches, our new policy will use additional information, such as
memory groups, to make even smarter decisions across memory blocks.
Configuration:
* memory_hotplug.online_policy is used to switch between both polices
and defaults to "contig-zones".
* memory_hotplug.auto_movable_ratio defines the maximum ratio is in
percent and defaults to "301" -- allowing e.g., most 8 GiB machines to
grow to 32 GiB and have all hotplugged memory in ZONE_MOVABLE. The
additional percent accounts for a handful of lost present pages (e.g.,
firmware allocations). User space is expected to adjust this ratio when
enabling the new "auto-movable" policy, though.
* memory_hotplug.auto_movable_numa_aware considers numa node stats in
addition to global stats, and defaults to "true".
Note: just like the old policy, the new policy won't take things like
unmovable huge pages or memory ballooning that doesn't support balloon
compaction into account. User space has to configure onlining
accordingly.
Link: https://lkml.kernel.org/r/20210806124715.17090-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: "auto-movable" online policy and memory groups", v3.
I. Goal
The goal of this series is improving in-kernel auto-online support. It
tackles the fundamental problems that:
1) We can create zone imbalances when onlining all memory blindly to
ZONE_MOVABLE, in the worst case crashing the system. We have to know
upfront how much memory we are going to hotplug such that we can
safely enable auto-onlining of all hotplugged memory to ZONE_MOVABLE
via "online_movable". This is far from practical and only applicable in
limited setups -- like inside VMs under the RHV/oVirt hypervisor which
will never hotplug more than 3 times the boot memory (and the
limitation is only in place due to the Linux limitation).
2) We see more setups that implement dynamic VM resizing, hot(un)plugging
memory to resize VM memory. In these setups, we might hotplug a lot of
memory, but it might happen in various small steps in both directions
(e.g., 2 GiB -> 8 GiB -> 4 GiB -> 16 GiB ...). virtio-mem is the
primary driver of this upstream right now, performing such dynamic
resizing NUMA-aware via multiple virtio-mem devices.
Onlining all hotplugged memory to ZONE_NORMAL means we basically have
no hotunplug guarantees. Onlining all to ZONE_MOVABLE means we can
easily run into zone imbalances when growing a VM. We want a mixture,
and we want as much memory as reasonable/configured in ZONE_MOVABLE.
Details regarding zone imbalances can be found at [1].
3) Memory devices consist of 1..X memory block devices, however, the
kernel doesn't really track the relationship. Consequently, also user
space has no idea. We want to make per-device decisions.
As one example, for memory hotunplug it doesn't make sense to use a
mixture of zones within a single DIMM: we want all MOVABLE if
possible, otherwise all !MOVABLE, because any !MOVABLE part will easily
block the whole DIMM from getting hotunplugged.
As another example, virtio-mem operates on individual units that span
1..X memory blocks. Similar to a DIMM, we want a unit to either be all
MOVABLE or !MOVABLE. A "unit" can be thought of like a DIMM, however,
all units of a virtio-mem device logically belong together and are
managed (added/removed) by a single driver. We want as much memory of
a virtio-mem device to be MOVABLE as possible.
4) We want memory onlining to be done right from the kernel while adding
memory, not triggered by user space via udev rules; for example, this
is reqired for fast memory hotplug for drivers that add individual
memory blocks, like virito-mem. We want a way to configure a policy in
the kernel and avoid implementing advanced policies in user space.
The auto-onlining support we have in the kernel is not sufficient. All we
have is a) online everything MOVABLE (online_movable) b) online everything
!MOVABLE (online_kernel) c) keep zones contiguous (online). This series
allows configuring c) to mean instead "online movable if possible
according to the coniguration, driven by a maximum MOVABLE:KERNEL ratio"
-- a new onlining policy.
II. Approach
This series does 3 things:
1) Introduces the "auto-movable" online policy that initially operates on
individual memory blocks only. It uses a maximum MOVABLE:KERNEL ratio
to make a decision whether a memory block will be onlined to
ZONE_MOVABLE or not. However, in the basic form, hotplugged KERNEL
memory does not allow for more MOVABLE memory (details in the
patches). CMA memory is treated like MOVABLE memory.
2) Introduces static (e.g., DIMM) and dynamic (e.g., virtio-mem) memory
groups and uses group information to make decisions in the
"auto-movable" online policy across memory blocks of a single memory
device (modeled as memory group). More details can be found in patch
#3 or in the DIMM example below.
3) Maximizes ZONE_MOVABLE memory within dynamic memory groups, by
allowing ZONE_NORMAL memory within a dynamic memory group to allow for
more ZONE_MOVABLE memory within the same memory group. The target use
case is dynamic VM resizing using virtio-mem. See the virtio-mem
example below.
I remember that the basic idea of using a ratio to implement a policy in
the kernel was once mentioned by Vitaly Kuznetsov, but I might be wrong (I
lost the pointer to that discussion).
For me, the main use case is using it along with virtio-mem (and DIMMs /
ppc64 dlpar where necessary) for dynamic resizing of VMs, increasing the
amount of memory we can hotunplug reliably again if we might eventually
hotplug a lot of memory to a VM.
III. Target Usage
The target usage will be:
1) Linux boots with "mhp_default_online_type=offline"
2) User space (e.g., systemd unit) configures memory onlining (according
to a config file and system properties), for example:
* Setting memory_hotplug.online_policy=auto-movable
* Setting memory_hotplug.auto_movable_ratio=301
* Setting memory_hotplug.auto_movable_numa_aware=true
3) User space enabled auto onlining via "echo online >
/sys/devices/system/memory/auto_online_blocks"
4) User space triggers manual onlining of all already-offline memory
blocks (go over offline memory blocks and set them to "online")
IV. Example
For DIMMs, hotplugging 4 GiB DIMMs to a 4 GiB VM with a configured ratio of
301% results in the following layout:
Memory block 0-15: DMA32 (early)
Memory block 32-47: Normal (early)
Memory block 48-79: Movable (DIMM 0)
Memory block 80-111: Movable (DIMM 1)
Memory block 112-143: Movable (DIMM 2)
Memory block 144-275: Normal (DIMM 3)
Memory block 176-207: Normal (DIMM 4)
... all Normal
(-> hotplugged Normal memory does not allow for more Movable memory)
For virtio-mem, using a simple, single virtio-mem device with a 4 GiB VM
will result in the following layout:
Memory block 0-15: DMA32 (early)
Memory block 32-47: Normal (early)
Memory block 48-143: Movable (virtio-mem, first 12 GiB)
Memory block 144: Normal (virtio-mem, next 128 MiB)
Memory block 145-147: Movable (virtio-mem, next 384 MiB)
Memory block 148: Normal (virtio-mem, next 128 MiB)
Memory block 149-151: Movable (virtio-mem, next 384 MiB)
... Normal/Movable mixture as above
(-> hotplugged Normal memory allows for more Movable memory within
the same device)
Which gives us maximum flexibility when dynamically growing/shrinking a
VM in smaller steps.
V. Doc Update
I'll update the memory-hotplug.rst documentation, once the overhaul [1] is
usptream. Until then, details can be found in patch #2.
VI. Future Work
1) Use memory groups for ppc64 dlpar
2) Being able to specify a portion of (early) kernel memory that will be
excluded from the ratio. Like "128 MiB globally/per node" are excluded.
This might be helpful when starting VMs with extremely small memory
footprint (e.g., 128 MiB) and hotplugging memory later -- not wanting
the first hotplugged units getting onlined to ZONE_MOVABLE. One
alternative would be a trigger to not consider ZONE_DMA memory
in the ratio. We'll have to see if this is really rrequired.
3) Indicate to user space that MOVABLE might be a bad idea -- especially
relevant when memory ballooning without support for balloon compaction
is active.
This patch (of 9):
For implementing a new memory onlining policy, which determines when to
online memory blocks to ZONE_MOVABLE semi-automatically, we need the
number of present early (boot) pages -- present pages excluding hotplugged
pages. Let's track these pages per zone.
Pass a page instead of the zone to adjust_present_page_count(), similar as
adjust_managed_page_count() and derive the zone from the page.
It's worth noting that a memory block to be offlined/onlined is either
completely "early" or "not early". add_memory() and friends can only add
complete memory blocks and we only online/offline complete (individual)
memory blocks.
Link: https://lkml.kernel.org/r/20210806124715.17090-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210806124715.17090-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Marek Kedzierski <mkedzier@redhat.com>
Cc: Hui Zhu <teawater@gmail.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is only a single user remaining. We can simply lookup the nid only
used for node offlining purposes when walking our memory blocks. We don't
expect to remove multi-nid ranges; and if we'd ever do, we most probably
don't care about removing multi-nid ranges that actually result in empty
nodes.
If ever required, we can detect the "multi-nid" scenario and simply try
offlining all online nodes.
Link: https://lkml.kernel.org/r/20210712124052.26491-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jia He <justin.he@arm.com>
Cc: Joe Perches <joe@perches.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta@ionos.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pierre Morel <pmorel@linux.ibm.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Sergei Trofimovich <slyfox@gentoo.org>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: preparatory patches for new online policy and memory"
These are all cleanups and one fix previously sent as part of [1]:
[PATCH v1 00/12] mm/memory_hotplug: "auto-movable" online policy and memory
groups.
These patches make sense even without the other series, therefore I pulled
them out to make the other series easier to digest.
[1] https://lkml.kernel.org/r/20210607195430.48228-1-david@redhat.com
This patch (of 4):
Checkpatch complained on a follow-up patch that we are using "unsigned"
here, which defaults to "unsigned int" and checkpatch is correct.
As we will search for a fitting zone using the wrong pfn, we might end
up onlining memory to one of the special kernel zones, such as ZONE_DMA,
which can end badly as the onlined memory does not satisfy properties of
these zones.
Use "unsigned long" instead, just as we do in other places when handling
PFNs. This can bite us once we have physical addresses in the range of
multiple TB.
Link: https://lkml.kernel.org/r/20210712124052.26491-2-david@redhat.com
Fixes: e5e6893026 ("mm, memory_hotplug: display allowed zones in the preferred ordering")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@ionos.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: virtualization@lists.linux-foundation.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jia He <justin.he@arm.com>
Cc: Joe Perches <joe@perches.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Michel Lespinasse <michel@lespinasse.org>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pierre Morel <pmorel@linux.ibm.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Sergei Trofimovich <slyfox@gentoo.org>
Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When test_pages_in_a_zone() used pfn_valid_within() is has some logic
surrounding pfn_valid_within() checks.
Since pfn_valid_within() is gone, this logic can be removed.
Link: https://lkml.kernel.org/r/20210713080035.7464-3-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: remove pfn_valid_within() and CONFIG_HOLES_IN_ZONE".
After recent updates to freeing unused parts of the memory map, no
architecture can have holes in the memory map within a pageblock. This
makes pfn_valid_within() check and CONFIG_HOLES_IN_ZONE configuration
option redundant.
The first patch removes them both in a mechanical way and the second patch
simplifies memory_hotplug::test_pages_in_a_zone() that had
pfn_valid_within() surrounded by more logic than simple if.
This patch (of 2):
After recent changes in freeing of the unused parts of the memory map and
rework of pfn_valid() in arm and arm64 there are no architectures that can
have holes in the memory map within a pageblock and so nothing can enable
CONFIG_HOLES_IN_ZONE which guards non trivial implementation of
pfn_valid_within().
With that, pfn_valid_within() is always hardwired to 1 and can be
completely removed.
Remove calls to pfn_valid_within() and CONFIG_HOLES_IN_ZONE.
Link: https://lkml.kernel.org/r/20210713080035.7464-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20210713080035.7464-2-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memory hot(un)plug documentation is outdated and incomplete. Most of
the content dates back to 2007, so it's time for a major overhaul.
Let's rewrite, reorganize and update most parts of the documentation. In
addition to memory hot(un)plug, also add some details regarding
ZONE_MOVABLE, with memory hotunplug being one of its main consumers.
Drop the file history, that information can more reliably be had from the
git log.
The style of the document is also properly fixed that e.g., "restview"
renders it cleanly now.
In the future, we might add some more details about virt users like
virtio-mem, the XEN balloon, the Hyper-V balloon and ppc64 dlpar.
Link: https://lkml.kernel.org/r/20210707073205.3835-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memory-hotplug.rst: complete admin-guide overhaul", v3.
This patch (of 2):
We have the same content at Documentation/core-api/memory-hotplug.rst and
it doesn't fit into the admin-guide. The documentation was accidentially
duplicated when merging.
Link: https://lkml.kernel.org/r/20210707073205.3835-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210707073205.3835-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No need to check for 64BIT. While at it, let's just select
ARCH_SUPPORTS_HUGETLBFS from arch/s390/Kconfig.
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20210908154506.20764-1-david@redhat.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
syzbot is reporting page fault at vga16fb_fillrect() [1], for
vga16fb_check_var() is failing to detect multiplication overflow.
if (vxres * vyres > maxmem) {
vyres = maxmem / vxres;
if (vyres < yres)
return -ENOMEM;
}
Since no module would accept too huge resolutions where multiplication
overflow happens, let's reject in the common path.
Link: https://syzkaller.appspot.com/bug?extid=04168c8063cfdde1db5e [1]
Reported-by: syzbot <syzbot+04168c8063cfdde1db5e@syzkaller.appspotmail.com>
Debugged-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be>
Cc: stable@vger.kernel.org
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/185175d6-227a-7b55-433d-b070929b262c@i-love.sakura.ne.jp
When using gcc (SUSE Linux) 7.5.0 (on openSUSE 15.3), I see a build
warning:
kernel/trace/trace_osnoise.c: In function 'start_kthread':
kernel/trace/trace_osnoise.c:1461:8: warning: 'main' is usually a function [-Wmain]
void *main = osnoise_main;
^~~~
Quieten that warning by using "-Wno-main". It's OK to use "main" as a
declaration name in the kernel.
Build-tested on most ARCHes.
[ v2: only do it for gcc, since clang doesn't have that particular warning ]
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Link: https://lore.kernel.org/lkml/20210813224131.25803-1-rdunlap@infradead.org/
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Michal Marek <michal.lkml@markovi.net>
Cc: linux-kbuild@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A collection of fixes that came in during the merge window, nothing too
remarkable but a reasonably large number of fixes.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAmE41NoACgkQJNaLcl1U
h9CX3gf8CLeM2mcvvliVXCQ+fnmie3znXJbpw/iIiLjgK+KSE79VWvqcNoPRzz5q
wc9fU5VifL+Sw92pjBbDftoLwJrfwVHtOOqeMrxk/5Y1S/FwwKlRnAgiEaFNv9Rj
tb3Hiu68xFdVmSYFOlUC/J3VpyeC8UGXOrapgxSJF66s2R3VhzV6L/xr6lW2oxcE
iA9Z9KAYCpifj96iRi/JaoE3mJZB0Ma7BelGJoocuxxKJs8mq8uyEKxAKzGyv1DE
lDrG7ifBDsp66esYUjeigYQmxZ/38u5aLP8Y2KLq4gzgt+IQzaDbPMDr+A86t/ZB
uhhAanuAC42cI6glEA75QAUSvSlqgA==
=xENj
-----END PGP SIGNATURE-----
Merge tag 'asoc-fix-v5.15-rc1' of https://git.kernel.org/pub/scm/linux/kernel/git/broonie/sound into for-linus
ASoC: Fixes for v5.15
A collection of fixes that came in during the merge window, nothing too
remarkable but a reasonably large number of fixes.
timespec64_ns() prevents multiplication overflows by comparing the seconds
value of the timespec to KTIME_SEC_MAX. If the value is greater or equal it
returns KTIME_MAX.
But that check casts the signed seconds value to unsigned which makes the
comparision true for all negative values and therefore return wrongly
KTIME_MAX.
Negative second values are perfectly valid and required in some places,
e.g. ptp_clock_adjtime().
Remove the cast and add a check for the negative boundary which is required
to prevent undefined behaviour due to multiplication underflow.
Fixes: cb47755725 ("time: Prevent undefined behaviour in timespec64_to_ns()")'
Signed-off-by: Lukas Hannen <lukas.hannen@opensource.tttech-industrial.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/AM6PR01MB541637BD6F336B8FFB72AF80EEC69@AM6PR01MB5416.eurprd01.prod.exchangelabs.com
* acpi-pm:
ACPI: PM: s2idle: Run both AMD and Microsoft methods if both are supported
* acpi-docs:
Documentation: ACPI: Align the SSDT overlays file with the code
* pm-cpufreq:
Revert "cpufreq: intel_pstate: Process HWP Guaranteed change notification"
cpufreq: mediatek-hw: Add support for CPUFREQ HW
cpufreq: Add of_perf_domain_get_sharing_cpumask
dt-bindings: cpufreq: add bindings for MediaTek cpufreq HW
cpufreq: Remove ready() callback
cpufreq: sh: Remove sh_cpufreq_cpu_ready()
cpufreq: acpi: Remove acpi_cpufreq_cpu_ready()
cpufreq: qcom-hw: Set dvfs_possible_from_any_cpu cpufreq driver flag
cpufreq: blocklist more Qualcomm platforms in cpufreq-dt-platdev
cpufreq: qcom-cpufreq-hw: Add dcvs interrupt support
cpufreq: scmi: Use .register_em() to register with energy model
cpufreq: vexpress: Use .register_em() to register with energy model
cpufreq: scpi: Use .register_em() to register with energy model
cpufreq: qcom-cpufreq-hw: Use .register_em() to register with energy model
cpufreq: omap: Use .register_em() to register with energy model
cpufreq: mediatek: Use .register_em() to register with energy model
cpufreq: imx6q: Use .register_em() to register with energy model
cpufreq: dt: Use .register_em() to register with energy model
cpufreq: Add callback to register with energy model
cpufreq: vexpress: Set CPUFREQ_IS_COOLING_DEV flag
WARNING: CPU: 0 PID: 10392 at fs/io_uring.c:1151 req_ref_put_and_test
fs/io_uring.c:1151 [inline]
WARNING: CPU: 0 PID: 10392 at fs/io_uring.c:1151 req_ref_put_and_test
fs/io_uring.c:1146 [inline]
WARNING: CPU: 0 PID: 10392 at fs/io_uring.c:1151
io_req_complete_post+0xf5b/0x1190 fs/io_uring.c:1794
Modules linked in:
Call Trace:
tctx_task_work+0x1e5/0x570 fs/io_uring.c:2158
task_work_run+0xe0/0x1a0 kernel/task_work.c:164
tracehook_notify_signal include/linux/tracehook.h:212 [inline]
handle_signal_work kernel/entry/common.c:146 [inline]
exit_to_user_mode_loop kernel/entry/common.c:172 [inline]
exit_to_user_mode_prepare+0x232/0x2a0 kernel/entry/common.c:209
__syscall_exit_to_user_mode_work kernel/entry/common.c:291 [inline]
syscall_exit_to_user_mode+0x19/0x60 kernel/entry/common.c:302
do_syscall_64+0x42/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x44/0xae
When io_wqe_enqueue() -> io_wqe_create_worker() fails, we can't just
call io_run_cancel() to clean up the request, it's already enqueued via
io_wqe_insert_work() and will be executed either by some other worker
during cancellation (e.g. in io_wq_put_and_exit()).
Reported-by: Hao Sun <sunhao.th@gmail.com>
Fixes: 3146cba99a ("io-wq: make worker creation resilient against signals")
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/93b9de0fcf657affab0acfd675d4abcd273ee863.1631092071.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The address of ftrace_graph_caller is already virtual.
Using __va() to translate the address is wrong.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Many comments above functions start with a kernel doc indicator, but
the comments are not using kernel doc style. Get rid of the warnings
by simply removing the indicator.
E.g.:
drivers/s390/crypto/zcrypt_msgtype6.c:111: warning:
This comment starts with '/**', but isn't a kernel-doc comment.
Reviewed-by: Harald Freudenberger <freude@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
A couple of function names don't match what the kernel doc comments
indicate.
Acked-by: Benjamin Block <bblock@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Add __nonstring annotation, since the missing string termination for
id member of sclp_trace_entry is intended. This way we get rid of this
warning:
drivers/s390/char/sclp.c:84:9: warning: ‘strncpy’ output truncated before terminating nul copying 4 bytes from a string of the same length [-Wstringop-truncation]
84 | strncpy(e.id, id, sizeof(e.id));
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
This symbol is not used outside of trace.c, so marks it static.
Fix the following sparse warning:
drivers/infiniband/hw/hfi1/trace.c:491:23: warning: symbol 'hist' was not declared. Should it be static?
Link: https://lore.kernel.org/r/1630921723-21545-1-git-send-email-jiapeng.chong@linux.alibaba.com
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: chongjiapeng <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
As noted in the "Deprecated Interfaces, Language Features, Attributes, and
Conventions" documentation [1], size calculations (especially
multiplication) should not be performed in memory allocator (or similar)
function arguments due to the risk of them overflowing. This could lead to
values wrapping around and a smaller allocation being made than the caller
was expecting. Using those allocations could lead to linear overflows of
heap memory and other misbehaviors.
In this case this is not actually dynamic sizes: both sides of the
multiplication are constant values. However it is best to refactor this
anyway, just to keep the open-coded math idiom out of code.
So, use the purpose specific kcalloc() function instead of the argument
size * count in the kzalloc() function.
Also, remove the unnecessary initialization of the sqp_tbl variable since
it is set a few lines later.
[1] https://www.kernel.org/doc/html/v5.14/process/deprecated.html#open-coded-arithmetic-in-allocator-arguments
Link: https://lore.kernel.org/r/20210905081812.17113-1-len.baker@gmx.com
Signed-off-by: Len Baker <len.baker@gmx.com>
Reviewed-by: Leon Romanovsky <leonro@nvidia.com>
Acked-by: Selvin Xavier <selvin.xavier@broadcom.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
>> drivers/infiniband/hw/qib/qib_sysfs.c:411:1: warning: performing pointer subtraction with a null pointer has undefined behavior
+[-Wnull-pointer-subtraction]
QIB_DIAGC_ATTR(rc_resends);
^~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/infiniband/hw/qib/qib_sysfs.c:408:51: note: expanded from macro 'QIB_DIAGC_ATTR'
.counter = &((struct qib_ibport *)0)->rvp.n_##N - (u64 *)0, \
Use offsetof and accomplish the type check using static_assert.
Fixes: 4a7aaf88c8 ("RDMA/qib: Use attributes for the port sysfs")
Link: https://lore.kernel.org/r/0-v1-43ae3c759177+65-qib_type_jgg@nvidia.com
Reported-by: kernel test robot <lkp@intel.com>
Acked-by: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
The XLT chunk alignment depends on ent_size not sizeof(ent_size) aka
sizeof(size_t). The incoming ent_size is either 8 or 16, so the
miscalculation when 16 is required is only an over-alignment and
functional harmless.
Fixes: 8010d74b99 ("RDMA/mlx5: Split the WR setup out of mlx5_ib_update_xlt()")
Link: https://lore.kernel.org/r/20210908081849.7948-2-schnelle@linux.ibm.com
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
In commit 8010d74b99 ("RDMA/mlx5: Split the WR setup out of
mlx5_ib_update_xlt()") the allocation logic was split out of
mlx5_ib_update_xlt() and the logic was changed to enable better OOM
handling. Sadly this change introduced a miscalculation of the number of
entries that were actually allocated when under memory pressure where it
can actually become 0 which on s390 lets dma_map_single() fail.
It can also lead to corruption of the free pages list when the wrong
number of entries is used in the calculation of sg->length which is used
as argument for free_pages().
Fix this by using the allocation size instead of misusing get_order(size).
Cc: stable@vger.kernel.org
Fixes: 8010d74b99 ("RDMA/mlx5: Split the WR setup out of mlx5_ib_update_xlt()")
Link: https://lore.kernel.org/r/20210908081849.7948-1-schnelle@linux.ibm.com
Signed-off-by: Niklas Schnelle <schnelle@linux.ibm.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
The cross-product of the kernel's supported toolchains, architectures,
and configuration options is large. So large, that it's generally
accepted to be infeasible to enumerate and build+test them all
(many compile-testers rely on randomly generated configs).
Without the possibility to enumerate all possible combinations of
toolchains, architectures, and configuration options, it is inevitable
that compiler warnings in this space exist.
With -Werror, this means that an innumerable set of kernels are now
broken, yet had been perfectly usable before (confused compilers, code
with warnings unused, or luck).
Distributors will necessarily pick a point in the toolchain X arch X
config space, and if unlucky, will have a broken build. Granted, those
will likely disable CONFIG_WERROR and move on.
The kernel's default configuration is unlikely to be suitable for all
users, but it's inappropriate to force many users to set CONFIG_WERROR=n.
This also holds for CI systems which are focused on runtime testing,
where the odd warning in some subsystem will disrupt testing of the rest
of the kernel. Many of those runtime-focused CI systems run tests or
fuzz the kernel using runtime debugging tools. Runtime testing of
different subsystems can proceed in parallel, and potentially uncover
serious bugs; halting runtime testing of the entire kernel because of
the odd warning (now error) in a subsystem or driver is simply
inappropriate.
Therefore, runtime-focused CI systems will likely choose CONFIG_WERROR=n
as well.
The appropriate usecase for -Werror is therefore compile-test focused
builds (often done by developers or CI systems).
Reflect this in the Kconfig option by making the default value of WERROR
match COMPILE_TEST.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Reviwed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two bugs in this code. First, if the kzalloc() fails it leads
to a NULL dereference of "ep" on the next line. Second, if the
alloc_event_probe() function returns an error then it leads to an
error pointer dereference in the caller.
Link: https://lkml.kernel.org/r/20210824115150.GI31143@kili
Fixes: 7491e2c442 ("tracing: Add a probe that attaches to trace events")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Limiting number of request to BLK_MAX_REQUEST_COUNT at blk_plug hurts
performance for large md arrays. [1] shows resync speed of md array drops
for md array with more than 16 HDDs.
Fix this by allowing more request at plug queue. The multiple_queue flag
is used to only apply higher limit to multiple queue cases.
[1] https://lore.kernel.org/linux-raid/CAFDAVznS71BXW8Jxv6k9dXc2iR3ysX3iZRBww_rzA8WifBFxGg@mail.gmail.com/
Tested-by: Marcin Wanat <marcin.wanat@gmail.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
wireless and can.
Current release - regressions:
- qrtr: revert check in qrtr_endpoint_post(), fixes audio and wifi
- ip_gre: validate csum_start only on pull
- bnxt_en: fix 64-bit doorbell operation on 32-bit kernels
- ionic: fix double use of queue-lock, fix a sleeping in atomic
- can: c_can: fix null-ptr-deref on ioctl()
- cs89x0: disable compile testing on powerpc
Current release - new code bugs:
- bridge: mcast: fix vlan port router deadlock, consistently disable BH
Previous releases - regressions:
- dsa: tag_rtl4_a: fix egress tags, only port 0 was working
- mptcp: fix possible divide by zero
- netfilter: nft_ct: protect nft_ct_pcpu_template_refcnt with mutex
- netfilter: socket: icmp6: fix use-after-scope
- stmmac: fix MAC not working when system resume back with WoL active
Previous releases - always broken:
- ip/ip6_gre: use the same logic as SIT interfaces when computing v6LL
address
- seg6: set fc_nlinfo in nh_create_ipv4, nh_create_ipv6
- mptcp: only send extra TCP acks in eligible socket states
- dsa: lantiq_gswip: fix maximum frame length
- stmmac: fix overall budget calculation for rxtx_napi
- bnxt_en: fix firmware version reporting via devlink
- renesas: sh_eth: add missing barrier to fix freeing wrong tx descriptor
Stragglers:
- netfilter: conntrack: switch to siphash
- netfilter: refuse insertion if chain has grown too large
- ncsi: add get MAC address command to get Intel i210 MAC address
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmE3uicACgkQMUZtbf5S
IrtJVA//XdE8qAmw1JukjyYC87JH2ale20eoZ6ERn7/09e4tdv3M6dOTI4YfrM6+
CMNP5MP2qit3IzY+lN0+yt9AAFH7k85z3MA8zLxsXN4z63OJcZvFv/G/OWy4Wp/0
vOo/DH+rF3LR+fZZvjJI+8Xi9/orsRpD12cwGmjGRxybh+XcnHKI/GvK2RgE6oBR
015RfBbbQBpzFQvESLnSwDzabN1XFEL1x/bz7N8ek3okfO/tab+f3E1tb6eYtTy+
jyDyOWpayd4xDttKNMUuxwS1q+/oAWOAq8PzkaF/ZG2sBH1Z4yZN9ZtsLNZmPG8N
5L1FEem/Nmgr54T9v/FhfiryhhGGysVfVgtQcCBkKRmVn1Kk2L6dFvtuanPtFFd3
llbi5PvCDJy3rbMmxKmyoM3T4jpMwWxQRZKsosw+k/WQfb8/SUOjgpY713V1Wx/P
S+2uadU4l9Ql9sF6X0IqZABnnt+j/BuDo6C6vVq7vyj0iQ9hEX9YxC0ybrAHOYpH
suHWKndodRfTxxVOg8xRNYwXyRLNbm1AP6LMDNKBlFUjwNSZ362qFX7W7DuXoRup
Rrnb8V1QFvM+pyFb2a0qNtBS68IXbjCdVQX5e8a5ELaAUnDPefNrfPN+/rrTLEtV
LnusmBF+02llVSYdr88t1e+LmzqS/aqXFy2ry4y6owjq20ld2O0=
=Zvuz
-----END PGP SIGNATURE-----
Merge tag 'net-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes and stragglers from Jakub Kicinski:
"Networking stragglers and fixes, including changes from netfilter,
wireless and can.
Current release - regressions:
- qrtr: revert check in qrtr_endpoint_post(), fixes audio and wifi
- ip_gre: validate csum_start only on pull
- bnxt_en: fix 64-bit doorbell operation on 32-bit kernels
- ionic: fix double use of queue-lock, fix a sleeping in atomic
- can: c_can: fix null-ptr-deref on ioctl()
- cs89x0: disable compile testing on powerpc
Current release - new code bugs:
- bridge: mcast: fix vlan port router deadlock, consistently disable
BH
Previous releases - regressions:
- dsa: tag_rtl4_a: fix egress tags, only port 0 was working
- mptcp: fix possible divide by zero
- netfilter: nft_ct: protect nft_ct_pcpu_template_refcnt with mutex
- netfilter: socket: icmp6: fix use-after-scope
- stmmac: fix MAC not working when system resume back with WoL active
Previous releases - always broken:
- ip/ip6_gre: use the same logic as SIT interfaces when computing
v6LL address
- seg6: set fc_nlinfo in nh_create_ipv4, nh_create_ipv6
- mptcp: only send extra TCP acks in eligible socket states
- dsa: lantiq_gswip: fix maximum frame length
- stmmac: fix overall budget calculation for rxtx_napi
- bnxt_en: fix firmware version reporting via devlink
- renesas: sh_eth: add missing barrier to fix freeing wrong tx
descriptor
Stragglers:
- netfilter: conntrack: switch to siphash
- netfilter: refuse insertion if chain has grown too large
- ncsi: add get MAC address command to get Intel i210 MAC address"
* tag 'net-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (76 commits)
ieee802154: Remove redundant initialization of variable ret
net: stmmac: fix MAC not working when system resume back with WoL active
net: phylink: add suspend/resume support
net: renesas: sh_eth: Fix freeing wrong tx descriptor
bonding: 3ad: pass parameter bond_params by reference
cxgb3: fix oops on module removal
can: c_can: fix null-ptr-deref on ioctl()
can: rcar_canfd: add __maybe_unused annotation to silence warning
net: wwan: iosm: Unify IO accessors used in the driver
net: wwan: iosm: Replace io.*64_lo_hi() with regular accessors
net: qcom/emac: Replace strlcpy with strscpy
ip6_gre: Revert "ip6_gre: add validation for csum_start"
net: hns3: make hclgevf_cmd_caps_bit_map0 and hclge_cmd_caps_bit_map0 static
selftests/bpf: Test XDP bonding nest and unwind
bonding: Fix negative jump label count on nested bonding
MAINTAINERS: add VM SOCKETS (AF_VSOCK) entry
stmmac: dwmac-loongson:Fix missing return value
iwlwifi: fix printk format warnings in uefi.c
net: create netdev->dev_addr assignment helpers
bnxt_en: Fix possible unintended driver initiated error recovery
...