// SPDX-License-Identifier: GPL-2.0 /* * Analog Devices AXI PWM generator * * Copyright 2024 Analog Devices Inc. * Copyright 2024 Baylibre SAS * * Device docs: https://analogdevicesinc.github.io/hdl/library/axi_pwm_gen/index.html * * Limitations: * - The writes to registers for period and duty are shadowed until * LOAD_CONFIG is written to AXI_PWMGEN_REG_CONFIG, at which point * they take effect. * - Writing LOAD_CONFIG also has the effect of re-synchronizing all * enabled channels, which could cause glitching on other channels. It * is therefore expected that channels are assigned harmonic periods * and all have a single user coordinating this. * - Supports normal polarity. Does not support changing polarity. * - On disable, the PWM output becomes low (inactive). */ #include #include #include #include #include #include #include #include #include #include #include #define AXI_PWMGEN_REG_ID 0x04 #define AXI_PWMGEN_REG_SCRATCHPAD 0x08 #define AXI_PWMGEN_REG_CORE_MAGIC 0x0C #define AXI_PWMGEN_REG_CONFIG 0x10 #define AXI_PWMGEN_REG_NPWM 0x14 #define AXI_PWMGEN_CHX_PERIOD(ch) (0x40 + (4 * (ch))) #define AXI_PWMGEN_CHX_DUTY(ch) (0x80 + (4 * (ch))) #define AXI_PWMGEN_CHX_OFFSET(ch) (0xC0 + (4 * (ch))) #define AXI_PWMGEN_REG_CORE_MAGIC_VAL 0x601A3471 /* Identification number to test during setup */ #define AXI_PWMGEN_LOAD_CONFIG BIT(1) #define AXI_PWMGEN_REG_CONFIG_RESET BIT(0) struct axi_pwmgen_ddata { struct regmap *regmap; unsigned long clk_rate_hz; }; static const struct regmap_config axi_pwmgen_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0xFC, }; /* This represents a hardware configuration for one channel */ struct axi_pwmgen_waveform { u32 period_cnt; u32 duty_cycle_cnt; u32 duty_offset_cnt; }; static int axi_pwmgen_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_waveform *wf, void *_wfhw) { struct axi_pwmgen_waveform *wfhw = _wfhw; struct axi_pwmgen_ddata *ddata = pwmchip_get_drvdata(chip); if (wf->period_length_ns == 0) { *wfhw = (struct axi_pwmgen_waveform){ .period_cnt = 0, .duty_cycle_cnt = 0, .duty_offset_cnt = 0, }; } else { /* With ddata->clk_rate_hz < NSEC_PER_SEC this won't overflow. */ wfhw->period_cnt = min_t(u64, mul_u64_u32_div(wf->period_length_ns, ddata->clk_rate_hz, NSEC_PER_SEC), U32_MAX); if (wfhw->period_cnt == 0) { /* * The specified period is too short for the hardware. * Let's round .duty_cycle down to 0 to get a (somewhat) * valid result. */ wfhw->period_cnt = 1; wfhw->duty_cycle_cnt = 0; wfhw->duty_offset_cnt = 0; } else { wfhw->duty_cycle_cnt = min_t(u64, mul_u64_u32_div(wf->duty_length_ns, ddata->clk_rate_hz, NSEC_PER_SEC), U32_MAX); wfhw->duty_offset_cnt = min_t(u64, mul_u64_u32_div(wf->duty_offset_ns, ddata->clk_rate_hz, NSEC_PER_SEC), U32_MAX); } } dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> PERIOD: %08x, DUTY: %08x, OFFSET: %08x\n", pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns, ddata->clk_rate_hz, wfhw->period_cnt, wfhw->duty_cycle_cnt, wfhw->duty_offset_cnt); return 0; } static int axi_pwmgen_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm, const void *_wfhw, struct pwm_waveform *wf) { const struct axi_pwmgen_waveform *wfhw = _wfhw; struct axi_pwmgen_ddata *ddata = pwmchip_get_drvdata(chip); wf->period_length_ns = DIV64_U64_ROUND_UP((u64)wfhw->period_cnt * NSEC_PER_SEC, ddata->clk_rate_hz); wf->duty_length_ns = DIV64_U64_ROUND_UP((u64)wfhw->duty_cycle_cnt * NSEC_PER_SEC, ddata->clk_rate_hz); wf->duty_offset_ns = DIV64_U64_ROUND_UP((u64)wfhw->duty_offset_cnt * NSEC_PER_SEC, ddata->clk_rate_hz); return 0; } static int axi_pwmgen_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *_wfhw) { const struct axi_pwmgen_waveform *wfhw = _wfhw; struct axi_pwmgen_ddata *ddata = pwmchip_get_drvdata(chip); struct regmap *regmap = ddata->regmap; unsigned int ch = pwm->hwpwm; int ret; ret = regmap_write(regmap, AXI_PWMGEN_CHX_PERIOD(ch), wfhw->period_cnt); if (ret) return ret; ret = regmap_write(regmap, AXI_PWMGEN_CHX_DUTY(ch), wfhw->duty_cycle_cnt); if (ret) return ret; ret = regmap_write(regmap, AXI_PWMGEN_CHX_OFFSET(ch), wfhw->duty_offset_cnt); if (ret) return ret; return regmap_write(regmap, AXI_PWMGEN_REG_CONFIG, AXI_PWMGEN_LOAD_CONFIG); } static int axi_pwmgen_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *_wfhw) { struct axi_pwmgen_waveform *wfhw = _wfhw; struct axi_pwmgen_ddata *ddata = pwmchip_get_drvdata(chip); struct regmap *regmap = ddata->regmap; unsigned int ch = pwm->hwpwm; int ret; ret = regmap_read(regmap, AXI_PWMGEN_CHX_PERIOD(ch), &wfhw->period_cnt); if (ret) return ret; ret = regmap_read(regmap, AXI_PWMGEN_CHX_DUTY(ch), &wfhw->duty_cycle_cnt); if (ret) return ret; ret = regmap_read(regmap, AXI_PWMGEN_CHX_OFFSET(ch), &wfhw->duty_offset_cnt); if (ret) return ret; if (wfhw->duty_cycle_cnt > wfhw->period_cnt) wfhw->duty_cycle_cnt = wfhw->period_cnt; /* XXX: is this the actual behaviour of the hardware? */ if (wfhw->duty_offset_cnt >= wfhw->period_cnt) { wfhw->duty_cycle_cnt = 0; wfhw->duty_offset_cnt = 0; } return 0; } static const struct pwm_ops axi_pwmgen_pwm_ops = { .sizeof_wfhw = sizeof(struct axi_pwmgen_waveform), .round_waveform_tohw = axi_pwmgen_round_waveform_tohw, .round_waveform_fromhw = axi_pwmgen_round_waveform_fromhw, .read_waveform = axi_pwmgen_read_waveform, .write_waveform = axi_pwmgen_write_waveform, }; static int axi_pwmgen_setup(struct regmap *regmap, struct device *dev) { int ret; u32 val; ret = regmap_read(regmap, AXI_PWMGEN_REG_CORE_MAGIC, &val); if (ret) return ret; if (val != AXI_PWMGEN_REG_CORE_MAGIC_VAL) return dev_err_probe(dev, -ENODEV, "failed to read expected value from register: got %08x, expected %08x\n", val, AXI_PWMGEN_REG_CORE_MAGIC_VAL); ret = regmap_read(regmap, ADI_AXI_REG_VERSION, &val); if (ret) return ret; if (ADI_AXI_PCORE_VER_MAJOR(val) != 2) { return dev_err_probe(dev, -ENODEV, "Unsupported peripheral version %u.%u.%u\n", ADI_AXI_PCORE_VER_MAJOR(val), ADI_AXI_PCORE_VER_MINOR(val), ADI_AXI_PCORE_VER_PATCH(val)); } /* Enable the core */ ret = regmap_clear_bits(regmap, AXI_PWMGEN_REG_CONFIG, AXI_PWMGEN_REG_CONFIG_RESET); if (ret) return ret; ret = regmap_read(regmap, AXI_PWMGEN_REG_NPWM, &val); if (ret) return ret; /* Return the number of PWMs */ return val; } static int axi_pwmgen_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct regmap *regmap; struct pwm_chip *chip; struct axi_pwmgen_ddata *ddata; struct clk *clk; void __iomem *io_base; int ret; io_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(io_base)) return PTR_ERR(io_base); regmap = devm_regmap_init_mmio(dev, io_base, &axi_pwmgen_regmap_config); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "failed to init register map\n"); ret = axi_pwmgen_setup(regmap, dev); if (ret < 0) return ret; chip = devm_pwmchip_alloc(dev, ret, sizeof(*ddata)); if (IS_ERR(chip)) return PTR_ERR(chip); ddata = pwmchip_get_drvdata(chip); ddata->regmap = regmap; clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(clk)) return dev_err_probe(dev, PTR_ERR(clk), "failed to get clock\n"); ret = devm_clk_rate_exclusive_get(dev, clk); if (ret) return dev_err_probe(dev, ret, "failed to get exclusive rate\n"); ddata->clk_rate_hz = clk_get_rate(clk); if (!ddata->clk_rate_hz || ddata->clk_rate_hz > NSEC_PER_SEC) return dev_err_probe(dev, -EINVAL, "Invalid clock rate: %lu\n", ddata->clk_rate_hz); chip->ops = &axi_pwmgen_pwm_ops; chip->atomic = true; ret = devm_pwmchip_add(dev, chip); if (ret) return dev_err_probe(dev, ret, "could not add PWM chip\n"); return 0; } static const struct of_device_id axi_pwmgen_ids[] = { { .compatible = "adi,axi-pwmgen-2.00.a" }, { } }; MODULE_DEVICE_TABLE(of, axi_pwmgen_ids); static struct platform_driver axi_pwmgen_driver = { .driver = { .name = "axi-pwmgen", .of_match_table = axi_pwmgen_ids, }, .probe = axi_pwmgen_probe, }; module_platform_driver(axi_pwmgen_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Sergiu Cuciurean "); MODULE_AUTHOR("Trevor Gamblin "); MODULE_DESCRIPTION("Driver for the Analog Devices AXI PWM generator");