mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-22 16:06:04 -05:00
e21ebe51af
xHC hosts from several vendors have the same issue where endpoints start
so slowly that a later queued 'Stop Endpoint' command may complete before
endpoint is up and running.
The 'Stop Endpoint' command fails with context state error as the endpoint
still appears as stopped.
See commit 42b7581376
("usb: xhci: Limit Stop Endpoint retries") for
details
CC: stable@vger.kernel.org
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20241217102122.2316814-2-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
4452 lines
132 KiB
C
4452 lines
132 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* xHCI host controller driver
|
|
*
|
|
* Copyright (C) 2008 Intel Corp.
|
|
*
|
|
* Author: Sarah Sharp
|
|
* Some code borrowed from the Linux EHCI driver.
|
|
*/
|
|
|
|
/*
|
|
* Ring initialization rules:
|
|
* 1. Each segment is initialized to zero, except for link TRBs.
|
|
* 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
|
|
* Consumer Cycle State (CCS), depending on ring function.
|
|
* 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
|
|
*
|
|
* Ring behavior rules:
|
|
* 1. A ring is empty if enqueue == dequeue. This means there will always be at
|
|
* least one free TRB in the ring. This is useful if you want to turn that
|
|
* into a link TRB and expand the ring.
|
|
* 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
|
|
* link TRB, then load the pointer with the address in the link TRB. If the
|
|
* link TRB had its toggle bit set, you may need to update the ring cycle
|
|
* state (see cycle bit rules). You may have to do this multiple times
|
|
* until you reach a non-link TRB.
|
|
* 3. A ring is full if enqueue++ (for the definition of increment above)
|
|
* equals the dequeue pointer.
|
|
*
|
|
* Cycle bit rules:
|
|
* 1. When a consumer increments a dequeue pointer and encounters a toggle bit
|
|
* in a link TRB, it must toggle the ring cycle state.
|
|
* 2. When a producer increments an enqueue pointer and encounters a toggle bit
|
|
* in a link TRB, it must toggle the ring cycle state.
|
|
*
|
|
* Producer rules:
|
|
* 1. Check if ring is full before you enqueue.
|
|
* 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
|
|
* Update enqueue pointer between each write (which may update the ring
|
|
* cycle state).
|
|
* 3. Notify consumer. If SW is producer, it rings the doorbell for command
|
|
* and endpoint rings. If HC is the producer for the event ring,
|
|
* and it generates an interrupt according to interrupt modulation rules.
|
|
*
|
|
* Consumer rules:
|
|
* 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
|
|
* the TRB is owned by the consumer.
|
|
* 2. Update dequeue pointer (which may update the ring cycle state) and
|
|
* continue processing TRBs until you reach a TRB which is not owned by you.
|
|
* 3. Notify the producer. SW is the consumer for the event ring, and it
|
|
* updates event ring dequeue pointer. HC is the consumer for the command and
|
|
* endpoint rings; it generates events on the event ring for these.
|
|
*/
|
|
|
|
#include <linux/jiffies.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include "xhci.h"
|
|
#include "xhci-trace.h"
|
|
|
|
static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 field1, u32 field2,
|
|
u32 field3, u32 field4, bool command_must_succeed);
|
|
|
|
/*
|
|
* Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
|
|
* address of the TRB.
|
|
*/
|
|
dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
|
|
union xhci_trb *trb)
|
|
{
|
|
unsigned long segment_offset;
|
|
|
|
if (!seg || !trb || trb < seg->trbs)
|
|
return 0;
|
|
/* offset in TRBs */
|
|
segment_offset = trb - seg->trbs;
|
|
if (segment_offset >= TRBS_PER_SEGMENT)
|
|
return 0;
|
|
return seg->dma + (segment_offset * sizeof(*trb));
|
|
}
|
|
|
|
static bool trb_is_noop(union xhci_trb *trb)
|
|
{
|
|
return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
|
|
}
|
|
|
|
static bool trb_is_link(union xhci_trb *trb)
|
|
{
|
|
return TRB_TYPE_LINK_LE32(trb->link.control);
|
|
}
|
|
|
|
static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
|
|
{
|
|
return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
|
|
}
|
|
|
|
static bool last_trb_on_ring(struct xhci_ring *ring,
|
|
struct xhci_segment *seg, union xhci_trb *trb)
|
|
{
|
|
return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
|
|
}
|
|
|
|
static bool link_trb_toggles_cycle(union xhci_trb *trb)
|
|
{
|
|
return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
|
|
}
|
|
|
|
static bool last_td_in_urb(struct xhci_td *td)
|
|
{
|
|
struct urb_priv *urb_priv = td->urb->hcpriv;
|
|
|
|
return urb_priv->num_tds_done == urb_priv->num_tds;
|
|
}
|
|
|
|
static bool unhandled_event_trb(struct xhci_ring *ring)
|
|
{
|
|
return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) ==
|
|
ring->cycle_state);
|
|
}
|
|
|
|
static void inc_td_cnt(struct urb *urb)
|
|
{
|
|
struct urb_priv *urb_priv = urb->hcpriv;
|
|
|
|
urb_priv->num_tds_done++;
|
|
}
|
|
|
|
static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
|
|
{
|
|
if (trb_is_link(trb)) {
|
|
/* unchain chained link TRBs */
|
|
trb->link.control &= cpu_to_le32(~TRB_CHAIN);
|
|
} else {
|
|
trb->generic.field[0] = 0;
|
|
trb->generic.field[1] = 0;
|
|
trb->generic.field[2] = 0;
|
|
/* Preserve only the cycle bit of this TRB */
|
|
trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
|
|
trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
|
|
}
|
|
}
|
|
|
|
/* Updates trb to point to the next TRB in the ring, and updates seg if the next
|
|
* TRB is in a new segment. This does not skip over link TRBs, and it does not
|
|
* effect the ring dequeue or enqueue pointers.
|
|
*/
|
|
static void next_trb(struct xhci_segment **seg,
|
|
union xhci_trb **trb)
|
|
{
|
|
if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) {
|
|
*seg = (*seg)->next;
|
|
*trb = ((*seg)->trbs);
|
|
} else {
|
|
(*trb)++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See Cycle bit rules. SW is the consumer for the event ring only.
|
|
*/
|
|
void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
|
|
{
|
|
unsigned int link_trb_count = 0;
|
|
|
|
/* event ring doesn't have link trbs, check for last trb */
|
|
if (ring->type == TYPE_EVENT) {
|
|
if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
|
|
ring->dequeue++;
|
|
return;
|
|
}
|
|
if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
|
|
ring->cycle_state ^= 1;
|
|
ring->deq_seg = ring->deq_seg->next;
|
|
ring->dequeue = ring->deq_seg->trbs;
|
|
|
|
trace_xhci_inc_deq(ring);
|
|
|
|
return;
|
|
}
|
|
|
|
/* All other rings have link trbs */
|
|
if (!trb_is_link(ring->dequeue)) {
|
|
if (last_trb_on_seg(ring->deq_seg, ring->dequeue))
|
|
xhci_warn(xhci, "Missing link TRB at end of segment\n");
|
|
else
|
|
ring->dequeue++;
|
|
}
|
|
|
|
while (trb_is_link(ring->dequeue)) {
|
|
ring->deq_seg = ring->deq_seg->next;
|
|
ring->dequeue = ring->deq_seg->trbs;
|
|
|
|
trace_xhci_inc_deq(ring);
|
|
|
|
if (link_trb_count++ > ring->num_segs) {
|
|
xhci_warn(xhci, "Ring is an endless link TRB loop\n");
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* See Cycle bit rules. SW is the consumer for the event ring only.
|
|
*
|
|
* If we've just enqueued a TRB that is in the middle of a TD (meaning the
|
|
* chain bit is set), then set the chain bit in all the following link TRBs.
|
|
* If we've enqueued the last TRB in a TD, make sure the following link TRBs
|
|
* have their chain bit cleared (so that each Link TRB is a separate TD).
|
|
*
|
|
* Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
|
|
* set, but other sections talk about dealing with the chain bit set. This was
|
|
* fixed in the 0.96 specification errata, but we have to assume that all 0.95
|
|
* xHCI hardware can't handle the chain bit being cleared on a link TRB.
|
|
*
|
|
* @more_trbs_coming: Will you enqueue more TRBs before calling
|
|
* prepare_transfer()?
|
|
*/
|
|
static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
|
|
bool more_trbs_coming)
|
|
{
|
|
u32 chain;
|
|
union xhci_trb *next;
|
|
unsigned int link_trb_count = 0;
|
|
|
|
chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
|
|
|
|
if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) {
|
|
xhci_err(xhci, "Tried to move enqueue past ring segment\n");
|
|
return;
|
|
}
|
|
|
|
next = ++(ring->enqueue);
|
|
|
|
/* Update the dequeue pointer further if that was a link TRB */
|
|
while (trb_is_link(next)) {
|
|
|
|
/*
|
|
* If the caller doesn't plan on enqueueing more TDs before
|
|
* ringing the doorbell, then we don't want to give the link TRB
|
|
* to the hardware just yet. We'll give the link TRB back in
|
|
* prepare_ring() just before we enqueue the TD at the top of
|
|
* the ring.
|
|
*/
|
|
if (!chain && !more_trbs_coming)
|
|
break;
|
|
|
|
/* If we're not dealing with 0.95 hardware or isoc rings on
|
|
* AMD 0.96 host, carry over the chain bit of the previous TRB
|
|
* (which may mean the chain bit is cleared).
|
|
*/
|
|
if (!xhci_link_chain_quirk(xhci, ring->type)) {
|
|
next->link.control &= cpu_to_le32(~TRB_CHAIN);
|
|
next->link.control |= cpu_to_le32(chain);
|
|
}
|
|
/* Give this link TRB to the hardware */
|
|
wmb();
|
|
next->link.control ^= cpu_to_le32(TRB_CYCLE);
|
|
|
|
/* Toggle the cycle bit after the last ring segment. */
|
|
if (link_trb_toggles_cycle(next))
|
|
ring->cycle_state ^= 1;
|
|
|
|
ring->enq_seg = ring->enq_seg->next;
|
|
ring->enqueue = ring->enq_seg->trbs;
|
|
next = ring->enqueue;
|
|
|
|
trace_xhci_inc_enq(ring);
|
|
|
|
if (link_trb_count++ > ring->num_segs) {
|
|
xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return number of free normal TRBs from enqueue to dequeue pointer on ring.
|
|
* Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment.
|
|
* Only for transfer and command rings where driver is the producer, not for
|
|
* event rings.
|
|
*/
|
|
static unsigned int xhci_num_trbs_free(struct xhci_ring *ring)
|
|
{
|
|
struct xhci_segment *enq_seg = ring->enq_seg;
|
|
union xhci_trb *enq = ring->enqueue;
|
|
union xhci_trb *last_on_seg;
|
|
unsigned int free = 0;
|
|
int i = 0;
|
|
|
|
/* Ring might be empty even if enq != deq if enq is left on a link trb */
|
|
if (trb_is_link(enq)) {
|
|
enq_seg = enq_seg->next;
|
|
enq = enq_seg->trbs;
|
|
}
|
|
|
|
/* Empty ring, common case, don't walk the segments */
|
|
if (enq == ring->dequeue)
|
|
return ring->num_segs * (TRBS_PER_SEGMENT - 1);
|
|
|
|
do {
|
|
if (ring->deq_seg == enq_seg && ring->dequeue >= enq)
|
|
return free + (ring->dequeue - enq);
|
|
last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1];
|
|
free += last_on_seg - enq;
|
|
enq_seg = enq_seg->next;
|
|
enq = enq_seg->trbs;
|
|
} while (i++ < ring->num_segs);
|
|
|
|
return free;
|
|
}
|
|
|
|
/*
|
|
* Check to see if there's room to enqueue num_trbs on the ring and make sure
|
|
* enqueue pointer will not advance into dequeue segment. See rules above.
|
|
* return number of new segments needed to ensure this.
|
|
*/
|
|
|
|
static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring,
|
|
unsigned int num_trbs)
|
|
{
|
|
struct xhci_segment *seg;
|
|
int trbs_past_seg;
|
|
int enq_used;
|
|
int new_segs;
|
|
|
|
enq_used = ring->enqueue - ring->enq_seg->trbs;
|
|
|
|
/* how many trbs will be queued past the enqueue segment? */
|
|
trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1);
|
|
|
|
/*
|
|
* Consider expanding the ring already if num_trbs fills the current
|
|
* segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into
|
|
* the next segment. Avoids confusing full ring with special empty ring
|
|
* case below
|
|
*/
|
|
if (trbs_past_seg < 0)
|
|
return 0;
|
|
|
|
/* Empty ring special case, enqueue stuck on link trb while dequeue advanced */
|
|
if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue)
|
|
return 0;
|
|
|
|
new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1));
|
|
seg = ring->enq_seg;
|
|
|
|
while (new_segs > 0) {
|
|
seg = seg->next;
|
|
if (seg == ring->deq_seg) {
|
|
xhci_dbg(xhci, "Adding %d trbs requires expanding ring by %d segments\n",
|
|
num_trbs, new_segs);
|
|
return new_segs;
|
|
}
|
|
new_segs--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Ring the host controller doorbell after placing a command on the ring */
|
|
void xhci_ring_cmd_db(struct xhci_hcd *xhci)
|
|
{
|
|
if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
|
|
return;
|
|
|
|
xhci_dbg(xhci, "// Ding dong!\n");
|
|
|
|
trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST);
|
|
|
|
writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
|
|
/* Flush PCI posted writes */
|
|
readl(&xhci->dba->doorbell[0]);
|
|
}
|
|
|
|
static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci)
|
|
{
|
|
return mod_delayed_work(system_wq, &xhci->cmd_timer,
|
|
msecs_to_jiffies(xhci->current_cmd->timeout_ms));
|
|
}
|
|
|
|
static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
|
|
{
|
|
return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
|
|
cmd_list);
|
|
}
|
|
|
|
/*
|
|
* Turn all commands on command ring with status set to "aborted" to no-op trbs.
|
|
* If there are other commands waiting then restart the ring and kick the timer.
|
|
* This must be called with command ring stopped and xhci->lock held.
|
|
*/
|
|
static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
|
|
struct xhci_command *cur_cmd)
|
|
{
|
|
struct xhci_command *i_cmd;
|
|
|
|
/* Turn all aborted commands in list to no-ops, then restart */
|
|
list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
|
|
|
|
if (i_cmd->status != COMP_COMMAND_ABORTED)
|
|
continue;
|
|
|
|
i_cmd->status = COMP_COMMAND_RING_STOPPED;
|
|
|
|
xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
|
|
i_cmd->command_trb);
|
|
|
|
trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
|
|
|
|
/*
|
|
* caller waiting for completion is called when command
|
|
* completion event is received for these no-op commands
|
|
*/
|
|
}
|
|
|
|
xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
|
|
|
|
/* ring command ring doorbell to restart the command ring */
|
|
if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
|
|
!(xhci->xhc_state & XHCI_STATE_DYING)) {
|
|
xhci->current_cmd = cur_cmd;
|
|
xhci_mod_cmd_timer(xhci);
|
|
xhci_ring_cmd_db(xhci);
|
|
}
|
|
}
|
|
|
|
/* Must be called with xhci->lock held, releases and acquires lock back */
|
|
static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
|
|
{
|
|
struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg;
|
|
union xhci_trb *new_deq = xhci->cmd_ring->dequeue;
|
|
u64 crcr;
|
|
int ret;
|
|
|
|
xhci_dbg(xhci, "Abort command ring\n");
|
|
|
|
reinit_completion(&xhci->cmd_ring_stop_completion);
|
|
|
|
/*
|
|
* The control bits like command stop, abort are located in lower
|
|
* dword of the command ring control register.
|
|
* Some controllers require all 64 bits to be written to abort the ring.
|
|
* Make sure the upper dword is valid, pointing to the next command,
|
|
* avoiding corrupting the command ring pointer in case the command ring
|
|
* is stopped by the time the upper dword is written.
|
|
*/
|
|
next_trb(&new_seg, &new_deq);
|
|
if (trb_is_link(new_deq))
|
|
next_trb(&new_seg, &new_deq);
|
|
|
|
crcr = xhci_trb_virt_to_dma(new_seg, new_deq);
|
|
xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring);
|
|
|
|
/* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
|
|
* completion of the Command Abort operation. If CRR is not negated in 5
|
|
* seconds then driver handles it as if host died (-ENODEV).
|
|
* In the future we should distinguish between -ENODEV and -ETIMEDOUT
|
|
* and try to recover a -ETIMEDOUT with a host controller reset.
|
|
*/
|
|
ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring,
|
|
CMD_RING_RUNNING, 0, 5 * 1000 * 1000,
|
|
XHCI_STATE_REMOVING);
|
|
if (ret < 0) {
|
|
xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
|
|
xhci_halt(xhci);
|
|
xhci_hc_died(xhci);
|
|
return ret;
|
|
}
|
|
/*
|
|
* Writing the CMD_RING_ABORT bit should cause a cmd completion event,
|
|
* however on some host hw the CMD_RING_RUNNING bit is correctly cleared
|
|
* but the completion event in never sent. Wait 2 secs (arbitrary
|
|
* number) to handle those cases after negation of CMD_RING_RUNNING.
|
|
*/
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
|
|
msecs_to_jiffies(2000));
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
if (!ret) {
|
|
xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
|
|
xhci_cleanup_command_queue(xhci);
|
|
} else {
|
|
xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
|
|
unsigned int slot_id,
|
|
unsigned int ep_index,
|
|
unsigned int stream_id)
|
|
{
|
|
__le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
|
|
struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
unsigned int ep_state = ep->ep_state;
|
|
|
|
/* Don't ring the doorbell for this endpoint if there are pending
|
|
* cancellations because we don't want to interrupt processing.
|
|
* We don't want to restart any stream rings if there's a set dequeue
|
|
* pointer command pending because the device can choose to start any
|
|
* stream once the endpoint is on the HW schedule.
|
|
*/
|
|
if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
|
|
(ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT))
|
|
return;
|
|
|
|
trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id));
|
|
|
|
writel(DB_VALUE(ep_index, stream_id), db_addr);
|
|
/* flush the write */
|
|
readl(db_addr);
|
|
}
|
|
|
|
/* Ring the doorbell for any rings with pending URBs */
|
|
static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
|
|
unsigned int slot_id,
|
|
unsigned int ep_index)
|
|
{
|
|
unsigned int stream_id;
|
|
struct xhci_virt_ep *ep;
|
|
|
|
ep = &xhci->devs[slot_id]->eps[ep_index];
|
|
|
|
/* A ring has pending URBs if its TD list is not empty */
|
|
if (!(ep->ep_state & EP_HAS_STREAMS)) {
|
|
if (ep->ring && !(list_empty(&ep->ring->td_list)))
|
|
xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
|
|
return;
|
|
}
|
|
|
|
for (stream_id = 1; stream_id < ep->stream_info->num_streams;
|
|
stream_id++) {
|
|
struct xhci_stream_info *stream_info = ep->stream_info;
|
|
if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
|
|
xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
|
|
stream_id);
|
|
}
|
|
}
|
|
|
|
void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
|
|
unsigned int slot_id,
|
|
unsigned int ep_index)
|
|
{
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
}
|
|
|
|
static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci,
|
|
unsigned int slot_id,
|
|
unsigned int ep_index)
|
|
{
|
|
if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) {
|
|
xhci_warn(xhci, "Invalid slot_id %u\n", slot_id);
|
|
return NULL;
|
|
}
|
|
if (ep_index >= EP_CTX_PER_DEV) {
|
|
xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index);
|
|
return NULL;
|
|
}
|
|
if (!xhci->devs[slot_id]) {
|
|
xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id);
|
|
return NULL;
|
|
}
|
|
|
|
return &xhci->devs[slot_id]->eps[ep_index];
|
|
}
|
|
|
|
static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci,
|
|
struct xhci_virt_ep *ep,
|
|
unsigned int stream_id)
|
|
{
|
|
/* common case, no streams */
|
|
if (!(ep->ep_state & EP_HAS_STREAMS))
|
|
return ep->ring;
|
|
|
|
if (!ep->stream_info)
|
|
return NULL;
|
|
|
|
if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) {
|
|
xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n",
|
|
stream_id, ep->vdev->slot_id, ep->ep_index);
|
|
return NULL;
|
|
}
|
|
|
|
return ep->stream_info->stream_rings[stream_id];
|
|
}
|
|
|
|
/* Get the right ring for the given slot_id, ep_index and stream_id.
|
|
* If the endpoint supports streams, boundary check the URB's stream ID.
|
|
* If the endpoint doesn't support streams, return the singular endpoint ring.
|
|
*/
|
|
struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
|
|
unsigned int slot_id, unsigned int ep_index,
|
|
unsigned int stream_id)
|
|
{
|
|
struct xhci_virt_ep *ep;
|
|
|
|
ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
|
|
if (!ep)
|
|
return NULL;
|
|
|
|
return xhci_virt_ep_to_ring(xhci, ep, stream_id);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get the hw dequeue pointer xHC stopped on, either directly from the
|
|
* endpoint context, or if streams are in use from the stream context.
|
|
* The returned hw_dequeue contains the lowest four bits with cycle state
|
|
* and possbile stream context type.
|
|
*/
|
|
static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
|
|
unsigned int ep_index, unsigned int stream_id)
|
|
{
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_stream_ctx *st_ctx;
|
|
struct xhci_virt_ep *ep;
|
|
|
|
ep = &vdev->eps[ep_index];
|
|
|
|
if (ep->ep_state & EP_HAS_STREAMS) {
|
|
st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
|
|
return le64_to_cpu(st_ctx->stream_ring);
|
|
}
|
|
ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
|
|
return le64_to_cpu(ep_ctx->deq);
|
|
}
|
|
|
|
static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci,
|
|
unsigned int slot_id, unsigned int ep_index,
|
|
unsigned int stream_id, struct xhci_td *td)
|
|
{
|
|
struct xhci_virt_device *dev = xhci->devs[slot_id];
|
|
struct xhci_virt_ep *ep = &dev->eps[ep_index];
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_command *cmd;
|
|
struct xhci_segment *new_seg;
|
|
union xhci_trb *new_deq;
|
|
int new_cycle;
|
|
dma_addr_t addr;
|
|
u64 hw_dequeue;
|
|
bool cycle_found = false;
|
|
bool td_last_trb_found = false;
|
|
u32 trb_sct = 0;
|
|
int ret;
|
|
|
|
ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
|
|
ep_index, stream_id);
|
|
if (!ep_ring) {
|
|
xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n",
|
|
stream_id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
|
|
new_seg = ep_ring->deq_seg;
|
|
new_deq = ep_ring->dequeue;
|
|
new_cycle = hw_dequeue & 0x1;
|
|
|
|
/*
|
|
* We want to find the pointer, segment and cycle state of the new trb
|
|
* (the one after current TD's end_trb). We know the cycle state at
|
|
* hw_dequeue, so walk the ring until both hw_dequeue and end_trb are
|
|
* found.
|
|
*/
|
|
do {
|
|
if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
|
|
== (dma_addr_t)(hw_dequeue & ~0xf)) {
|
|
cycle_found = true;
|
|
if (td_last_trb_found)
|
|
break;
|
|
}
|
|
if (new_deq == td->end_trb)
|
|
td_last_trb_found = true;
|
|
|
|
if (cycle_found && trb_is_link(new_deq) &&
|
|
link_trb_toggles_cycle(new_deq))
|
|
new_cycle ^= 0x1;
|
|
|
|
next_trb(&new_seg, &new_deq);
|
|
|
|
/* Search wrapped around, bail out */
|
|
if (new_deq == ep->ring->dequeue) {
|
|
xhci_err(xhci, "Error: Failed finding new dequeue state\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
} while (!cycle_found || !td_last_trb_found);
|
|
|
|
/* Don't update the ring cycle state for the producer (us). */
|
|
addr = xhci_trb_virt_to_dma(new_seg, new_deq);
|
|
if (addr == 0) {
|
|
xhci_warn(xhci, "Can't find dma of new dequeue ptr\n");
|
|
xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((ep->ep_state & SET_DEQ_PENDING)) {
|
|
xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n",
|
|
&addr);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* This function gets called from contexts where it cannot sleep */
|
|
cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
|
|
if (!cmd) {
|
|
xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (stream_id)
|
|
trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
|
|
ret = queue_command(xhci, cmd,
|
|
lower_32_bits(addr) | trb_sct | new_cycle,
|
|
upper_32_bits(addr),
|
|
STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) |
|
|
EP_INDEX_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false);
|
|
if (ret < 0) {
|
|
xhci_free_command(xhci, cmd);
|
|
return ret;
|
|
}
|
|
ep->queued_deq_seg = new_seg;
|
|
ep->queued_deq_ptr = new_deq;
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle);
|
|
|
|
/* Stop the TD queueing code from ringing the doorbell until
|
|
* this command completes. The HC won't set the dequeue pointer
|
|
* if the ring is running, and ringing the doorbell starts the
|
|
* ring running.
|
|
*/
|
|
ep->ep_state |= SET_DEQ_PENDING;
|
|
xhci_ring_cmd_db(xhci);
|
|
return 0;
|
|
}
|
|
|
|
/* flip_cycle means flip the cycle bit of all but the first and last TRB.
|
|
* (The last TRB actually points to the ring enqueue pointer, which is not part
|
|
* of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
|
|
*/
|
|
static void td_to_noop(struct xhci_td *td, bool flip_cycle)
|
|
{
|
|
struct xhci_segment *seg = td->start_seg;
|
|
union xhci_trb *trb = td->start_trb;
|
|
|
|
while (1) {
|
|
trb_to_noop(trb, TRB_TR_NOOP);
|
|
|
|
/* flip cycle if asked to */
|
|
if (flip_cycle && trb != td->start_trb && trb != td->end_trb)
|
|
trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
|
|
|
|
if (trb == td->end_trb)
|
|
break;
|
|
|
|
next_trb(&seg, &trb);
|
|
}
|
|
}
|
|
|
|
static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
|
|
struct xhci_td *cur_td, int status)
|
|
{
|
|
struct urb *urb = cur_td->urb;
|
|
struct urb_priv *urb_priv = urb->hcpriv;
|
|
struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
|
|
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
|
|
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
|
|
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (xhci->quirks & XHCI_AMD_PLL_FIX)
|
|
usb_amd_quirk_pll_enable();
|
|
}
|
|
}
|
|
xhci_urb_free_priv(urb_priv);
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
trace_xhci_urb_giveback(urb);
|
|
usb_hcd_giveback_urb(hcd, urb, status);
|
|
}
|
|
|
|
static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
|
|
struct xhci_ring *ring, struct xhci_td *td)
|
|
{
|
|
struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
|
|
struct xhci_segment *seg = td->bounce_seg;
|
|
struct urb *urb = td->urb;
|
|
size_t len;
|
|
|
|
if (!ring || !seg || !urb)
|
|
return;
|
|
|
|
if (usb_urb_dir_out(urb)) {
|
|
dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
|
|
DMA_TO_DEVICE);
|
|
return;
|
|
}
|
|
|
|
dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
|
|
DMA_FROM_DEVICE);
|
|
/* for in transfers we need to copy the data from bounce to sg */
|
|
if (urb->num_sgs) {
|
|
len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf,
|
|
seg->bounce_len, seg->bounce_offs);
|
|
if (len != seg->bounce_len)
|
|
xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n",
|
|
len, seg->bounce_len);
|
|
} else {
|
|
memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf,
|
|
seg->bounce_len);
|
|
}
|
|
seg->bounce_len = 0;
|
|
seg->bounce_offs = 0;
|
|
}
|
|
|
|
static void xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
|
|
struct xhci_ring *ep_ring, int status)
|
|
{
|
|
struct urb *urb = NULL;
|
|
|
|
/* Clean up the endpoint's TD list */
|
|
urb = td->urb;
|
|
|
|
/* if a bounce buffer was used to align this td then unmap it */
|
|
xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
|
|
|
|
/* Do one last check of the actual transfer length.
|
|
* If the host controller said we transferred more data than the buffer
|
|
* length, urb->actual_length will be a very big number (since it's
|
|
* unsigned). Play it safe and say we didn't transfer anything.
|
|
*/
|
|
if (urb->actual_length > urb->transfer_buffer_length) {
|
|
xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
|
|
urb->transfer_buffer_length, urb->actual_length);
|
|
urb->actual_length = 0;
|
|
status = 0;
|
|
}
|
|
/* TD might be removed from td_list if we are giving back a cancelled URB */
|
|
if (!list_empty(&td->td_list))
|
|
list_del_init(&td->td_list);
|
|
/* Giving back a cancelled URB, or if a slated TD completed anyway */
|
|
if (!list_empty(&td->cancelled_td_list))
|
|
list_del_init(&td->cancelled_td_list);
|
|
|
|
inc_td_cnt(urb);
|
|
/* Giveback the urb when all the tds are completed */
|
|
if (last_td_in_urb(td)) {
|
|
if ((urb->actual_length != urb->transfer_buffer_length &&
|
|
(urb->transfer_flags & URB_SHORT_NOT_OK)) ||
|
|
(status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
|
|
xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
|
|
urb, urb->actual_length,
|
|
urb->transfer_buffer_length, status);
|
|
|
|
/* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
|
|
if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
|
|
status = 0;
|
|
xhci_giveback_urb_in_irq(xhci, td, status);
|
|
}
|
|
}
|
|
|
|
/* Give back previous TD and move on to the next TD. */
|
|
static void xhci_dequeue_td(struct xhci_hcd *xhci, struct xhci_td *td, struct xhci_ring *ring,
|
|
u32 status)
|
|
{
|
|
ring->dequeue = td->end_trb;
|
|
ring->deq_seg = td->end_seg;
|
|
inc_deq(xhci, ring);
|
|
|
|
xhci_td_cleanup(xhci, td, ring, status);
|
|
}
|
|
|
|
/* Complete the cancelled URBs we unlinked from td_list. */
|
|
static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep)
|
|
{
|
|
struct xhci_ring *ring;
|
|
struct xhci_td *td, *tmp_td;
|
|
|
|
list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list,
|
|
cancelled_td_list) {
|
|
|
|
ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb);
|
|
|
|
if (td->cancel_status == TD_CLEARED) {
|
|
xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n",
|
|
__func__, td->urb);
|
|
xhci_td_cleanup(ep->xhci, td, ring, td->status);
|
|
} else {
|
|
xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n",
|
|
__func__, td->urb, td->cancel_status);
|
|
}
|
|
if (ep->xhci->xhc_state & XHCI_STATE_DYING)
|
|
return;
|
|
}
|
|
}
|
|
|
|
static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id,
|
|
unsigned int ep_index, enum xhci_ep_reset_type reset_type)
|
|
{
|
|
struct xhci_command *command;
|
|
int ret = 0;
|
|
|
|
command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
|
|
if (!command) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
xhci_dbg(xhci, "%s-reset ep %u, slot %u\n",
|
|
(reset_type == EP_HARD_RESET) ? "Hard" : "Soft",
|
|
ep_index, slot_id);
|
|
|
|
ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
|
|
done:
|
|
if (ret)
|
|
xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n",
|
|
slot_id, ep_index, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci,
|
|
struct xhci_virt_ep *ep,
|
|
struct xhci_td *td,
|
|
enum xhci_ep_reset_type reset_type)
|
|
{
|
|
unsigned int slot_id = ep->vdev->slot_id;
|
|
int err;
|
|
|
|
/*
|
|
* Avoid resetting endpoint if link is inactive. Can cause host hang.
|
|
* Device will be reset soon to recover the link so don't do anything
|
|
*/
|
|
if (ep->vdev->flags & VDEV_PORT_ERROR)
|
|
return -ENODEV;
|
|
|
|
/* add td to cancelled list and let reset ep handler take care of it */
|
|
if (reset_type == EP_HARD_RESET) {
|
|
ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
|
|
if (td && list_empty(&td->cancelled_td_list)) {
|
|
list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
|
|
td->cancel_status = TD_HALTED;
|
|
}
|
|
}
|
|
|
|
if (ep->ep_state & EP_HALTED) {
|
|
xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n",
|
|
ep->ep_index);
|
|
return 0;
|
|
}
|
|
|
|
err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type);
|
|
if (err)
|
|
return err;
|
|
|
|
ep->ep_state |= EP_HALTED;
|
|
|
|
xhci_ring_cmd_db(xhci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fix up the ep ring first, so HW stops executing cancelled TDs.
|
|
* We have the xHCI lock, so nothing can modify this list until we drop it.
|
|
* We're also in the event handler, so we can't get re-interrupted if another
|
|
* Stop Endpoint command completes.
|
|
*
|
|
* only call this when ring is not in a running state
|
|
*/
|
|
|
|
static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
struct xhci_td *td = NULL;
|
|
struct xhci_td *tmp_td = NULL;
|
|
struct xhci_td *cached_td = NULL;
|
|
struct xhci_ring *ring;
|
|
u64 hw_deq;
|
|
unsigned int slot_id = ep->vdev->slot_id;
|
|
int err;
|
|
|
|
/*
|
|
* This is not going to work if the hardware is changing its dequeue
|
|
* pointers as we look at them. Completion handler will call us later.
|
|
*/
|
|
if (ep->ep_state & SET_DEQ_PENDING)
|
|
return 0;
|
|
|
|
xhci = ep->xhci;
|
|
|
|
list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p",
|
|
(unsigned long long)xhci_trb_virt_to_dma(
|
|
td->start_seg, td->start_trb),
|
|
td->urb->stream_id, td->urb);
|
|
list_del_init(&td->td_list);
|
|
ring = xhci_urb_to_transfer_ring(xhci, td->urb);
|
|
if (!ring) {
|
|
xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n",
|
|
td->urb, td->urb->stream_id);
|
|
continue;
|
|
}
|
|
/*
|
|
* If a ring stopped on the TD we need to cancel then we have to
|
|
* move the xHC endpoint ring dequeue pointer past this TD.
|
|
* Rings halted due to STALL may show hw_deq is past the stalled
|
|
* TD, but still require a set TR Deq command to flush xHC cache.
|
|
*/
|
|
hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index,
|
|
td->urb->stream_id);
|
|
hw_deq &= ~0xf;
|
|
|
|
if (td->cancel_status == TD_HALTED || trb_in_td(xhci, td, hw_deq, false)) {
|
|
switch (td->cancel_status) {
|
|
case TD_CLEARED: /* TD is already no-op */
|
|
case TD_CLEARING_CACHE: /* set TR deq command already queued */
|
|
break;
|
|
case TD_DIRTY: /* TD is cached, clear it */
|
|
case TD_HALTED:
|
|
case TD_CLEARING_CACHE_DEFERRED:
|
|
if (cached_td) {
|
|
if (cached_td->urb->stream_id != td->urb->stream_id) {
|
|
/* Multiple streams case, defer move dq */
|
|
xhci_dbg(xhci,
|
|
"Move dq deferred: stream %u URB %p\n",
|
|
td->urb->stream_id, td->urb);
|
|
td->cancel_status = TD_CLEARING_CACHE_DEFERRED;
|
|
break;
|
|
}
|
|
|
|
/* Should never happen, but clear the TD if it does */
|
|
xhci_warn(xhci,
|
|
"Found multiple active URBs %p and %p in stream %u?\n",
|
|
td->urb, cached_td->urb,
|
|
td->urb->stream_id);
|
|
td_to_noop(cached_td, false);
|
|
cached_td->cancel_status = TD_CLEARED;
|
|
}
|
|
td_to_noop(td, false);
|
|
td->cancel_status = TD_CLEARING_CACHE;
|
|
cached_td = td;
|
|
break;
|
|
}
|
|
} else {
|
|
td_to_noop(td, false);
|
|
td->cancel_status = TD_CLEARED;
|
|
}
|
|
}
|
|
|
|
/* If there's no need to move the dequeue pointer then we're done */
|
|
if (!cached_td)
|
|
return 0;
|
|
|
|
err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index,
|
|
cached_td->urb->stream_id,
|
|
cached_td);
|
|
if (err) {
|
|
/* Failed to move past cached td, just set cached TDs to no-op */
|
|
list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) {
|
|
/*
|
|
* Deferred TDs need to have the deq pointer set after the above command
|
|
* completes, so if that failed we just give up on all of them (and
|
|
* complain loudly since this could cause issues due to caching).
|
|
*/
|
|
if (td->cancel_status != TD_CLEARING_CACHE &&
|
|
td->cancel_status != TD_CLEARING_CACHE_DEFERRED)
|
|
continue;
|
|
xhci_warn(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n",
|
|
td->urb);
|
|
td_to_noop(td, false);
|
|
td->cancel_status = TD_CLEARED;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Erase queued TDs from transfer ring(s) and give back those the xHC didn't
|
|
* stop on. If necessary, queue commands to move the xHC off cancelled TDs it
|
|
* stopped on. Those will be given back later when the commands complete.
|
|
*
|
|
* Call under xhci->lock on a stopped endpoint.
|
|
*/
|
|
void xhci_process_cancelled_tds(struct xhci_virt_ep *ep)
|
|
{
|
|
xhci_invalidate_cancelled_tds(ep);
|
|
xhci_giveback_invalidated_tds(ep);
|
|
}
|
|
|
|
/*
|
|
* Returns the TD the endpoint ring halted on.
|
|
* Only call for non-running rings without streams.
|
|
*/
|
|
static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep)
|
|
{
|
|
struct xhci_td *td;
|
|
u64 hw_deq;
|
|
|
|
if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */
|
|
hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0);
|
|
hw_deq &= ~0xf;
|
|
td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list);
|
|
if (trb_in_td(ep->xhci, td, hw_deq, false))
|
|
return td;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* When we get a command completion for a Stop Endpoint Command, we need to
|
|
* unlink any cancelled TDs from the ring. There are two ways to do that:
|
|
*
|
|
* 1. If the HW was in the middle of processing the TD that needs to be
|
|
* cancelled, then we must move the ring's dequeue pointer past the last TRB
|
|
* in the TD with a Set Dequeue Pointer Command.
|
|
* 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
|
|
* bit cleared) so that the HW will skip over them.
|
|
*/
|
|
static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
|
|
union xhci_trb *trb, u32 comp_code)
|
|
{
|
|
unsigned int ep_index;
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_td *td = NULL;
|
|
enum xhci_ep_reset_type reset_type;
|
|
struct xhci_command *command;
|
|
int err;
|
|
|
|
if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
|
|
if (!xhci->devs[slot_id])
|
|
xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n",
|
|
slot_id);
|
|
return;
|
|
}
|
|
|
|
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
|
|
ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
|
|
if (!ep)
|
|
return;
|
|
|
|
ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
|
|
|
|
trace_xhci_handle_cmd_stop_ep(ep_ctx);
|
|
|
|
if (comp_code == COMP_CONTEXT_STATE_ERROR) {
|
|
/*
|
|
* If stop endpoint command raced with a halting endpoint we need to
|
|
* reset the host side endpoint first.
|
|
* If the TD we halted on isn't cancelled the TD should be given back
|
|
* with a proper error code, and the ring dequeue moved past the TD.
|
|
* If streams case we can't find hw_deq, or the TD we halted on so do a
|
|
* soft reset.
|
|
*
|
|
* Proper error code is unknown here, it would be -EPIPE if device side
|
|
* of enadpoit halted (aka STALL), and -EPROTO if not (transaction error)
|
|
* We use -EPROTO, if device is stalled it should return a stall error on
|
|
* next transfer, which then will return -EPIPE, and device side stall is
|
|
* noted and cleared by class driver.
|
|
*/
|
|
switch (GET_EP_CTX_STATE(ep_ctx)) {
|
|
case EP_STATE_HALTED:
|
|
xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n");
|
|
if (ep->ep_state & EP_HAS_STREAMS) {
|
|
reset_type = EP_SOFT_RESET;
|
|
} else {
|
|
reset_type = EP_HARD_RESET;
|
|
td = find_halted_td(ep);
|
|
if (td)
|
|
td->status = -EPROTO;
|
|
}
|
|
/* reset ep, reset handler cleans up cancelled tds */
|
|
err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type);
|
|
if (err)
|
|
break;
|
|
ep->ep_state &= ~EP_STOP_CMD_PENDING;
|
|
return;
|
|
case EP_STATE_STOPPED:
|
|
/*
|
|
* Per xHCI 4.6.9, Stop Endpoint command on a Stopped
|
|
* EP is a Context State Error, and EP stays Stopped.
|
|
*
|
|
* But maybe it failed on Halted, and somebody ran Reset
|
|
* Endpoint later. EP state is now Stopped and EP_HALTED
|
|
* still set because Reset EP handler will run after us.
|
|
*/
|
|
if (ep->ep_state & EP_HALTED)
|
|
break;
|
|
/*
|
|
* On some HCs EP state remains Stopped for some tens of
|
|
* us to a few ms or more after a doorbell ring, and any
|
|
* new Stop Endpoint fails without aborting the restart.
|
|
* This handler may run quickly enough to still see this
|
|
* Stopped state, but it will soon change to Running.
|
|
*
|
|
* Assume this bug on unexpected Stop Endpoint failures.
|
|
* Keep retrying until the EP starts and stops again, on
|
|
* chips where this is known to help. Wait for 100ms.
|
|
*/
|
|
if (time_is_before_jiffies(ep->stop_time + msecs_to_jiffies(100)))
|
|
break;
|
|
fallthrough;
|
|
case EP_STATE_RUNNING:
|
|
/* Race, HW handled stop ep cmd before ep was running */
|
|
xhci_dbg(xhci, "Stop ep completion ctx error, ctx_state %d\n",
|
|
GET_EP_CTX_STATE(ep_ctx));
|
|
|
|
command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
|
|
if (!command) {
|
|
ep->ep_state &= ~EP_STOP_CMD_PENDING;
|
|
return;
|
|
}
|
|
xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0);
|
|
xhci_ring_cmd_db(xhci);
|
|
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* will queue a set TR deq if stopped on a cancelled, uncleared TD */
|
|
xhci_invalidate_cancelled_tds(ep);
|
|
ep->ep_state &= ~EP_STOP_CMD_PENDING;
|
|
|
|
/* Otherwise ring the doorbell(s) to restart queued transfers */
|
|
xhci_giveback_invalidated_tds(ep);
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
}
|
|
|
|
static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
|
|
{
|
|
struct xhci_td *cur_td;
|
|
struct xhci_td *tmp;
|
|
|
|
list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
|
|
list_del_init(&cur_td->td_list);
|
|
|
|
if (!list_empty(&cur_td->cancelled_td_list))
|
|
list_del_init(&cur_td->cancelled_td_list);
|
|
|
|
xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
|
|
|
|
inc_td_cnt(cur_td->urb);
|
|
if (last_td_in_urb(cur_td))
|
|
xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
|
|
}
|
|
}
|
|
|
|
static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
|
|
int slot_id, int ep_index)
|
|
{
|
|
struct xhci_td *cur_td;
|
|
struct xhci_td *tmp;
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_ring *ring;
|
|
|
|
ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
|
|
if (!ep)
|
|
return;
|
|
|
|
if ((ep->ep_state & EP_HAS_STREAMS) ||
|
|
(ep->ep_state & EP_GETTING_NO_STREAMS)) {
|
|
int stream_id;
|
|
|
|
for (stream_id = 1; stream_id < ep->stream_info->num_streams;
|
|
stream_id++) {
|
|
ring = ep->stream_info->stream_rings[stream_id];
|
|
if (!ring)
|
|
continue;
|
|
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Killing URBs for slot ID %u, ep index %u, stream %u",
|
|
slot_id, ep_index, stream_id);
|
|
xhci_kill_ring_urbs(xhci, ring);
|
|
}
|
|
} else {
|
|
ring = ep->ring;
|
|
if (!ring)
|
|
return;
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Killing URBs for slot ID %u, ep index %u",
|
|
slot_id, ep_index);
|
|
xhci_kill_ring_urbs(xhci, ring);
|
|
}
|
|
|
|
list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
|
|
cancelled_td_list) {
|
|
list_del_init(&cur_td->cancelled_td_list);
|
|
inc_td_cnt(cur_td->urb);
|
|
|
|
if (last_td_in_urb(cur_td))
|
|
xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* host controller died, register read returns 0xffffffff
|
|
* Complete pending commands, mark them ABORTED.
|
|
* URBs need to be given back as usb core might be waiting with device locks
|
|
* held for the URBs to finish during device disconnect, blocking host remove.
|
|
*
|
|
* Call with xhci->lock held.
|
|
* lock is relased and re-acquired while giving back urb.
|
|
*/
|
|
void xhci_hc_died(struct xhci_hcd *xhci)
|
|
{
|
|
int i, j;
|
|
|
|
if (xhci->xhc_state & XHCI_STATE_DYING)
|
|
return;
|
|
|
|
xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
|
|
xhci->xhc_state |= XHCI_STATE_DYING;
|
|
|
|
xhci_cleanup_command_queue(xhci);
|
|
|
|
/* return any pending urbs, remove may be waiting for them */
|
|
for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
|
|
if (!xhci->devs[i])
|
|
continue;
|
|
for (j = 0; j < 31; j++)
|
|
xhci_kill_endpoint_urbs(xhci, i, j);
|
|
}
|
|
|
|
/* inform usb core hc died if PCI remove isn't already handling it */
|
|
if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
|
|
usb_hc_died(xhci_to_hcd(xhci));
|
|
}
|
|
|
|
static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *dev,
|
|
struct xhci_ring *ep_ring,
|
|
unsigned int ep_index)
|
|
{
|
|
union xhci_trb *dequeue_temp;
|
|
|
|
dequeue_temp = ep_ring->dequeue;
|
|
|
|
/* If we get two back-to-back stalls, and the first stalled transfer
|
|
* ends just before a link TRB, the dequeue pointer will be left on
|
|
* the link TRB by the code in the while loop. So we have to update
|
|
* the dequeue pointer one segment further, or we'll jump off
|
|
* the segment into la-la-land.
|
|
*/
|
|
if (trb_is_link(ep_ring->dequeue)) {
|
|
ep_ring->deq_seg = ep_ring->deq_seg->next;
|
|
ep_ring->dequeue = ep_ring->deq_seg->trbs;
|
|
}
|
|
|
|
while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
|
|
/* We have more usable TRBs */
|
|
ep_ring->dequeue++;
|
|
if (trb_is_link(ep_ring->dequeue)) {
|
|
if (ep_ring->dequeue ==
|
|
dev->eps[ep_index].queued_deq_ptr)
|
|
break;
|
|
ep_ring->deq_seg = ep_ring->deq_seg->next;
|
|
ep_ring->dequeue = ep_ring->deq_seg->trbs;
|
|
}
|
|
if (ep_ring->dequeue == dequeue_temp) {
|
|
xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When we get a completion for a Set Transfer Ring Dequeue Pointer command,
|
|
* we need to clear the set deq pending flag in the endpoint ring state, so that
|
|
* the TD queueing code can ring the doorbell again. We also need to ring the
|
|
* endpoint doorbell to restart the ring, but only if there aren't more
|
|
* cancellations pending.
|
|
*/
|
|
static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
|
|
union xhci_trb *trb, u32 cmd_comp_code)
|
|
{
|
|
unsigned int ep_index;
|
|
unsigned int stream_id;
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
struct xhci_stream_ctx *stream_ctx;
|
|
struct xhci_td *td, *tmp_td;
|
|
|
|
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
|
|
stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
|
|
ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
|
|
if (!ep)
|
|
return;
|
|
|
|
ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id);
|
|
if (!ep_ring) {
|
|
xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
|
|
stream_id);
|
|
/* XXX: Harmless??? */
|
|
goto cleanup;
|
|
}
|
|
|
|
ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
|
|
slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx);
|
|
trace_xhci_handle_cmd_set_deq(slot_ctx);
|
|
trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
|
|
|
|
if (ep->ep_state & EP_HAS_STREAMS) {
|
|
stream_ctx = &ep->stream_info->stream_ctx_array[stream_id];
|
|
trace_xhci_handle_cmd_set_deq_stream(ep->stream_info, stream_id);
|
|
}
|
|
|
|
if (cmd_comp_code != COMP_SUCCESS) {
|
|
unsigned int ep_state;
|
|
unsigned int slot_state;
|
|
|
|
switch (cmd_comp_code) {
|
|
case COMP_TRB_ERROR:
|
|
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
|
|
break;
|
|
case COMP_CONTEXT_STATE_ERROR:
|
|
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
|
|
ep_state = GET_EP_CTX_STATE(ep_ctx);
|
|
slot_state = le32_to_cpu(slot_ctx->dev_state);
|
|
slot_state = GET_SLOT_STATE(slot_state);
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Slot state = %u, EP state = %u",
|
|
slot_state, ep_state);
|
|
break;
|
|
case COMP_SLOT_NOT_ENABLED_ERROR:
|
|
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
|
|
slot_id);
|
|
break;
|
|
default:
|
|
xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
|
|
cmd_comp_code);
|
|
break;
|
|
}
|
|
/* OK what do we do now? The endpoint state is hosed, and we
|
|
* should never get to this point if the synchronization between
|
|
* queueing, and endpoint state are correct. This might happen
|
|
* if the device gets disconnected after we've finished
|
|
* cancelling URBs, which might not be an error...
|
|
*/
|
|
} else {
|
|
u64 deq;
|
|
/* 4.6.10 deq ptr is written to the stream ctx for streams */
|
|
if (ep->ep_state & EP_HAS_STREAMS) {
|
|
deq = le64_to_cpu(stream_ctx->stream_ring) & SCTX_DEQ_MASK;
|
|
|
|
/*
|
|
* Cadence xHCI controllers store some endpoint state
|
|
* information within Rsvd0 fields of Stream Endpoint
|
|
* context. This field is not cleared during Set TR
|
|
* Dequeue Pointer command which causes XDMA to skip
|
|
* over transfer ring and leads to data loss on stream
|
|
* pipe.
|
|
* To fix this issue driver must clear Rsvd0 field.
|
|
*/
|
|
if (xhci->quirks & XHCI_CDNS_SCTX_QUIRK) {
|
|
stream_ctx->reserved[0] = 0;
|
|
stream_ctx->reserved[1] = 0;
|
|
}
|
|
} else {
|
|
deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
|
|
}
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
|
|
"Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
|
|
if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
|
|
ep->queued_deq_ptr) == deq) {
|
|
/* Update the ring's dequeue segment and dequeue pointer
|
|
* to reflect the new position.
|
|
*/
|
|
update_ring_for_set_deq_completion(xhci, ep->vdev,
|
|
ep_ring, ep_index);
|
|
} else {
|
|
xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
|
|
xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
|
|
ep->queued_deq_seg, ep->queued_deq_ptr);
|
|
}
|
|
}
|
|
/* HW cached TDs cleared from cache, give them back */
|
|
list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list,
|
|
cancelled_td_list) {
|
|
ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb);
|
|
if (td->cancel_status == TD_CLEARING_CACHE) {
|
|
td->cancel_status = TD_CLEARED;
|
|
xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n",
|
|
__func__, td->urb);
|
|
xhci_td_cleanup(ep->xhci, td, ep_ring, td->status);
|
|
} else {
|
|
xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n",
|
|
__func__, td->urb, td->cancel_status);
|
|
}
|
|
}
|
|
cleanup:
|
|
ep->ep_state &= ~SET_DEQ_PENDING;
|
|
ep->queued_deq_seg = NULL;
|
|
ep->queued_deq_ptr = NULL;
|
|
|
|
/* Check for deferred or newly cancelled TDs */
|
|
if (!list_empty(&ep->cancelled_td_list)) {
|
|
xhci_dbg(ep->xhci, "%s: Pending TDs to clear, continuing with invalidation\n",
|
|
__func__);
|
|
xhci_invalidate_cancelled_tds(ep);
|
|
/* Try to restart the endpoint if all is done */
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
/* Start giving back any TDs invalidated above */
|
|
xhci_giveback_invalidated_tds(ep);
|
|
} else {
|
|
/* Restart any rings with pending URBs */
|
|
xhci_dbg(ep->xhci, "%s: All TDs cleared, ring doorbell\n", __func__);
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
}
|
|
}
|
|
|
|
static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
|
|
union xhci_trb *trb, u32 cmd_comp_code)
|
|
{
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
unsigned int ep_index;
|
|
|
|
ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
|
|
ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
|
|
if (!ep)
|
|
return;
|
|
|
|
ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
|
|
trace_xhci_handle_cmd_reset_ep(ep_ctx);
|
|
|
|
/* This command will only fail if the endpoint wasn't halted,
|
|
* but we don't care.
|
|
*/
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
|
|
"Ignoring reset ep completion code of %u", cmd_comp_code);
|
|
|
|
/* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */
|
|
xhci_invalidate_cancelled_tds(ep);
|
|
|
|
/* Clear our internal halted state */
|
|
ep->ep_state &= ~EP_HALTED;
|
|
|
|
xhci_giveback_invalidated_tds(ep);
|
|
|
|
/* if this was a soft reset, then restart */
|
|
if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
|
|
ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
|
|
}
|
|
|
|
static void xhci_handle_cmd_enable_slot(int slot_id, struct xhci_command *command,
|
|
u32 cmd_comp_code)
|
|
{
|
|
if (cmd_comp_code == COMP_SUCCESS)
|
|
command->slot_id = slot_id;
|
|
else
|
|
command->slot_id = 0;
|
|
}
|
|
|
|
static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
|
|
{
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
|
|
virt_dev = xhci->devs[slot_id];
|
|
if (!virt_dev)
|
|
return;
|
|
|
|
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
|
|
trace_xhci_handle_cmd_disable_slot(slot_ctx);
|
|
|
|
if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
|
|
/* Delete default control endpoint resources */
|
|
xhci_free_device_endpoint_resources(xhci, virt_dev, true);
|
|
}
|
|
|
|
static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id)
|
|
{
|
|
struct xhci_virt_device *virt_dev;
|
|
struct xhci_input_control_ctx *ctrl_ctx;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
unsigned int ep_index;
|
|
u32 add_flags;
|
|
|
|
/*
|
|
* Configure endpoint commands can come from the USB core configuration
|
|
* or alt setting changes, or when streams were being configured.
|
|
*/
|
|
|
|
virt_dev = xhci->devs[slot_id];
|
|
if (!virt_dev)
|
|
return;
|
|
ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
|
|
if (!ctrl_ctx) {
|
|
xhci_warn(xhci, "Could not get input context, bad type.\n");
|
|
return;
|
|
}
|
|
|
|
add_flags = le32_to_cpu(ctrl_ctx->add_flags);
|
|
|
|
/* Input ctx add_flags are the endpoint index plus one */
|
|
ep_index = xhci_last_valid_endpoint(add_flags) - 1;
|
|
|
|
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
|
|
trace_xhci_handle_cmd_config_ep(ep_ctx);
|
|
|
|
return;
|
|
}
|
|
|
|
static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
|
|
{
|
|
struct xhci_virt_device *vdev;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
|
|
vdev = xhci->devs[slot_id];
|
|
if (!vdev)
|
|
return;
|
|
slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
|
|
trace_xhci_handle_cmd_addr_dev(slot_ctx);
|
|
}
|
|
|
|
static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id)
|
|
{
|
|
struct xhci_virt_device *vdev;
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
|
|
vdev = xhci->devs[slot_id];
|
|
if (!vdev) {
|
|
xhci_warn(xhci, "Reset device command completion for disabled slot %u\n",
|
|
slot_id);
|
|
return;
|
|
}
|
|
slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
|
|
trace_xhci_handle_cmd_reset_dev(slot_ctx);
|
|
|
|
xhci_dbg(xhci, "Completed reset device command.\n");
|
|
}
|
|
|
|
static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
|
|
struct xhci_event_cmd *event)
|
|
{
|
|
if (!(xhci->quirks & XHCI_NEC_HOST)) {
|
|
xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
|
|
return;
|
|
}
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
|
|
"NEC firmware version %2x.%02x",
|
|
NEC_FW_MAJOR(le32_to_cpu(event->status)),
|
|
NEC_FW_MINOR(le32_to_cpu(event->status)));
|
|
}
|
|
|
|
static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
|
|
{
|
|
list_del(&cmd->cmd_list);
|
|
|
|
if (cmd->completion) {
|
|
cmd->status = status;
|
|
complete(cmd->completion);
|
|
} else {
|
|
kfree(cmd);
|
|
}
|
|
}
|
|
|
|
void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
|
|
{
|
|
struct xhci_command *cur_cmd, *tmp_cmd;
|
|
xhci->current_cmd = NULL;
|
|
list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
|
|
xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
|
|
}
|
|
|
|
void xhci_handle_command_timeout(struct work_struct *work)
|
|
{
|
|
struct xhci_hcd *xhci;
|
|
unsigned long flags;
|
|
char str[XHCI_MSG_MAX];
|
|
u64 hw_ring_state;
|
|
u32 cmd_field3;
|
|
u32 usbsts;
|
|
|
|
xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
|
|
|
|
spin_lock_irqsave(&xhci->lock, flags);
|
|
|
|
/*
|
|
* If timeout work is pending, or current_cmd is NULL, it means we
|
|
* raced with command completion. Command is handled so just return.
|
|
*/
|
|
if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return;
|
|
}
|
|
|
|
cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]);
|
|
usbsts = readl(&xhci->op_regs->status);
|
|
xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts));
|
|
|
|
/* Bail out and tear down xhci if a stop endpoint command failed */
|
|
if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) {
|
|
struct xhci_virt_ep *ep;
|
|
|
|
xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n");
|
|
|
|
ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3),
|
|
TRB_TO_EP_INDEX(cmd_field3));
|
|
if (ep)
|
|
ep->ep_state &= ~EP_STOP_CMD_PENDING;
|
|
|
|
xhci_halt(xhci);
|
|
xhci_hc_died(xhci);
|
|
goto time_out_completed;
|
|
}
|
|
|
|
/* mark this command to be cancelled */
|
|
xhci->current_cmd->status = COMP_COMMAND_ABORTED;
|
|
|
|
/* Make sure command ring is running before aborting it */
|
|
hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
|
|
if (hw_ring_state == ~(u64)0) {
|
|
xhci_hc_died(xhci);
|
|
goto time_out_completed;
|
|
}
|
|
|
|
if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
|
|
(hw_ring_state & CMD_RING_RUNNING)) {
|
|
/* Prevent new doorbell, and start command abort */
|
|
xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
|
|
xhci_dbg(xhci, "Command timeout\n");
|
|
xhci_abort_cmd_ring(xhci, flags);
|
|
goto time_out_completed;
|
|
}
|
|
|
|
/* host removed. Bail out */
|
|
if (xhci->xhc_state & XHCI_STATE_REMOVING) {
|
|
xhci_dbg(xhci, "host removed, ring start fail?\n");
|
|
xhci_cleanup_command_queue(xhci);
|
|
|
|
goto time_out_completed;
|
|
}
|
|
|
|
/* command timeout on stopped ring, ring can't be aborted */
|
|
xhci_dbg(xhci, "Command timeout on stopped ring\n");
|
|
xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
|
|
|
|
time_out_completed:
|
|
spin_unlock_irqrestore(&xhci->lock, flags);
|
|
return;
|
|
}
|
|
|
|
static void handle_cmd_completion(struct xhci_hcd *xhci,
|
|
struct xhci_event_cmd *event)
|
|
{
|
|
unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
|
|
u64 cmd_dma;
|
|
dma_addr_t cmd_dequeue_dma;
|
|
u32 cmd_comp_code;
|
|
union xhci_trb *cmd_trb;
|
|
struct xhci_command *cmd;
|
|
u32 cmd_type;
|
|
|
|
if (slot_id >= MAX_HC_SLOTS) {
|
|
xhci_warn(xhci, "Invalid slot_id %u\n", slot_id);
|
|
return;
|
|
}
|
|
|
|
cmd_dma = le64_to_cpu(event->cmd_trb);
|
|
cmd_trb = xhci->cmd_ring->dequeue;
|
|
|
|
trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic, cmd_dma);
|
|
|
|
cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
|
|
|
|
/* If CMD ring stopped we own the trbs between enqueue and dequeue */
|
|
if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
|
|
complete_all(&xhci->cmd_ring_stop_completion);
|
|
return;
|
|
}
|
|
|
|
cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
|
|
cmd_trb);
|
|
/*
|
|
* Check whether the completion event is for our internal kept
|
|
* command.
|
|
*/
|
|
if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
|
|
xhci_warn(xhci,
|
|
"ERROR mismatched command completion event\n");
|
|
return;
|
|
}
|
|
|
|
cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
|
|
|
|
cancel_delayed_work(&xhci->cmd_timer);
|
|
|
|
if (cmd->command_trb != xhci->cmd_ring->dequeue) {
|
|
xhci_err(xhci,
|
|
"Command completion event does not match command\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Host aborted the command ring, check if the current command was
|
|
* supposed to be aborted, otherwise continue normally.
|
|
* The command ring is stopped now, but the xHC will issue a Command
|
|
* Ring Stopped event which will cause us to restart it.
|
|
*/
|
|
if (cmd_comp_code == COMP_COMMAND_ABORTED) {
|
|
xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
|
|
if (cmd->status == COMP_COMMAND_ABORTED) {
|
|
if (xhci->current_cmd == cmd)
|
|
xhci->current_cmd = NULL;
|
|
goto event_handled;
|
|
}
|
|
}
|
|
|
|
cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
|
|
switch (cmd_type) {
|
|
case TRB_ENABLE_SLOT:
|
|
xhci_handle_cmd_enable_slot(slot_id, cmd, cmd_comp_code);
|
|
break;
|
|
case TRB_DISABLE_SLOT:
|
|
xhci_handle_cmd_disable_slot(xhci, slot_id);
|
|
break;
|
|
case TRB_CONFIG_EP:
|
|
if (!cmd->completion)
|
|
xhci_handle_cmd_config_ep(xhci, slot_id);
|
|
break;
|
|
case TRB_EVAL_CONTEXT:
|
|
break;
|
|
case TRB_ADDR_DEV:
|
|
xhci_handle_cmd_addr_dev(xhci, slot_id);
|
|
break;
|
|
case TRB_STOP_RING:
|
|
WARN_ON(slot_id != TRB_TO_SLOT_ID(
|
|
le32_to_cpu(cmd_trb->generic.field[3])));
|
|
if (!cmd->completion)
|
|
xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb,
|
|
cmd_comp_code);
|
|
break;
|
|
case TRB_SET_DEQ:
|
|
WARN_ON(slot_id != TRB_TO_SLOT_ID(
|
|
le32_to_cpu(cmd_trb->generic.field[3])));
|
|
xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
|
|
break;
|
|
case TRB_CMD_NOOP:
|
|
/* Is this an aborted command turned to NO-OP? */
|
|
if (cmd->status == COMP_COMMAND_RING_STOPPED)
|
|
cmd_comp_code = COMP_COMMAND_RING_STOPPED;
|
|
break;
|
|
case TRB_RESET_EP:
|
|
WARN_ON(slot_id != TRB_TO_SLOT_ID(
|
|
le32_to_cpu(cmd_trb->generic.field[3])));
|
|
xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
|
|
break;
|
|
case TRB_RESET_DEV:
|
|
/* SLOT_ID field in reset device cmd completion event TRB is 0.
|
|
* Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
|
|
*/
|
|
slot_id = TRB_TO_SLOT_ID(
|
|
le32_to_cpu(cmd_trb->generic.field[3]));
|
|
xhci_handle_cmd_reset_dev(xhci, slot_id);
|
|
break;
|
|
case TRB_NEC_GET_FW:
|
|
xhci_handle_cmd_nec_get_fw(xhci, event);
|
|
break;
|
|
default:
|
|
/* Skip over unknown commands on the event ring */
|
|
xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
|
|
break;
|
|
}
|
|
|
|
/* restart timer if this wasn't the last command */
|
|
if (!list_is_singular(&xhci->cmd_list)) {
|
|
xhci->current_cmd = list_first_entry(&cmd->cmd_list,
|
|
struct xhci_command, cmd_list);
|
|
xhci_mod_cmd_timer(xhci);
|
|
} else if (xhci->current_cmd == cmd) {
|
|
xhci->current_cmd = NULL;
|
|
}
|
|
|
|
event_handled:
|
|
xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
|
|
|
|
inc_deq(xhci, xhci->cmd_ring);
|
|
}
|
|
|
|
static void handle_vendor_event(struct xhci_hcd *xhci,
|
|
union xhci_trb *event, u32 trb_type)
|
|
{
|
|
xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
|
|
if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
|
|
handle_cmd_completion(xhci, &event->event_cmd);
|
|
}
|
|
|
|
static void handle_device_notification(struct xhci_hcd *xhci,
|
|
union xhci_trb *event)
|
|
{
|
|
u32 slot_id;
|
|
struct usb_device *udev;
|
|
|
|
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
|
|
if (!xhci->devs[slot_id]) {
|
|
xhci_warn(xhci, "Device Notification event for "
|
|
"unused slot %u\n", slot_id);
|
|
return;
|
|
}
|
|
|
|
xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
|
|
slot_id);
|
|
udev = xhci->devs[slot_id]->udev;
|
|
if (udev && udev->parent)
|
|
usb_wakeup_notification(udev->parent, udev->portnum);
|
|
}
|
|
|
|
/*
|
|
* Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI
|
|
* Controller.
|
|
* As per ThunderX2errata-129 USB 2 device may come up as USB 1
|
|
* If a connection to a USB 1 device is followed by another connection
|
|
* to a USB 2 device.
|
|
*
|
|
* Reset the PHY after the USB device is disconnected if device speed
|
|
* is less than HCD_USB3.
|
|
* Retry the reset sequence max of 4 times checking the PLL lock status.
|
|
*
|
|
*/
|
|
static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci)
|
|
{
|
|
struct usb_hcd *hcd = xhci_to_hcd(xhci);
|
|
u32 pll_lock_check;
|
|
u32 retry_count = 4;
|
|
|
|
do {
|
|
/* Assert PHY reset */
|
|
writel(0x6F, hcd->regs + 0x1048);
|
|
udelay(10);
|
|
/* De-assert the PHY reset */
|
|
writel(0x7F, hcd->regs + 0x1048);
|
|
udelay(200);
|
|
pll_lock_check = readl(hcd->regs + 0x1070);
|
|
} while (!(pll_lock_check & 0x1) && --retry_count);
|
|
}
|
|
|
|
static void handle_port_status(struct xhci_hcd *xhci, union xhci_trb *event)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
u32 port_id;
|
|
u32 portsc, cmd_reg;
|
|
int max_ports;
|
|
unsigned int hcd_portnum;
|
|
struct xhci_bus_state *bus_state;
|
|
bool bogus_port_status = false;
|
|
struct xhci_port *port;
|
|
|
|
/* Port status change events always have a successful completion code */
|
|
if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
|
|
xhci_warn(xhci,
|
|
"WARN: xHC returned failed port status event\n");
|
|
|
|
port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
|
|
max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
|
|
|
|
if ((port_id <= 0) || (port_id > max_ports)) {
|
|
xhci_warn(xhci, "Port change event with invalid port ID %d\n",
|
|
port_id);
|
|
return;
|
|
}
|
|
|
|
port = &xhci->hw_ports[port_id - 1];
|
|
if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
|
|
xhci_warn(xhci, "Port change event, no port for port ID %u\n",
|
|
port_id);
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
}
|
|
|
|
/* We might get interrupts after shared_hcd is removed */
|
|
if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) {
|
|
xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n");
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
}
|
|
|
|
hcd = port->rhub->hcd;
|
|
bus_state = &port->rhub->bus_state;
|
|
hcd_portnum = port->hcd_portnum;
|
|
portsc = readl(port->addr);
|
|
|
|
xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n",
|
|
hcd->self.busnum, hcd_portnum + 1, port_id, portsc);
|
|
|
|
trace_xhci_handle_port_status(port, portsc);
|
|
|
|
if (hcd->state == HC_STATE_SUSPENDED) {
|
|
xhci_dbg(xhci, "resume root hub\n");
|
|
usb_hcd_resume_root_hub(hcd);
|
|
}
|
|
|
|
if (hcd->speed >= HCD_USB3 &&
|
|
(portsc & PORT_PLS_MASK) == XDEV_INACTIVE) {
|
|
if (port->slot_id && xhci->devs[port->slot_id])
|
|
xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR;
|
|
}
|
|
|
|
if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
|
|
xhci_dbg(xhci, "port resume event for port %d\n", port_id);
|
|
|
|
cmd_reg = readl(&xhci->op_regs->command);
|
|
if (!(cmd_reg & CMD_RUN)) {
|
|
xhci_warn(xhci, "xHC is not running.\n");
|
|
goto cleanup;
|
|
}
|
|
|
|
if (DEV_SUPERSPEED_ANY(portsc)) {
|
|
xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
|
|
/* Set a flag to say the port signaled remote wakeup,
|
|
* so we can tell the difference between the end of
|
|
* device and host initiated resume.
|
|
*/
|
|
bus_state->port_remote_wakeup |= 1 << hcd_portnum;
|
|
xhci_test_and_clear_bit(xhci, port, PORT_PLC);
|
|
usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
|
|
xhci_set_link_state(xhci, port, XDEV_U0);
|
|
/* Need to wait until the next link state change
|
|
* indicates the device is actually in U0.
|
|
*/
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
} else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
|
|
xhci_dbg(xhci, "resume HS port %d\n", port_id);
|
|
port->resume_timestamp = jiffies +
|
|
msecs_to_jiffies(USB_RESUME_TIMEOUT);
|
|
set_bit(hcd_portnum, &bus_state->resuming_ports);
|
|
/* Do the rest in GetPortStatus after resume time delay.
|
|
* Avoid polling roothub status before that so that a
|
|
* usb device auto-resume latency around ~40ms.
|
|
*/
|
|
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
mod_timer(&hcd->rh_timer,
|
|
port->resume_timestamp);
|
|
usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
|
|
bogus_port_status = true;
|
|
}
|
|
}
|
|
|
|
if ((portsc & PORT_PLC) &&
|
|
DEV_SUPERSPEED_ANY(portsc) &&
|
|
((portsc & PORT_PLS_MASK) == XDEV_U0 ||
|
|
(portsc & PORT_PLS_MASK) == XDEV_U1 ||
|
|
(portsc & PORT_PLS_MASK) == XDEV_U2)) {
|
|
xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
|
|
complete(&port->u3exit_done);
|
|
/* We've just brought the device into U0/1/2 through either the
|
|
* Resume state after a device remote wakeup, or through the
|
|
* U3Exit state after a host-initiated resume. If it's a device
|
|
* initiated remote wake, don't pass up the link state change,
|
|
* so the roothub behavior is consistent with external
|
|
* USB 3.0 hub behavior.
|
|
*/
|
|
if (port->slot_id && xhci->devs[port->slot_id])
|
|
xhci_ring_device(xhci, port->slot_id);
|
|
if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
|
|
xhci_test_and_clear_bit(xhci, port, PORT_PLC);
|
|
usb_wakeup_notification(hcd->self.root_hub,
|
|
hcd_portnum + 1);
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
|
|
* RExit to a disconnect state). If so, let the driver know it's
|
|
* out of the RExit state.
|
|
*/
|
|
if (hcd->speed < HCD_USB3 && port->rexit_active) {
|
|
complete(&port->rexit_done);
|
|
port->rexit_active = false;
|
|
bogus_port_status = true;
|
|
goto cleanup;
|
|
}
|
|
|
|
if (hcd->speed < HCD_USB3) {
|
|
xhci_test_and_clear_bit(xhci, port, PORT_PLC);
|
|
if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) &&
|
|
(portsc & PORT_CSC) && !(portsc & PORT_CONNECT))
|
|
xhci_cavium_reset_phy_quirk(xhci);
|
|
}
|
|
|
|
cleanup:
|
|
|
|
/* Don't make the USB core poll the roothub if we got a bad port status
|
|
* change event. Besides, at that point we can't tell which roothub
|
|
* (USB 2.0 or USB 3.0) to kick.
|
|
*/
|
|
if (bogus_port_status)
|
|
return;
|
|
|
|
/*
|
|
* xHCI port-status-change events occur when the "or" of all the
|
|
* status-change bits in the portsc register changes from 0 to 1.
|
|
* New status changes won't cause an event if any other change
|
|
* bits are still set. When an event occurs, switch over to
|
|
* polling to avoid losing status changes.
|
|
*/
|
|
xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
|
|
__func__, hcd->self.busnum);
|
|
set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
|
|
spin_unlock(&xhci->lock);
|
|
/* Pass this up to the core */
|
|
usb_hcd_poll_rh_status(hcd);
|
|
spin_lock(&xhci->lock);
|
|
}
|
|
|
|
/*
|
|
* If the suspect DMA address is a TRB in this TD, this function returns that
|
|
* TRB's segment. Otherwise it returns 0.
|
|
*/
|
|
struct xhci_segment *trb_in_td(struct xhci_hcd *xhci, struct xhci_td *td, dma_addr_t suspect_dma,
|
|
bool debug)
|
|
{
|
|
dma_addr_t start_dma;
|
|
dma_addr_t end_seg_dma;
|
|
dma_addr_t end_trb_dma;
|
|
struct xhci_segment *cur_seg;
|
|
|
|
start_dma = xhci_trb_virt_to_dma(td->start_seg, td->start_trb);
|
|
cur_seg = td->start_seg;
|
|
|
|
do {
|
|
if (start_dma == 0)
|
|
return NULL;
|
|
/* We may get an event for a Link TRB in the middle of a TD */
|
|
end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
|
|
&cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
|
|
/* If the end TRB isn't in this segment, this is set to 0 */
|
|
end_trb_dma = xhci_trb_virt_to_dma(cur_seg, td->end_trb);
|
|
|
|
if (debug)
|
|
xhci_warn(xhci,
|
|
"Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
|
|
(unsigned long long)suspect_dma,
|
|
(unsigned long long)start_dma,
|
|
(unsigned long long)end_trb_dma,
|
|
(unsigned long long)cur_seg->dma,
|
|
(unsigned long long)end_seg_dma);
|
|
|
|
if (end_trb_dma > 0) {
|
|
/* The end TRB is in this segment, so suspect should be here */
|
|
if (start_dma <= end_trb_dma) {
|
|
if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
|
|
return cur_seg;
|
|
} else {
|
|
/* Case for one segment with
|
|
* a TD wrapped around to the top
|
|
*/
|
|
if ((suspect_dma >= start_dma &&
|
|
suspect_dma <= end_seg_dma) ||
|
|
(suspect_dma >= cur_seg->dma &&
|
|
suspect_dma <= end_trb_dma))
|
|
return cur_seg;
|
|
}
|
|
return NULL;
|
|
} else {
|
|
/* Might still be somewhere in this segment */
|
|
if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
|
|
return cur_seg;
|
|
}
|
|
cur_seg = cur_seg->next;
|
|
start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
|
|
} while (cur_seg != td->start_seg);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td,
|
|
struct xhci_virt_ep *ep)
|
|
{
|
|
/*
|
|
* As part of low/full-speed endpoint-halt processing
|
|
* we must clear the TT buffer (USB 2.0 specification 11.17.5).
|
|
*/
|
|
if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) &&
|
|
(td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) &&
|
|
!(ep->ep_state & EP_CLEARING_TT)) {
|
|
ep->ep_state |= EP_CLEARING_TT;
|
|
td->urb->ep->hcpriv = td->urb->dev;
|
|
if (usb_hub_clear_tt_buffer(td->urb))
|
|
ep->ep_state &= ~EP_CLEARING_TT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if xhci internal endpoint state has gone to a "halt" state due to an
|
|
* error or stall, including default control pipe protocol stall.
|
|
* The internal halt needs to be cleared with a reset endpoint command.
|
|
*
|
|
* External device side is also halted in functional stall cases. Class driver
|
|
* will clear the device halt with a CLEAR_FEATURE(ENDPOINT_HALT) request later.
|
|
*/
|
|
static bool xhci_halted_host_endpoint(struct xhci_ep_ctx *ep_ctx, unsigned int comp_code)
|
|
{
|
|
/* Stall halts both internal and device side endpoint */
|
|
if (comp_code == COMP_STALL_ERROR)
|
|
return true;
|
|
|
|
/* TRB completion codes that may require internal halt cleanup */
|
|
if (comp_code == COMP_USB_TRANSACTION_ERROR ||
|
|
comp_code == COMP_BABBLE_DETECTED_ERROR ||
|
|
comp_code == COMP_SPLIT_TRANSACTION_ERROR)
|
|
/*
|
|
* The 0.95 spec says a babbling control endpoint is not halted.
|
|
* The 0.96 spec says it is. Some HW claims to be 0.95
|
|
* compliant, but it halts the control endpoint anyway.
|
|
* Check endpoint context if endpoint is halted.
|
|
*/
|
|
if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
|
|
{
|
|
if (trb_comp_code >= 224 && trb_comp_code <= 255) {
|
|
/* Vendor defined "informational" completion code,
|
|
* treat as not-an-error.
|
|
*/
|
|
xhci_dbg(xhci, "Vendor defined info completion code %u\n",
|
|
trb_comp_code);
|
|
xhci_dbg(xhci, "Treating code as success.\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
|
|
struct xhci_ring *ep_ring, struct xhci_td *td,
|
|
u32 trb_comp_code)
|
|
{
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
|
|
ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index);
|
|
|
|
switch (trb_comp_code) {
|
|
case COMP_STOPPED_LENGTH_INVALID:
|
|
case COMP_STOPPED_SHORT_PACKET:
|
|
case COMP_STOPPED:
|
|
/*
|
|
* The "Stop Endpoint" completion will take care of any
|
|
* stopped TDs. A stopped TD may be restarted, so don't update
|
|
* the ring dequeue pointer or take this TD off any lists yet.
|
|
*/
|
|
return;
|
|
case COMP_USB_TRANSACTION_ERROR:
|
|
case COMP_BABBLE_DETECTED_ERROR:
|
|
case COMP_SPLIT_TRANSACTION_ERROR:
|
|
/*
|
|
* If endpoint context state is not halted we might be
|
|
* racing with a reset endpoint command issued by a unsuccessful
|
|
* stop endpoint completion (context error). In that case the
|
|
* td should be on the cancelled list, and EP_HALTED flag set.
|
|
*
|
|
* Or then it's not halted due to the 0.95 spec stating that a
|
|
* babbling control endpoint should not halt. The 0.96 spec
|
|
* again says it should. Some HW claims to be 0.95 compliant,
|
|
* but it halts the control endpoint anyway.
|
|
*/
|
|
if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) {
|
|
/*
|
|
* If EP_HALTED is set and TD is on the cancelled list
|
|
* the TD and dequeue pointer will be handled by reset
|
|
* ep command completion
|
|
*/
|
|
if ((ep->ep_state & EP_HALTED) &&
|
|
!list_empty(&td->cancelled_td_list)) {
|
|
xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n",
|
|
(unsigned long long)xhci_trb_virt_to_dma(
|
|
td->start_seg, td->start_trb));
|
|
return;
|
|
}
|
|
/* endpoint not halted, don't reset it */
|
|
break;
|
|
}
|
|
/* Almost same procedure as for STALL_ERROR below */
|
|
xhci_clear_hub_tt_buffer(xhci, td, ep);
|
|
xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET);
|
|
return;
|
|
case COMP_STALL_ERROR:
|
|
/*
|
|
* xhci internal endpoint state will go to a "halt" state for
|
|
* any stall, including default control pipe protocol stall.
|
|
* To clear the host side halt we need to issue a reset endpoint
|
|
* command, followed by a set dequeue command to move past the
|
|
* TD.
|
|
* Class drivers clear the device side halt from a functional
|
|
* stall later. Hub TT buffer should only be cleared for FS/LS
|
|
* devices behind HS hubs for functional stalls.
|
|
*/
|
|
if (ep->ep_index != 0)
|
|
xhci_clear_hub_tt_buffer(xhci, td, ep);
|
|
|
|
xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET);
|
|
|
|
return; /* xhci_handle_halted_endpoint marked td cancelled */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
xhci_dequeue_td(xhci, td, ep_ring, td->status);
|
|
}
|
|
|
|
/* sum trb lengths from the first trb up to stop_trb, _excluding_ stop_trb */
|
|
static u32 sum_trb_lengths(struct xhci_td *td, union xhci_trb *stop_trb)
|
|
{
|
|
u32 sum;
|
|
union xhci_trb *trb = td->start_trb;
|
|
struct xhci_segment *seg = td->start_seg;
|
|
|
|
for (sum = 0; trb != stop_trb; next_trb(&seg, &trb)) {
|
|
if (!trb_is_noop(trb) && !trb_is_link(trb))
|
|
sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
/*
|
|
* Process control tds, update urb status and actual_length.
|
|
*/
|
|
static void process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
|
|
struct xhci_ring *ep_ring, struct xhci_td *td,
|
|
union xhci_trb *ep_trb, struct xhci_transfer_event *event)
|
|
{
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
u32 trb_comp_code;
|
|
u32 remaining, requested;
|
|
u32 trb_type;
|
|
|
|
trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
|
|
ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index);
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
requested = td->urb->transfer_buffer_length;
|
|
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
|
|
switch (trb_comp_code) {
|
|
case COMP_SUCCESS:
|
|
if (trb_type != TRB_STATUS) {
|
|
xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
|
|
(trb_type == TRB_DATA) ? "data" : "setup");
|
|
td->status = -ESHUTDOWN;
|
|
break;
|
|
}
|
|
td->status = 0;
|
|
break;
|
|
case COMP_SHORT_PACKET:
|
|
td->status = 0;
|
|
break;
|
|
case COMP_STOPPED_SHORT_PACKET:
|
|
if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
|
|
td->urb->actual_length = remaining;
|
|
else
|
|
xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
|
|
goto finish_td;
|
|
case COMP_STOPPED:
|
|
switch (trb_type) {
|
|
case TRB_SETUP:
|
|
td->urb->actual_length = 0;
|
|
goto finish_td;
|
|
case TRB_DATA:
|
|
case TRB_NORMAL:
|
|
td->urb->actual_length = requested - remaining;
|
|
goto finish_td;
|
|
case TRB_STATUS:
|
|
td->urb->actual_length = requested;
|
|
goto finish_td;
|
|
default:
|
|
xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
|
|
trb_type);
|
|
goto finish_td;
|
|
}
|
|
case COMP_STOPPED_LENGTH_INVALID:
|
|
goto finish_td;
|
|
default:
|
|
if (!xhci_halted_host_endpoint(ep_ctx, trb_comp_code))
|
|
break;
|
|
xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
|
|
trb_comp_code, ep->ep_index);
|
|
fallthrough;
|
|
case COMP_STALL_ERROR:
|
|
/* Did we transfer part of the data (middle) phase? */
|
|
if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
|
|
td->urb->actual_length = requested - remaining;
|
|
else if (!td->urb_length_set)
|
|
td->urb->actual_length = 0;
|
|
goto finish_td;
|
|
}
|
|
|
|
/* stopped at setup stage, no data transferred */
|
|
if (trb_type == TRB_SETUP)
|
|
goto finish_td;
|
|
|
|
/*
|
|
* if on data stage then update the actual_length of the URB and flag it
|
|
* as set, so it won't be overwritten in the event for the last TRB.
|
|
*/
|
|
if (trb_type == TRB_DATA ||
|
|
trb_type == TRB_NORMAL) {
|
|
td->urb_length_set = true;
|
|
td->urb->actual_length = requested - remaining;
|
|
xhci_dbg(xhci, "Waiting for status stage event\n");
|
|
return;
|
|
}
|
|
|
|
/* at status stage */
|
|
if (!td->urb_length_set)
|
|
td->urb->actual_length = requested;
|
|
|
|
finish_td:
|
|
finish_td(xhci, ep, ep_ring, td, trb_comp_code);
|
|
}
|
|
|
|
/*
|
|
* Process isochronous tds, update urb packet status and actual_length.
|
|
*/
|
|
static void process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
|
|
struct xhci_ring *ep_ring, struct xhci_td *td,
|
|
union xhci_trb *ep_trb, struct xhci_transfer_event *event)
|
|
{
|
|
struct urb_priv *urb_priv;
|
|
int idx;
|
|
struct usb_iso_packet_descriptor *frame;
|
|
u32 trb_comp_code;
|
|
bool sum_trbs_for_length = false;
|
|
u32 remaining, requested, ep_trb_len;
|
|
int short_framestatus;
|
|
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
urb_priv = td->urb->hcpriv;
|
|
idx = urb_priv->num_tds_done;
|
|
frame = &td->urb->iso_frame_desc[idx];
|
|
requested = frame->length;
|
|
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
|
|
short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
|
|
-EREMOTEIO : 0;
|
|
|
|
/* handle completion code */
|
|
switch (trb_comp_code) {
|
|
case COMP_SUCCESS:
|
|
/* Don't overwrite status if TD had an error, see xHCI 4.9.1 */
|
|
if (td->error_mid_td)
|
|
break;
|
|
if (remaining) {
|
|
frame->status = short_framestatus;
|
|
sum_trbs_for_length = true;
|
|
break;
|
|
}
|
|
frame->status = 0;
|
|
break;
|
|
case COMP_SHORT_PACKET:
|
|
frame->status = short_framestatus;
|
|
sum_trbs_for_length = true;
|
|
break;
|
|
case COMP_BANDWIDTH_OVERRUN_ERROR:
|
|
frame->status = -ECOMM;
|
|
break;
|
|
case COMP_BABBLE_DETECTED_ERROR:
|
|
sum_trbs_for_length = true;
|
|
fallthrough;
|
|
case COMP_ISOCH_BUFFER_OVERRUN:
|
|
frame->status = -EOVERFLOW;
|
|
if (ep_trb != td->end_trb)
|
|
td->error_mid_td = true;
|
|
break;
|
|
case COMP_INCOMPATIBLE_DEVICE_ERROR:
|
|
case COMP_STALL_ERROR:
|
|
frame->status = -EPROTO;
|
|
break;
|
|
case COMP_USB_TRANSACTION_ERROR:
|
|
frame->status = -EPROTO;
|
|
sum_trbs_for_length = true;
|
|
if (ep_trb != td->end_trb)
|
|
td->error_mid_td = true;
|
|
break;
|
|
case COMP_STOPPED:
|
|
sum_trbs_for_length = true;
|
|
break;
|
|
case COMP_STOPPED_SHORT_PACKET:
|
|
/* field normally containing residue now contains transferred */
|
|
frame->status = short_framestatus;
|
|
requested = remaining;
|
|
break;
|
|
case COMP_STOPPED_LENGTH_INVALID:
|
|
/* exclude stopped trb with invalid length from length sum */
|
|
sum_trbs_for_length = true;
|
|
ep_trb_len = 0;
|
|
remaining = 0;
|
|
break;
|
|
default:
|
|
sum_trbs_for_length = true;
|
|
frame->status = -1;
|
|
break;
|
|
}
|
|
|
|
if (td->urb_length_set)
|
|
goto finish_td;
|
|
|
|
if (sum_trbs_for_length)
|
|
frame->actual_length = sum_trb_lengths(td, ep_trb) +
|
|
ep_trb_len - remaining;
|
|
else
|
|
frame->actual_length = requested;
|
|
|
|
td->urb->actual_length += frame->actual_length;
|
|
|
|
finish_td:
|
|
/* Don't give back TD yet if we encountered an error mid TD */
|
|
if (td->error_mid_td && ep_trb != td->end_trb) {
|
|
xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n");
|
|
td->urb_length_set = true;
|
|
return;
|
|
}
|
|
finish_td(xhci, ep, ep_ring, td, trb_comp_code);
|
|
}
|
|
|
|
static void skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
|
|
struct xhci_virt_ep *ep, int status)
|
|
{
|
|
struct urb_priv *urb_priv;
|
|
struct usb_iso_packet_descriptor *frame;
|
|
int idx;
|
|
|
|
urb_priv = td->urb->hcpriv;
|
|
idx = urb_priv->num_tds_done;
|
|
frame = &td->urb->iso_frame_desc[idx];
|
|
|
|
/* The transfer is partly done. */
|
|
frame->status = -EXDEV;
|
|
|
|
/* calc actual length */
|
|
frame->actual_length = 0;
|
|
|
|
xhci_dequeue_td(xhci, td, ep->ring, status);
|
|
}
|
|
|
|
/*
|
|
* Process bulk and interrupt tds, update urb status and actual_length.
|
|
*/
|
|
static void process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
|
|
struct xhci_ring *ep_ring, struct xhci_td *td,
|
|
union xhci_trb *ep_trb, struct xhci_transfer_event *event)
|
|
{
|
|
struct xhci_slot_ctx *slot_ctx;
|
|
u32 trb_comp_code;
|
|
u32 remaining, requested, ep_trb_len;
|
|
|
|
slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx);
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
|
|
ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
|
|
requested = td->urb->transfer_buffer_length;
|
|
|
|
switch (trb_comp_code) {
|
|
case COMP_SUCCESS:
|
|
ep->err_count = 0;
|
|
/* handle success with untransferred data as short packet */
|
|
if (ep_trb != td->end_trb || remaining) {
|
|
xhci_warn(xhci, "WARN Successful completion on short TX\n");
|
|
xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
|
|
td->urb->ep->desc.bEndpointAddress,
|
|
requested, remaining);
|
|
}
|
|
td->status = 0;
|
|
break;
|
|
case COMP_SHORT_PACKET:
|
|
td->status = 0;
|
|
break;
|
|
case COMP_STOPPED_SHORT_PACKET:
|
|
td->urb->actual_length = remaining;
|
|
goto finish_td;
|
|
case COMP_STOPPED_LENGTH_INVALID:
|
|
/* stopped on ep trb with invalid length, exclude it */
|
|
td->urb->actual_length = sum_trb_lengths(td, ep_trb);
|
|
goto finish_td;
|
|
case COMP_USB_TRANSACTION_ERROR:
|
|
if (xhci->quirks & XHCI_NO_SOFT_RETRY ||
|
|
(ep->err_count++ > MAX_SOFT_RETRY) ||
|
|
le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
|
|
break;
|
|
|
|
td->status = 0;
|
|
|
|
xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET);
|
|
return;
|
|
default:
|
|
/* do nothing */
|
|
break;
|
|
}
|
|
|
|
if (ep_trb == td->end_trb)
|
|
td->urb->actual_length = requested - remaining;
|
|
else
|
|
td->urb->actual_length =
|
|
sum_trb_lengths(td, ep_trb) +
|
|
ep_trb_len - remaining;
|
|
finish_td:
|
|
if (remaining > requested) {
|
|
xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
|
|
remaining);
|
|
td->urb->actual_length = 0;
|
|
}
|
|
|
|
finish_td(xhci, ep, ep_ring, td, trb_comp_code);
|
|
}
|
|
|
|
/* Transfer events which don't point to a transfer TRB, see xhci 4.17.4 */
|
|
static int handle_transferless_tx_event(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
|
|
u32 trb_comp_code)
|
|
{
|
|
switch (trb_comp_code) {
|
|
case COMP_STALL_ERROR:
|
|
case COMP_USB_TRANSACTION_ERROR:
|
|
case COMP_INVALID_STREAM_TYPE_ERROR:
|
|
case COMP_INVALID_STREAM_ID_ERROR:
|
|
xhci_dbg(xhci, "Stream transaction error ep %u no id\n", ep->ep_index);
|
|
if (ep->err_count++ > MAX_SOFT_RETRY)
|
|
xhci_handle_halted_endpoint(xhci, ep, NULL, EP_HARD_RESET);
|
|
else
|
|
xhci_handle_halted_endpoint(xhci, ep, NULL, EP_SOFT_RESET);
|
|
break;
|
|
case COMP_RING_UNDERRUN:
|
|
case COMP_RING_OVERRUN:
|
|
case COMP_STOPPED_LENGTH_INVALID:
|
|
break;
|
|
default:
|
|
xhci_err(xhci, "Transfer event %u for unknown stream ring slot %u ep %u\n",
|
|
trb_comp_code, ep->vdev->slot_id, ep->ep_index);
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If this function returns an error condition, it means it got a Transfer
|
|
* event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
|
|
* At this point, the host controller is probably hosed and should be reset.
|
|
*/
|
|
static int handle_tx_event(struct xhci_hcd *xhci,
|
|
struct xhci_interrupter *ir,
|
|
struct xhci_transfer_event *event)
|
|
{
|
|
struct xhci_virt_ep *ep;
|
|
struct xhci_ring *ep_ring;
|
|
unsigned int slot_id;
|
|
int ep_index;
|
|
struct xhci_td *td = NULL;
|
|
dma_addr_t ep_trb_dma;
|
|
struct xhci_segment *ep_seg;
|
|
union xhci_trb *ep_trb;
|
|
int status = -EINPROGRESS;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
u32 trb_comp_code;
|
|
|
|
slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
|
|
ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
|
|
trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
|
|
ep_trb_dma = le64_to_cpu(event->buffer);
|
|
|
|
ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
|
|
if (!ep) {
|
|
xhci_err(xhci, "ERROR Invalid Transfer event\n");
|
|
goto err_out;
|
|
}
|
|
|
|
ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
|
|
ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
|
|
|
|
if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
|
|
xhci_err(xhci,
|
|
"ERROR Transfer event for disabled endpoint slot %u ep %u\n",
|
|
slot_id, ep_index);
|
|
goto err_out;
|
|
}
|
|
|
|
if (!ep_ring)
|
|
return handle_transferless_tx_event(xhci, ep, trb_comp_code);
|
|
|
|
/* Look for common error cases */
|
|
switch (trb_comp_code) {
|
|
/* Skip codes that require special handling depending on
|
|
* transfer type
|
|
*/
|
|
case COMP_SUCCESS:
|
|
if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
|
|
trb_comp_code = COMP_SHORT_PACKET;
|
|
xhci_dbg(xhci, "Successful completion on short TX for slot %u ep %u with last td short %d\n",
|
|
slot_id, ep_index, ep_ring->last_td_was_short);
|
|
}
|
|
break;
|
|
case COMP_SHORT_PACKET:
|
|
break;
|
|
/* Completion codes for endpoint stopped state */
|
|
case COMP_STOPPED:
|
|
xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
|
|
slot_id, ep_index);
|
|
break;
|
|
case COMP_STOPPED_LENGTH_INVALID:
|
|
xhci_dbg(xhci,
|
|
"Stopped on No-op or Link TRB for slot %u ep %u\n",
|
|
slot_id, ep_index);
|
|
break;
|
|
case COMP_STOPPED_SHORT_PACKET:
|
|
xhci_dbg(xhci,
|
|
"Stopped with short packet transfer detected for slot %u ep %u\n",
|
|
slot_id, ep_index);
|
|
break;
|
|
/* Completion codes for endpoint halted state */
|
|
case COMP_STALL_ERROR:
|
|
xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
|
|
ep_index);
|
|
status = -EPIPE;
|
|
break;
|
|
case COMP_SPLIT_TRANSACTION_ERROR:
|
|
xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n",
|
|
slot_id, ep_index);
|
|
status = -EPROTO;
|
|
break;
|
|
case COMP_USB_TRANSACTION_ERROR:
|
|
xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
|
|
slot_id, ep_index);
|
|
status = -EPROTO;
|
|
break;
|
|
case COMP_BABBLE_DETECTED_ERROR:
|
|
xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
|
|
slot_id, ep_index);
|
|
status = -EOVERFLOW;
|
|
break;
|
|
/* Completion codes for endpoint error state */
|
|
case COMP_TRB_ERROR:
|
|
xhci_warn(xhci,
|
|
"WARN: TRB error for slot %u ep %u on endpoint\n",
|
|
slot_id, ep_index);
|
|
status = -EILSEQ;
|
|
break;
|
|
/* completion codes not indicating endpoint state change */
|
|
case COMP_DATA_BUFFER_ERROR:
|
|
xhci_warn(xhci,
|
|
"WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
|
|
slot_id, ep_index);
|
|
status = -ENOSR;
|
|
break;
|
|
case COMP_BANDWIDTH_OVERRUN_ERROR:
|
|
xhci_warn(xhci,
|
|
"WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
|
|
slot_id, ep_index);
|
|
break;
|
|
case COMP_ISOCH_BUFFER_OVERRUN:
|
|
xhci_warn(xhci,
|
|
"WARN: buffer overrun event for slot %u ep %u on endpoint",
|
|
slot_id, ep_index);
|
|
break;
|
|
case COMP_RING_UNDERRUN:
|
|
/*
|
|
* When the Isoch ring is empty, the xHC will generate
|
|
* a Ring Overrun Event for IN Isoch endpoint or Ring
|
|
* Underrun Event for OUT Isoch endpoint.
|
|
*/
|
|
xhci_dbg(xhci, "Underrun event on slot %u ep %u\n", slot_id, ep_index);
|
|
if (ep->skip)
|
|
break;
|
|
return 0;
|
|
case COMP_RING_OVERRUN:
|
|
xhci_dbg(xhci, "Overrun event on slot %u ep %u\n", slot_id, ep_index);
|
|
if (ep->skip)
|
|
break;
|
|
return 0;
|
|
case COMP_MISSED_SERVICE_ERROR:
|
|
/*
|
|
* When encounter missed service error, one or more isoc tds
|
|
* may be missed by xHC.
|
|
* Set skip flag of the ep_ring; Complete the missed tds as
|
|
* short transfer when process the ep_ring next time.
|
|
*/
|
|
ep->skip = true;
|
|
xhci_dbg(xhci,
|
|
"Miss service interval error for slot %u ep %u, set skip flag\n",
|
|
slot_id, ep_index);
|
|
return 0;
|
|
case COMP_NO_PING_RESPONSE_ERROR:
|
|
ep->skip = true;
|
|
xhci_dbg(xhci,
|
|
"No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
|
|
slot_id, ep_index);
|
|
return 0;
|
|
|
|
case COMP_INCOMPATIBLE_DEVICE_ERROR:
|
|
/* needs disable slot command to recover */
|
|
xhci_warn(xhci,
|
|
"WARN: detect an incompatible device for slot %u ep %u",
|
|
slot_id, ep_index);
|
|
status = -EPROTO;
|
|
break;
|
|
default:
|
|
if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
|
|
status = 0;
|
|
break;
|
|
}
|
|
xhci_warn(xhci,
|
|
"ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
|
|
trb_comp_code, slot_id, ep_index);
|
|
if (ep->skip)
|
|
break;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xhci 4.10.2 states isoc endpoints should continue
|
|
* processing the next TD if there was an error mid TD.
|
|
* So host like NEC don't generate an event for the last
|
|
* isoc TRB even if the IOC flag is set.
|
|
* xhci 4.9.1 states that if there are errors in mult-TRB
|
|
* TDs xHC should generate an error for that TRB, and if xHC
|
|
* proceeds to the next TD it should genete an event for
|
|
* any TRB with IOC flag on the way. Other host follow this.
|
|
*
|
|
* We wait for the final IOC event, but if we get an event
|
|
* anywhere outside this TD, just give it back already.
|
|
*/
|
|
td = list_first_entry_or_null(&ep_ring->td_list, struct xhci_td, td_list);
|
|
|
|
if (td && td->error_mid_td && !trb_in_td(xhci, td, ep_trb_dma, false)) {
|
|
xhci_dbg(xhci, "Missing TD completion event after mid TD error\n");
|
|
xhci_dequeue_td(xhci, td, ep_ring, td->status);
|
|
}
|
|
|
|
if (list_empty(&ep_ring->td_list)) {
|
|
/*
|
|
* Don't print wanings if ring is empty due to a stopped endpoint generating an
|
|
* extra completion event if the device was suspended. Or, a event for the last TRB
|
|
* of a short TD we already got a short event for. The short TD is already removed
|
|
* from the TD list.
|
|
*/
|
|
if (trb_comp_code != COMP_STOPPED &&
|
|
trb_comp_code != COMP_STOPPED_LENGTH_INVALID &&
|
|
!ep_ring->last_td_was_short) {
|
|
xhci_warn(xhci, "Event TRB for slot %u ep %u with no TDs queued\n",
|
|
slot_id, ep_index);
|
|
}
|
|
|
|
ep->skip = false;
|
|
goto check_endpoint_halted;
|
|
}
|
|
|
|
do {
|
|
td = list_first_entry(&ep_ring->td_list, struct xhci_td,
|
|
td_list);
|
|
|
|
/* Is this a TRB in the currently executing TD? */
|
|
ep_seg = trb_in_td(xhci, td, ep_trb_dma, false);
|
|
|
|
if (!ep_seg) {
|
|
|
|
if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
|
|
skip_isoc_td(xhci, td, ep, status);
|
|
if (!list_empty(&ep_ring->td_list))
|
|
continue;
|
|
|
|
xhci_dbg(xhci, "All TDs skipped for slot %u ep %u. Clear skip flag.\n",
|
|
slot_id, ep_index);
|
|
ep->skip = false;
|
|
td = NULL;
|
|
goto check_endpoint_halted;
|
|
}
|
|
|
|
/*
|
|
* Skip the Force Stopped Event. The 'ep_trb' of FSE is not in the current
|
|
* TD pointed by 'ep_ring->dequeue' because that the hardware dequeue
|
|
* pointer still at the previous TRB of the current TD. The previous TRB
|
|
* maybe a Link TD or the last TRB of the previous TD. The command
|
|
* completion handle will take care the rest.
|
|
*/
|
|
if (trb_comp_code == COMP_STOPPED ||
|
|
trb_comp_code == COMP_STOPPED_LENGTH_INVALID) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Some hosts give a spurious success event after a short
|
|
* transfer. Ignore it.
|
|
*/
|
|
if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
|
|
ep_ring->last_td_was_short) {
|
|
ep_ring->last_td_was_short = false;
|
|
return 0;
|
|
}
|
|
|
|
/* HC is busted, give up! */
|
|
xhci_err(xhci,
|
|
"ERROR Transfer event TRB DMA ptr not part of current TD ep_index %d comp_code %u\n",
|
|
ep_index, trb_comp_code);
|
|
trb_in_td(xhci, td, ep_trb_dma, true);
|
|
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
if (ep->skip) {
|
|
xhci_dbg(xhci,
|
|
"Found td. Clear skip flag for slot %u ep %u.\n",
|
|
slot_id, ep_index);
|
|
ep->skip = false;
|
|
}
|
|
|
|
/*
|
|
* If ep->skip is set, it means there are missed tds on the
|
|
* endpoint ring need to take care of.
|
|
* Process them as short transfer until reach the td pointed by
|
|
* the event.
|
|
*/
|
|
} while (ep->skip);
|
|
|
|
if (trb_comp_code == COMP_SHORT_PACKET)
|
|
ep_ring->last_td_was_short = true;
|
|
else
|
|
ep_ring->last_td_was_short = false;
|
|
|
|
ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) / sizeof(*ep_trb)];
|
|
trace_xhci_handle_transfer(ep_ring, (struct xhci_generic_trb *) ep_trb, ep_trb_dma);
|
|
|
|
/*
|
|
* No-op TRB could trigger interrupts in a case where a URB was killed
|
|
* and a STALL_ERROR happens right after the endpoint ring stopped.
|
|
* Reset the halted endpoint. Otherwise, the endpoint remains stalled
|
|
* indefinitely.
|
|
*/
|
|
|
|
if (trb_is_noop(ep_trb))
|
|
goto check_endpoint_halted;
|
|
|
|
td->status = status;
|
|
|
|
/* update the urb's actual_length and give back to the core */
|
|
if (usb_endpoint_xfer_control(&td->urb->ep->desc))
|
|
process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event);
|
|
else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
|
|
process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event);
|
|
else
|
|
process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event);
|
|
return 0;
|
|
|
|
check_endpoint_halted:
|
|
if (xhci_halted_host_endpoint(ep_ctx, trb_comp_code))
|
|
xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET);
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
|
|
(unsigned long long) xhci_trb_virt_to_dma(
|
|
ir->event_ring->deq_seg,
|
|
ir->event_ring->dequeue),
|
|
lower_32_bits(le64_to_cpu(event->buffer)),
|
|
upper_32_bits(le64_to_cpu(event->buffer)),
|
|
le32_to_cpu(event->transfer_len),
|
|
le32_to_cpu(event->flags));
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* This function handles one OS-owned event on the event ring. It may drop
|
|
* xhci->lock between event processing (e.g. to pass up port status changes).
|
|
*/
|
|
static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
|
|
union xhci_trb *event)
|
|
{
|
|
u32 trb_type;
|
|
|
|
trace_xhci_handle_event(ir->event_ring, &event->generic,
|
|
xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
|
|
ir->event_ring->dequeue));
|
|
|
|
/*
|
|
* Barrier between reading the TRB_CYCLE (valid) flag before, and any
|
|
* speculative reads of the event's flags/data below.
|
|
*/
|
|
rmb();
|
|
trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags));
|
|
/* FIXME: Handle more event types. */
|
|
|
|
switch (trb_type) {
|
|
case TRB_COMPLETION:
|
|
handle_cmd_completion(xhci, &event->event_cmd);
|
|
break;
|
|
case TRB_PORT_STATUS:
|
|
handle_port_status(xhci, event);
|
|
break;
|
|
case TRB_TRANSFER:
|
|
handle_tx_event(xhci, ir, &event->trans_event);
|
|
break;
|
|
case TRB_DEV_NOTE:
|
|
handle_device_notification(xhci, event);
|
|
break;
|
|
default:
|
|
if (trb_type >= TRB_VENDOR_DEFINED_LOW)
|
|
handle_vendor_event(xhci, event, trb_type);
|
|
else
|
|
xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type);
|
|
}
|
|
/* Any of the above functions may drop and re-acquire the lock, so check
|
|
* to make sure a watchdog timer didn't mark the host as non-responsive.
|
|
*/
|
|
if (xhci->xhc_state & XHCI_STATE_DYING) {
|
|
xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update Event Ring Dequeue Pointer:
|
|
* - When all events have finished
|
|
* - To avoid "Event Ring Full Error" condition
|
|
*/
|
|
static void xhci_update_erst_dequeue(struct xhci_hcd *xhci,
|
|
struct xhci_interrupter *ir,
|
|
bool clear_ehb)
|
|
{
|
|
u64 temp_64;
|
|
dma_addr_t deq;
|
|
|
|
temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
|
|
deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
|
|
ir->event_ring->dequeue);
|
|
if (deq == 0)
|
|
xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n");
|
|
/*
|
|
* Per 4.9.4, Software writes to the ERDP register shall always advance
|
|
* the Event Ring Dequeue Pointer value.
|
|
*/
|
|
if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb)
|
|
return;
|
|
|
|
/* Update HC event ring dequeue pointer */
|
|
temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK;
|
|
temp_64 |= deq & ERST_PTR_MASK;
|
|
|
|
/* Clear the event handler busy flag (RW1C) */
|
|
if (clear_ehb)
|
|
temp_64 |= ERST_EHB;
|
|
xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue);
|
|
}
|
|
|
|
/* Clear the interrupt pending bit for a specific interrupter. */
|
|
static void xhci_clear_interrupt_pending(struct xhci_interrupter *ir)
|
|
{
|
|
if (!ir->ip_autoclear) {
|
|
u32 irq_pending;
|
|
|
|
irq_pending = readl(&ir->ir_set->irq_pending);
|
|
irq_pending |= IMAN_IP;
|
|
writel(irq_pending, &ir->ir_set->irq_pending);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle all OS-owned events on an interrupter event ring. It may drop
|
|
* and reaquire xhci->lock between event processing.
|
|
*/
|
|
static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
|
|
{
|
|
int event_loop = 0;
|
|
int err;
|
|
u64 temp;
|
|
|
|
xhci_clear_interrupt_pending(ir);
|
|
|
|
/* Event ring hasn't been allocated yet. */
|
|
if (!ir->event_ring || !ir->event_ring->dequeue) {
|
|
xhci_err(xhci, "ERROR interrupter event ring not ready\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (xhci->xhc_state & XHCI_STATE_DYING ||
|
|
xhci->xhc_state & XHCI_STATE_HALTED) {
|
|
xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n");
|
|
|
|
/* Clear the event handler busy flag (RW1C) */
|
|
temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
|
|
xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Process all OS owned event TRBs on this event ring */
|
|
while (unhandled_event_trb(ir->event_ring)) {
|
|
err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue);
|
|
|
|
/*
|
|
* If half a segment of events have been handled in one go then
|
|
* update ERDP, and force isoc trbs to interrupt more often
|
|
*/
|
|
if (event_loop++ > TRBS_PER_SEGMENT / 2) {
|
|
xhci_update_erst_dequeue(xhci, ir, false);
|
|
|
|
if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN)
|
|
ir->isoc_bei_interval = ir->isoc_bei_interval / 2;
|
|
|
|
event_loop = 0;
|
|
}
|
|
|
|
/* Update SW event ring dequeue pointer */
|
|
inc_deq(xhci, ir->event_ring);
|
|
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
xhci_update_erst_dequeue(xhci, ir, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* xHCI spec says we can get an interrupt, and if the HC has an error condition,
|
|
* we might get bad data out of the event ring. Section 4.10.2.7 has a list of
|
|
* indicators of an event TRB error, but we check the status *first* to be safe.
|
|
*/
|
|
irqreturn_t xhci_irq(struct usb_hcd *hcd)
|
|
{
|
|
struct xhci_hcd *xhci = hcd_to_xhci(hcd);
|
|
irqreturn_t ret = IRQ_HANDLED;
|
|
u32 status;
|
|
|
|
spin_lock(&xhci->lock);
|
|
/* Check if the xHC generated the interrupt, or the irq is shared */
|
|
status = readl(&xhci->op_regs->status);
|
|
if (status == ~(u32)0) {
|
|
xhci_hc_died(xhci);
|
|
goto out;
|
|
}
|
|
|
|
if (!(status & STS_EINT)) {
|
|
ret = IRQ_NONE;
|
|
goto out;
|
|
}
|
|
|
|
if (status & STS_HCE) {
|
|
xhci_warn(xhci, "WARNING: Host Controller Error\n");
|
|
goto out;
|
|
}
|
|
|
|
if (status & STS_FATAL) {
|
|
xhci_warn(xhci, "WARNING: Host System Error\n");
|
|
xhci_halt(xhci);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Clear the op reg interrupt status first,
|
|
* so we can receive interrupts from other MSI-X interrupters.
|
|
* Write 1 to clear the interrupt status.
|
|
*/
|
|
status |= STS_EINT;
|
|
writel(status, &xhci->op_regs->status);
|
|
|
|
/* This is the handler of the primary interrupter */
|
|
xhci_handle_events(xhci, xhci->interrupters[0]);
|
|
out:
|
|
spin_unlock(&xhci->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
irqreturn_t xhci_msi_irq(int irq, void *hcd)
|
|
{
|
|
return xhci_irq(hcd);
|
|
}
|
|
EXPORT_SYMBOL_GPL(xhci_msi_irq);
|
|
|
|
/**** Endpoint Ring Operations ****/
|
|
|
|
/*
|
|
* Generic function for queueing a TRB on a ring.
|
|
* The caller must have checked to make sure there's room on the ring.
|
|
*
|
|
* @more_trbs_coming: Will you enqueue more TRBs before calling
|
|
* prepare_transfer()?
|
|
*/
|
|
static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
|
|
bool more_trbs_coming,
|
|
u32 field1, u32 field2, u32 field3, u32 field4)
|
|
{
|
|
struct xhci_generic_trb *trb;
|
|
|
|
trb = &ring->enqueue->generic;
|
|
trb->field[0] = cpu_to_le32(field1);
|
|
trb->field[1] = cpu_to_le32(field2);
|
|
trb->field[2] = cpu_to_le32(field3);
|
|
/* make sure TRB is fully written before giving it to the controller */
|
|
wmb();
|
|
trb->field[3] = cpu_to_le32(field4);
|
|
|
|
trace_xhci_queue_trb(ring, trb,
|
|
xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue));
|
|
|
|
inc_enq(xhci, ring, more_trbs_coming);
|
|
}
|
|
|
|
/*
|
|
* Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
|
|
* expand ring if it start to be full.
|
|
*/
|
|
static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
|
|
u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
|
|
{
|
|
unsigned int link_trb_count = 0;
|
|
unsigned int new_segs = 0;
|
|
|
|
/* Make sure the endpoint has been added to xHC schedule */
|
|
switch (ep_state) {
|
|
case EP_STATE_DISABLED:
|
|
/*
|
|
* USB core changed config/interfaces without notifying us,
|
|
* or hardware is reporting the wrong state.
|
|
*/
|
|
xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
|
|
return -ENOENT;
|
|
case EP_STATE_ERROR:
|
|
xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
|
|
/* FIXME event handling code for error needs to clear it */
|
|
/* XXX not sure if this should be -ENOENT or not */
|
|
return -EINVAL;
|
|
case EP_STATE_HALTED:
|
|
xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
|
|
break;
|
|
case EP_STATE_STOPPED:
|
|
case EP_STATE_RUNNING:
|
|
break;
|
|
default:
|
|
xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
|
|
/*
|
|
* FIXME issue Configure Endpoint command to try to get the HC
|
|
* back into a known state.
|
|
*/
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ep_ring != xhci->cmd_ring) {
|
|
new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs);
|
|
} else if (xhci_num_trbs_free(ep_ring) <= num_trbs) {
|
|
xhci_err(xhci, "Do not support expand command ring\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (new_segs) {
|
|
xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
|
|
"ERROR no room on ep ring, try ring expansion");
|
|
if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) {
|
|
xhci_err(xhci, "Ring expansion failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
while (trb_is_link(ep_ring->enqueue)) {
|
|
/* If we're not dealing with 0.95 hardware or isoc rings
|
|
* on AMD 0.96 host, clear the chain bit.
|
|
*/
|
|
if (!xhci_link_chain_quirk(xhci, ep_ring->type))
|
|
ep_ring->enqueue->link.control &=
|
|
cpu_to_le32(~TRB_CHAIN);
|
|
else
|
|
ep_ring->enqueue->link.control |=
|
|
cpu_to_le32(TRB_CHAIN);
|
|
|
|
wmb();
|
|
ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
|
|
|
|
/* Toggle the cycle bit after the last ring segment. */
|
|
if (link_trb_toggles_cycle(ep_ring->enqueue))
|
|
ep_ring->cycle_state ^= 1;
|
|
|
|
ep_ring->enq_seg = ep_ring->enq_seg->next;
|
|
ep_ring->enqueue = ep_ring->enq_seg->trbs;
|
|
|
|
/* prevent infinite loop if all first trbs are link trbs */
|
|
if (link_trb_count++ > ep_ring->num_segs) {
|
|
xhci_warn(xhci, "Ring is an endless link TRB loop\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) {
|
|
xhci_warn(xhci, "Missing link TRB at end of ring segment\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int prepare_transfer(struct xhci_hcd *xhci,
|
|
struct xhci_virt_device *xdev,
|
|
unsigned int ep_index,
|
|
unsigned int stream_id,
|
|
unsigned int num_trbs,
|
|
struct urb *urb,
|
|
unsigned int td_index,
|
|
gfp_t mem_flags)
|
|
{
|
|
int ret;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
|
|
|
|
ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index,
|
|
stream_id);
|
|
if (!ep_ring) {
|
|
xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
|
|
stream_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
|
|
num_trbs, mem_flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
td = &urb_priv->td[td_index];
|
|
|
|
INIT_LIST_HEAD(&td->td_list);
|
|
INIT_LIST_HEAD(&td->cancelled_td_list);
|
|
|
|
if (td_index == 0) {
|
|
ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
td->urb = urb;
|
|
/* Add this TD to the tail of the endpoint ring's TD list */
|
|
list_add_tail(&td->td_list, &ep_ring->td_list);
|
|
td->start_seg = ep_ring->enq_seg;
|
|
td->start_trb = ep_ring->enqueue;
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned int count_trbs(u64 addr, u64 len)
|
|
{
|
|
unsigned int num_trbs;
|
|
|
|
num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
|
|
TRB_MAX_BUFF_SIZE);
|
|
if (num_trbs == 0)
|
|
num_trbs++;
|
|
|
|
return num_trbs;
|
|
}
|
|
|
|
static inline unsigned int count_trbs_needed(struct urb *urb)
|
|
{
|
|
return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
|
|
}
|
|
|
|
static unsigned int count_sg_trbs_needed(struct urb *urb)
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int i, len, full_len, num_trbs = 0;
|
|
|
|
full_len = urb->transfer_buffer_length;
|
|
|
|
for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
|
|
len = sg_dma_len(sg);
|
|
num_trbs += count_trbs(sg_dma_address(sg), len);
|
|
len = min_t(unsigned int, len, full_len);
|
|
full_len -= len;
|
|
if (full_len == 0)
|
|
break;
|
|
}
|
|
|
|
return num_trbs;
|
|
}
|
|
|
|
static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
|
|
{
|
|
u64 addr, len;
|
|
|
|
addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
|
|
len = urb->iso_frame_desc[i].length;
|
|
|
|
return count_trbs(addr, len);
|
|
}
|
|
|
|
static void check_trb_math(struct urb *urb, int running_total)
|
|
{
|
|
if (unlikely(running_total != urb->transfer_buffer_length))
|
|
dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
|
|
"queued %#x (%d), asked for %#x (%d)\n",
|
|
__func__,
|
|
urb->ep->desc.bEndpointAddress,
|
|
running_total, running_total,
|
|
urb->transfer_buffer_length,
|
|
urb->transfer_buffer_length);
|
|
}
|
|
|
|
static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
|
|
unsigned int ep_index, unsigned int stream_id, int start_cycle,
|
|
struct xhci_generic_trb *start_trb)
|
|
{
|
|
/*
|
|
* Pass all the TRBs to the hardware at once and make sure this write
|
|
* isn't reordered.
|
|
*/
|
|
wmb();
|
|
if (start_cycle)
|
|
start_trb->field[3] |= cpu_to_le32(start_cycle);
|
|
else
|
|
start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
|
|
xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
|
|
}
|
|
|
|
static void check_interval(struct urb *urb, struct xhci_ep_ctx *ep_ctx)
|
|
{
|
|
int xhci_interval;
|
|
int ep_interval;
|
|
|
|
xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
|
|
ep_interval = urb->interval;
|
|
|
|
/* Convert to microframes */
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
ep_interval *= 8;
|
|
|
|
/* FIXME change this to a warning and a suggestion to use the new API
|
|
* to set the polling interval (once the API is added).
|
|
*/
|
|
if (xhci_interval != ep_interval) {
|
|
dev_dbg_ratelimited(&urb->dev->dev,
|
|
"Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
|
|
ep_interval, ep_interval == 1 ? "" : "s",
|
|
xhci_interval, xhci_interval == 1 ? "" : "s");
|
|
urb->interval = xhci_interval;
|
|
/* Convert back to frames for LS/FS devices */
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
urb->interval /= 8;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
|
|
* endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
|
|
* (comprised of sg list entries) can take several service intervals to
|
|
* transmit.
|
|
*/
|
|
int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
|
|
ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
|
|
check_interval(urb, ep_ctx);
|
|
|
|
return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
|
|
}
|
|
|
|
/*
|
|
* For xHCI 1.0 host controllers, TD size is the number of max packet sized
|
|
* packets remaining in the TD (*not* including this TRB).
|
|
*
|
|
* Total TD packet count = total_packet_count =
|
|
* DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
|
|
*
|
|
* Packets transferred up to and including this TRB = packets_transferred =
|
|
* rounddown(total bytes transferred including this TRB / wMaxPacketSize)
|
|
*
|
|
* TD size = total_packet_count - packets_transferred
|
|
*
|
|
* For xHCI 0.96 and older, TD size field should be the remaining bytes
|
|
* including this TRB, right shifted by 10
|
|
*
|
|
* For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
|
|
* This is taken care of in the TRB_TD_SIZE() macro
|
|
*
|
|
* The last TRB in a TD must have the TD size set to zero.
|
|
*/
|
|
static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
|
|
int trb_buff_len, unsigned int td_total_len,
|
|
struct urb *urb, bool more_trbs_coming)
|
|
{
|
|
u32 maxp, total_packet_count;
|
|
|
|
/* MTK xHCI 0.96 contains some features from 1.0 */
|
|
if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
|
|
return ((td_total_len - transferred) >> 10);
|
|
|
|
/* One TRB with a zero-length data packet. */
|
|
if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
|
|
trb_buff_len == td_total_len)
|
|
return 0;
|
|
|
|
/* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
|
|
if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
|
|
trb_buff_len = 0;
|
|
|
|
maxp = usb_endpoint_maxp(&urb->ep->desc);
|
|
total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
|
|
|
|
/* Queueing functions don't count the current TRB into transferred */
|
|
return (total_packet_count - ((transferred + trb_buff_len) / maxp));
|
|
}
|
|
|
|
|
|
static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
|
|
u32 *trb_buff_len, struct xhci_segment *seg)
|
|
{
|
|
struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
|
|
unsigned int unalign;
|
|
unsigned int max_pkt;
|
|
u32 new_buff_len;
|
|
size_t len;
|
|
|
|
max_pkt = usb_endpoint_maxp(&urb->ep->desc);
|
|
unalign = (enqd_len + *trb_buff_len) % max_pkt;
|
|
|
|
/* we got lucky, last normal TRB data on segment is packet aligned */
|
|
if (unalign == 0)
|
|
return 0;
|
|
|
|
xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
|
|
unalign, *trb_buff_len);
|
|
|
|
/* is the last nornal TRB alignable by splitting it */
|
|
if (*trb_buff_len > unalign) {
|
|
*trb_buff_len -= unalign;
|
|
xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We want enqd_len + trb_buff_len to sum up to a number aligned to
|
|
* number which is divisible by the endpoint's wMaxPacketSize. IOW:
|
|
* (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
|
|
*/
|
|
new_buff_len = max_pkt - (enqd_len % max_pkt);
|
|
|
|
if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
|
|
new_buff_len = (urb->transfer_buffer_length - enqd_len);
|
|
|
|
/* create a max max_pkt sized bounce buffer pointed to by last trb */
|
|
if (usb_urb_dir_out(urb)) {
|
|
if (urb->num_sgs) {
|
|
len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
|
|
seg->bounce_buf, new_buff_len, enqd_len);
|
|
if (len != new_buff_len)
|
|
xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n",
|
|
len, new_buff_len);
|
|
} else {
|
|
memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len);
|
|
}
|
|
|
|
seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
|
|
max_pkt, DMA_TO_DEVICE);
|
|
} else {
|
|
seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
|
|
max_pkt, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
if (dma_mapping_error(dev, seg->bounce_dma)) {
|
|
/* try without aligning. Some host controllers survive */
|
|
xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
|
|
return 0;
|
|
}
|
|
*trb_buff_len = new_buff_len;
|
|
seg->bounce_len = new_buff_len;
|
|
seg->bounce_offs = enqd_len;
|
|
|
|
xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is very similar to what ehci-q.c qtd_fill() does */
|
|
int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_ring *ring;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
struct xhci_generic_trb *start_trb;
|
|
struct scatterlist *sg = NULL;
|
|
bool more_trbs_coming = true;
|
|
bool need_zero_pkt = false;
|
|
bool first_trb = true;
|
|
unsigned int num_trbs;
|
|
unsigned int start_cycle, num_sgs = 0;
|
|
unsigned int enqd_len, block_len, trb_buff_len, full_len;
|
|
int sent_len, ret;
|
|
u32 field, length_field, remainder;
|
|
u64 addr, send_addr;
|
|
|
|
ring = xhci_urb_to_transfer_ring(xhci, urb);
|
|
if (!ring)
|
|
return -EINVAL;
|
|
|
|
full_len = urb->transfer_buffer_length;
|
|
/* If we have scatter/gather list, we use it. */
|
|
if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) {
|
|
num_sgs = urb->num_mapped_sgs;
|
|
sg = urb->sg;
|
|
addr = (u64) sg_dma_address(sg);
|
|
block_len = sg_dma_len(sg);
|
|
num_trbs = count_sg_trbs_needed(urb);
|
|
} else {
|
|
num_trbs = count_trbs_needed(urb);
|
|
addr = (u64) urb->transfer_dma;
|
|
block_len = full_len;
|
|
}
|
|
ret = prepare_transfer(xhci, xhci->devs[slot_id],
|
|
ep_index, urb->stream_id,
|
|
num_trbs, urb, 0, mem_flags);
|
|
if (unlikely(ret < 0))
|
|
return ret;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
|
|
/* Deal with URB_ZERO_PACKET - need one more td/trb */
|
|
if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
|
|
need_zero_pkt = true;
|
|
|
|
td = &urb_priv->td[0];
|
|
|
|
/*
|
|
* Don't give the first TRB to the hardware (by toggling the cycle bit)
|
|
* until we've finished creating all the other TRBs. The ring's cycle
|
|
* state may change as we enqueue the other TRBs, so save it too.
|
|
*/
|
|
start_trb = &ring->enqueue->generic;
|
|
start_cycle = ring->cycle_state;
|
|
send_addr = addr;
|
|
|
|
/* Queue the TRBs, even if they are zero-length */
|
|
for (enqd_len = 0; first_trb || enqd_len < full_len;
|
|
enqd_len += trb_buff_len) {
|
|
field = TRB_TYPE(TRB_NORMAL);
|
|
|
|
/* TRB buffer should not cross 64KB boundaries */
|
|
trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
|
|
trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
|
|
|
|
if (enqd_len + trb_buff_len > full_len)
|
|
trb_buff_len = full_len - enqd_len;
|
|
|
|
/* Don't change the cycle bit of the first TRB until later */
|
|
if (first_trb) {
|
|
first_trb = false;
|
|
if (start_cycle == 0)
|
|
field |= TRB_CYCLE;
|
|
} else
|
|
field |= ring->cycle_state;
|
|
|
|
/* Chain all the TRBs together; clear the chain bit in the last
|
|
* TRB to indicate it's the last TRB in the chain.
|
|
*/
|
|
if (enqd_len + trb_buff_len < full_len) {
|
|
field |= TRB_CHAIN;
|
|
if (trb_is_link(ring->enqueue + 1)) {
|
|
if (xhci_align_td(xhci, urb, enqd_len,
|
|
&trb_buff_len,
|
|
ring->enq_seg)) {
|
|
send_addr = ring->enq_seg->bounce_dma;
|
|
/* assuming TD won't span 2 segs */
|
|
td->bounce_seg = ring->enq_seg;
|
|
}
|
|
}
|
|
}
|
|
if (enqd_len + trb_buff_len >= full_len) {
|
|
field &= ~TRB_CHAIN;
|
|
field |= TRB_IOC;
|
|
more_trbs_coming = false;
|
|
td->end_trb = ring->enqueue;
|
|
td->end_seg = ring->enq_seg;
|
|
if (xhci_urb_suitable_for_idt(urb)) {
|
|
memcpy(&send_addr, urb->transfer_buffer,
|
|
trb_buff_len);
|
|
le64_to_cpus(&send_addr);
|
|
field |= TRB_IDT;
|
|
}
|
|
}
|
|
|
|
/* Only set interrupt on short packet for IN endpoints */
|
|
if (usb_urb_dir_in(urb))
|
|
field |= TRB_ISP;
|
|
|
|
/* Set the TRB length, TD size, and interrupter fields. */
|
|
remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
|
|
full_len, urb, more_trbs_coming);
|
|
|
|
length_field = TRB_LEN(trb_buff_len) |
|
|
TRB_TD_SIZE(remainder) |
|
|
TRB_INTR_TARGET(0);
|
|
|
|
queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
|
|
lower_32_bits(send_addr),
|
|
upper_32_bits(send_addr),
|
|
length_field,
|
|
field);
|
|
addr += trb_buff_len;
|
|
sent_len = trb_buff_len;
|
|
|
|
while (sg && sent_len >= block_len) {
|
|
/* New sg entry */
|
|
--num_sgs;
|
|
sent_len -= block_len;
|
|
sg = sg_next(sg);
|
|
if (num_sgs != 0 && sg) {
|
|
block_len = sg_dma_len(sg);
|
|
addr = (u64) sg_dma_address(sg);
|
|
addr += sent_len;
|
|
}
|
|
}
|
|
block_len -= sent_len;
|
|
send_addr = addr;
|
|
}
|
|
|
|
if (need_zero_pkt) {
|
|
ret = prepare_transfer(xhci, xhci->devs[slot_id],
|
|
ep_index, urb->stream_id,
|
|
1, urb, 1, mem_flags);
|
|
urb_priv->td[1].end_trb = ring->enqueue;
|
|
urb_priv->td[1].end_seg = ring->enq_seg;
|
|
field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
|
|
queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
|
|
}
|
|
|
|
check_trb_math(urb, enqd_len);
|
|
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
|
|
start_cycle, start_trb);
|
|
return 0;
|
|
}
|
|
|
|
/* Caller must have locked xhci->lock */
|
|
int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_ring *ep_ring;
|
|
int num_trbs;
|
|
int ret;
|
|
struct usb_ctrlrequest *setup;
|
|
struct xhci_generic_trb *start_trb;
|
|
int start_cycle;
|
|
u32 field;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
|
|
ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
|
|
if (!ep_ring)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Need to copy setup packet into setup TRB, so we can't use the setup
|
|
* DMA address.
|
|
*/
|
|
if (!urb->setup_packet)
|
|
return -EINVAL;
|
|
|
|
if ((xhci->quirks & XHCI_ETRON_HOST) &&
|
|
urb->dev->speed >= USB_SPEED_SUPER) {
|
|
/*
|
|
* If next available TRB is the Link TRB in the ring segment then
|
|
* enqueue a No Op TRB, this can prevent the Setup and Data Stage
|
|
* TRB to be breaked by the Link TRB.
|
|
*/
|
|
if (trb_is_link(ep_ring->enqueue + 1)) {
|
|
field = TRB_TYPE(TRB_TR_NOOP) | ep_ring->cycle_state;
|
|
queue_trb(xhci, ep_ring, false, 0, 0,
|
|
TRB_INTR_TARGET(0), field);
|
|
}
|
|
}
|
|
|
|
/* 1 TRB for setup, 1 for status */
|
|
num_trbs = 2;
|
|
/*
|
|
* Don't need to check if we need additional event data and normal TRBs,
|
|
* since data in control transfers will never get bigger than 16MB
|
|
* XXX: can we get a buffer that crosses 64KB boundaries?
|
|
*/
|
|
if (urb->transfer_buffer_length > 0)
|
|
num_trbs++;
|
|
ret = prepare_transfer(xhci, xhci->devs[slot_id],
|
|
ep_index, urb->stream_id,
|
|
num_trbs, urb, 0, mem_flags);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
td = &urb_priv->td[0];
|
|
|
|
/*
|
|
* Don't give the first TRB to the hardware (by toggling the cycle bit)
|
|
* until we've finished creating all the other TRBs. The ring's cycle
|
|
* state may change as we enqueue the other TRBs, so save it too.
|
|
*/
|
|
start_trb = &ep_ring->enqueue->generic;
|
|
start_cycle = ep_ring->cycle_state;
|
|
|
|
/* Queue setup TRB - see section 6.4.1.2.1 */
|
|
/* FIXME better way to translate setup_packet into two u32 fields? */
|
|
setup = (struct usb_ctrlrequest *) urb->setup_packet;
|
|
field = 0;
|
|
field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
|
|
if (start_cycle == 0)
|
|
field |= 0x1;
|
|
|
|
/* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
|
|
if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
|
|
if (urb->transfer_buffer_length > 0) {
|
|
if (setup->bRequestType & USB_DIR_IN)
|
|
field |= TRB_TX_TYPE(TRB_DATA_IN);
|
|
else
|
|
field |= TRB_TX_TYPE(TRB_DATA_OUT);
|
|
}
|
|
}
|
|
|
|
queue_trb(xhci, ep_ring, true,
|
|
setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
|
|
le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
|
|
TRB_LEN(8) | TRB_INTR_TARGET(0),
|
|
/* Immediate data in pointer */
|
|
field);
|
|
|
|
/* If there's data, queue data TRBs */
|
|
/* Only set interrupt on short packet for IN endpoints */
|
|
if (usb_urb_dir_in(urb))
|
|
field = TRB_ISP | TRB_TYPE(TRB_DATA);
|
|
else
|
|
field = TRB_TYPE(TRB_DATA);
|
|
|
|
if (urb->transfer_buffer_length > 0) {
|
|
u32 length_field, remainder;
|
|
u64 addr;
|
|
|
|
if (xhci_urb_suitable_for_idt(urb)) {
|
|
memcpy(&addr, urb->transfer_buffer,
|
|
urb->transfer_buffer_length);
|
|
le64_to_cpus(&addr);
|
|
field |= TRB_IDT;
|
|
} else {
|
|
addr = (u64) urb->transfer_dma;
|
|
}
|
|
|
|
remainder = xhci_td_remainder(xhci, 0,
|
|
urb->transfer_buffer_length,
|
|
urb->transfer_buffer_length,
|
|
urb, 1);
|
|
length_field = TRB_LEN(urb->transfer_buffer_length) |
|
|
TRB_TD_SIZE(remainder) |
|
|
TRB_INTR_TARGET(0);
|
|
if (setup->bRequestType & USB_DIR_IN)
|
|
field |= TRB_DIR_IN;
|
|
queue_trb(xhci, ep_ring, true,
|
|
lower_32_bits(addr),
|
|
upper_32_bits(addr),
|
|
length_field,
|
|
field | ep_ring->cycle_state);
|
|
}
|
|
|
|
/* Save the DMA address of the last TRB in the TD */
|
|
td->end_trb = ep_ring->enqueue;
|
|
td->end_seg = ep_ring->enq_seg;
|
|
|
|
/* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
|
|
/* If the device sent data, the status stage is an OUT transfer */
|
|
if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
|
|
field = 0;
|
|
else
|
|
field = TRB_DIR_IN;
|
|
queue_trb(xhci, ep_ring, false,
|
|
0,
|
|
0,
|
|
TRB_INTR_TARGET(0),
|
|
/* Event on completion */
|
|
field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
|
|
|
|
giveback_first_trb(xhci, slot_id, ep_index, 0,
|
|
start_cycle, start_trb);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The transfer burst count field of the isochronous TRB defines the number of
|
|
* bursts that are required to move all packets in this TD. Only SuperSpeed
|
|
* devices can burst up to bMaxBurst number of packets per service interval.
|
|
* This field is zero based, meaning a value of zero in the field means one
|
|
* burst. Basically, for everything but SuperSpeed devices, this field will be
|
|
* zero. Only xHCI 1.0 host controllers support this field.
|
|
*/
|
|
static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
|
|
struct urb *urb, unsigned int total_packet_count)
|
|
{
|
|
unsigned int max_burst;
|
|
|
|
if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
|
|
return 0;
|
|
|
|
max_burst = urb->ep->ss_ep_comp.bMaxBurst;
|
|
return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
|
|
}
|
|
|
|
/*
|
|
* Returns the number of packets in the last "burst" of packets. This field is
|
|
* valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
|
|
* the last burst packet count is equal to the total number of packets in the
|
|
* TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
|
|
* must contain (bMaxBurst + 1) number of packets, but the last burst can
|
|
* contain 1 to (bMaxBurst + 1) packets.
|
|
*/
|
|
static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
|
|
struct urb *urb, unsigned int total_packet_count)
|
|
{
|
|
unsigned int max_burst;
|
|
unsigned int residue;
|
|
|
|
if (xhci->hci_version < 0x100)
|
|
return 0;
|
|
|
|
if (urb->dev->speed >= USB_SPEED_SUPER) {
|
|
/* bMaxBurst is zero based: 0 means 1 packet per burst */
|
|
max_burst = urb->ep->ss_ep_comp.bMaxBurst;
|
|
residue = total_packet_count % (max_burst + 1);
|
|
/* If residue is zero, the last burst contains (max_burst + 1)
|
|
* number of packets, but the TLBPC field is zero-based.
|
|
*/
|
|
if (residue == 0)
|
|
return max_burst;
|
|
return residue - 1;
|
|
}
|
|
if (total_packet_count == 0)
|
|
return 0;
|
|
return total_packet_count - 1;
|
|
}
|
|
|
|
/*
|
|
* Calculates Frame ID field of the isochronous TRB identifies the
|
|
* target frame that the Interval associated with this Isochronous
|
|
* Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
|
|
*
|
|
* Returns actual frame id on success, negative value on error.
|
|
*/
|
|
static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
|
|
struct urb *urb, int index)
|
|
{
|
|
int start_frame, ist, ret = 0;
|
|
int start_frame_id, end_frame_id, current_frame_id;
|
|
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
start_frame = urb->start_frame + index * urb->interval;
|
|
else
|
|
start_frame = (urb->start_frame + index * urb->interval) >> 3;
|
|
|
|
/* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
|
|
*
|
|
* If bit [3] of IST is cleared to '0', software can add a TRB no
|
|
* later than IST[2:0] Microframes before that TRB is scheduled to
|
|
* be executed.
|
|
* If bit [3] of IST is set to '1', software can add a TRB no later
|
|
* than IST[2:0] Frames before that TRB is scheduled to be executed.
|
|
*/
|
|
ist = HCS_IST(xhci->hcs_params2) & 0x7;
|
|
if (HCS_IST(xhci->hcs_params2) & (1 << 3))
|
|
ist <<= 3;
|
|
|
|
/* Software shall not schedule an Isoch TD with a Frame ID value that
|
|
* is less than the Start Frame ID or greater than the End Frame ID,
|
|
* where:
|
|
*
|
|
* End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
|
|
* Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
|
|
*
|
|
* Both the End Frame ID and Start Frame ID values are calculated
|
|
* in microframes. When software determines the valid Frame ID value;
|
|
* The End Frame ID value should be rounded down to the nearest Frame
|
|
* boundary, and the Start Frame ID value should be rounded up to the
|
|
* nearest Frame boundary.
|
|
*/
|
|
current_frame_id = readl(&xhci->run_regs->microframe_index);
|
|
start_frame_id = roundup(current_frame_id + ist + 1, 8);
|
|
end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
|
|
|
|
start_frame &= 0x7ff;
|
|
start_frame_id = (start_frame_id >> 3) & 0x7ff;
|
|
end_frame_id = (end_frame_id >> 3) & 0x7ff;
|
|
|
|
if (start_frame_id < end_frame_id) {
|
|
if (start_frame > end_frame_id ||
|
|
start_frame < start_frame_id)
|
|
ret = -EINVAL;
|
|
} else if (start_frame_id > end_frame_id) {
|
|
if ((start_frame > end_frame_id &&
|
|
start_frame < start_frame_id))
|
|
ret = -EINVAL;
|
|
} else {
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
if (index == 0) {
|
|
if (ret == -EINVAL || start_frame == start_frame_id) {
|
|
start_frame = start_frame_id + 1;
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL)
|
|
urb->start_frame = start_frame;
|
|
else
|
|
urb->start_frame = start_frame << 3;
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
if (ret) {
|
|
xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
|
|
start_frame, current_frame_id, index,
|
|
start_frame_id, end_frame_id);
|
|
xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
|
|
return ret;
|
|
}
|
|
|
|
return start_frame;
|
|
}
|
|
|
|
/* Check if we should generate event interrupt for a TD in an isoc URB */
|
|
static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i,
|
|
struct xhci_interrupter *ir)
|
|
{
|
|
if (xhci->hci_version < 0x100)
|
|
return false;
|
|
/* always generate an event interrupt for the last TD */
|
|
if (i == num_tds - 1)
|
|
return false;
|
|
/*
|
|
* If AVOID_BEI is set the host handles full event rings poorly,
|
|
* generate an event at least every 8th TD to clear the event ring
|
|
*/
|
|
if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI)
|
|
return !!(i % ir->isoc_bei_interval);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This is for isoc transfer */
|
|
static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_interrupter *ir;
|
|
struct xhci_ring *ep_ring;
|
|
struct urb_priv *urb_priv;
|
|
struct xhci_td *td;
|
|
int num_tds, trbs_per_td;
|
|
struct xhci_generic_trb *start_trb;
|
|
bool first_trb;
|
|
int start_cycle;
|
|
u32 field, length_field;
|
|
int running_total, trb_buff_len, td_len, td_remain_len, ret;
|
|
u64 start_addr, addr;
|
|
int i, j;
|
|
bool more_trbs_coming;
|
|
struct xhci_virt_ep *xep;
|
|
int frame_id;
|
|
|
|
xep = &xhci->devs[slot_id]->eps[ep_index];
|
|
ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
|
|
ir = xhci->interrupters[0];
|
|
|
|
num_tds = urb->number_of_packets;
|
|
if (num_tds < 1) {
|
|
xhci_dbg(xhci, "Isoc URB with zero packets?\n");
|
|
return -EINVAL;
|
|
}
|
|
start_addr = (u64) urb->transfer_dma;
|
|
start_trb = &ep_ring->enqueue->generic;
|
|
start_cycle = ep_ring->cycle_state;
|
|
|
|
urb_priv = urb->hcpriv;
|
|
/* Queue the TRBs for each TD, even if they are zero-length */
|
|
for (i = 0; i < num_tds; i++) {
|
|
unsigned int total_pkt_count, max_pkt;
|
|
unsigned int burst_count, last_burst_pkt_count;
|
|
u32 sia_frame_id;
|
|
|
|
first_trb = true;
|
|
running_total = 0;
|
|
addr = start_addr + urb->iso_frame_desc[i].offset;
|
|
td_len = urb->iso_frame_desc[i].length;
|
|
td_remain_len = td_len;
|
|
max_pkt = usb_endpoint_maxp(&urb->ep->desc);
|
|
total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
|
|
|
|
/* A zero-length transfer still involves at least one packet. */
|
|
if (total_pkt_count == 0)
|
|
total_pkt_count++;
|
|
burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
|
|
last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
|
|
urb, total_pkt_count);
|
|
|
|
trbs_per_td = count_isoc_trbs_needed(urb, i);
|
|
|
|
ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
|
|
urb->stream_id, trbs_per_td, urb, i, mem_flags);
|
|
if (ret < 0) {
|
|
if (i == 0)
|
|
return ret;
|
|
goto cleanup;
|
|
}
|
|
td = &urb_priv->td[i];
|
|
/* use SIA as default, if frame id is used overwrite it */
|
|
sia_frame_id = TRB_SIA;
|
|
if (!(urb->transfer_flags & URB_ISO_ASAP) &&
|
|
HCC_CFC(xhci->hcc_params)) {
|
|
frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
|
|
if (frame_id >= 0)
|
|
sia_frame_id = TRB_FRAME_ID(frame_id);
|
|
}
|
|
/*
|
|
* Set isoc specific data for the first TRB in a TD.
|
|
* Prevent HW from getting the TRBs by keeping the cycle state
|
|
* inverted in the first TDs isoc TRB.
|
|
*/
|
|
field = TRB_TYPE(TRB_ISOC) |
|
|
TRB_TLBPC(last_burst_pkt_count) |
|
|
sia_frame_id |
|
|
(i ? ep_ring->cycle_state : !start_cycle);
|
|
|
|
/* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
|
|
if (!xep->use_extended_tbc)
|
|
field |= TRB_TBC(burst_count);
|
|
|
|
/* fill the rest of the TRB fields, and remaining normal TRBs */
|
|
for (j = 0; j < trbs_per_td; j++) {
|
|
u32 remainder = 0;
|
|
|
|
/* only first TRB is isoc, overwrite otherwise */
|
|
if (!first_trb)
|
|
field = TRB_TYPE(TRB_NORMAL) |
|
|
ep_ring->cycle_state;
|
|
|
|
/* Only set interrupt on short packet for IN EPs */
|
|
if (usb_urb_dir_in(urb))
|
|
field |= TRB_ISP;
|
|
|
|
/* Set the chain bit for all except the last TRB */
|
|
if (j < trbs_per_td - 1) {
|
|
more_trbs_coming = true;
|
|
field |= TRB_CHAIN;
|
|
} else {
|
|
more_trbs_coming = false;
|
|
td->end_trb = ep_ring->enqueue;
|
|
td->end_seg = ep_ring->enq_seg;
|
|
field |= TRB_IOC;
|
|
if (trb_block_event_intr(xhci, num_tds, i, ir))
|
|
field |= TRB_BEI;
|
|
}
|
|
/* Calculate TRB length */
|
|
trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
|
|
if (trb_buff_len > td_remain_len)
|
|
trb_buff_len = td_remain_len;
|
|
|
|
/* Set the TRB length, TD size, & interrupter fields. */
|
|
remainder = xhci_td_remainder(xhci, running_total,
|
|
trb_buff_len, td_len,
|
|
urb, more_trbs_coming);
|
|
|
|
length_field = TRB_LEN(trb_buff_len) |
|
|
TRB_INTR_TARGET(0);
|
|
|
|
/* xhci 1.1 with ETE uses TD Size field for TBC */
|
|
if (first_trb && xep->use_extended_tbc)
|
|
length_field |= TRB_TD_SIZE_TBC(burst_count);
|
|
else
|
|
length_field |= TRB_TD_SIZE(remainder);
|
|
first_trb = false;
|
|
|
|
queue_trb(xhci, ep_ring, more_trbs_coming,
|
|
lower_32_bits(addr),
|
|
upper_32_bits(addr),
|
|
length_field,
|
|
field);
|
|
running_total += trb_buff_len;
|
|
|
|
addr += trb_buff_len;
|
|
td_remain_len -= trb_buff_len;
|
|
}
|
|
|
|
/* Check TD length */
|
|
if (running_total != td_len) {
|
|
xhci_err(xhci, "ISOC TD length unmatch\n");
|
|
ret = -EINVAL;
|
|
goto cleanup;
|
|
}
|
|
}
|
|
|
|
/* store the next frame id */
|
|
if (HCC_CFC(xhci->hcc_params))
|
|
xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
|
|
|
|
if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (xhci->quirks & XHCI_AMD_PLL_FIX)
|
|
usb_amd_quirk_pll_disable();
|
|
}
|
|
xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
|
|
|
|
giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
|
|
start_cycle, start_trb);
|
|
return 0;
|
|
cleanup:
|
|
/* Clean up a partially enqueued isoc transfer. */
|
|
|
|
for (i--; i >= 0; i--)
|
|
list_del_init(&urb_priv->td[i].td_list);
|
|
|
|
/* Use the first TD as a temporary variable to turn the TDs we've queued
|
|
* into No-ops with a software-owned cycle bit. That way the hardware
|
|
* won't accidentally start executing bogus TDs when we partially
|
|
* overwrite them. td->start_trb and td->start_seg are already set.
|
|
*/
|
|
urb_priv->td[0].end_trb = ep_ring->enqueue;
|
|
/* Every TRB except the first & last will have its cycle bit flipped. */
|
|
td_to_noop(&urb_priv->td[0], true);
|
|
|
|
/* Reset the ring enqueue back to the first TRB and its cycle bit. */
|
|
ep_ring->enqueue = urb_priv->td[0].start_trb;
|
|
ep_ring->enq_seg = urb_priv->td[0].start_seg;
|
|
ep_ring->cycle_state = start_cycle;
|
|
usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check transfer ring to guarantee there is enough room for the urb.
|
|
* Update ISO URB start_frame and interval.
|
|
* Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
|
|
* update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
|
|
* Contiguous Frame ID is not supported by HC.
|
|
*/
|
|
int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
|
|
struct urb *urb, int slot_id, unsigned int ep_index)
|
|
{
|
|
struct xhci_virt_device *xdev;
|
|
struct xhci_ring *ep_ring;
|
|
struct xhci_ep_ctx *ep_ctx;
|
|
int start_frame;
|
|
int num_tds, num_trbs, i;
|
|
int ret;
|
|
struct xhci_virt_ep *xep;
|
|
int ist;
|
|
|
|
xdev = xhci->devs[slot_id];
|
|
xep = &xhci->devs[slot_id]->eps[ep_index];
|
|
ep_ring = xdev->eps[ep_index].ring;
|
|
ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
|
|
|
|
num_trbs = 0;
|
|
num_tds = urb->number_of_packets;
|
|
for (i = 0; i < num_tds; i++)
|
|
num_trbs += count_isoc_trbs_needed(urb, i);
|
|
|
|
/* Check the ring to guarantee there is enough room for the whole urb.
|
|
* Do not insert any td of the urb to the ring if the check failed.
|
|
*/
|
|
ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
|
|
num_trbs, mem_flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Check interval value. This should be done before we start to
|
|
* calculate the start frame value.
|
|
*/
|
|
check_interval(urb, ep_ctx);
|
|
|
|
/* Calculate the start frame and put it in urb->start_frame. */
|
|
if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
|
|
if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
|
|
urb->start_frame = xep->next_frame_id;
|
|
goto skip_start_over;
|
|
}
|
|
}
|
|
|
|
start_frame = readl(&xhci->run_regs->microframe_index);
|
|
start_frame &= 0x3fff;
|
|
/*
|
|
* Round up to the next frame and consider the time before trb really
|
|
* gets scheduled by hardare.
|
|
*/
|
|
ist = HCS_IST(xhci->hcs_params2) & 0x7;
|
|
if (HCS_IST(xhci->hcs_params2) & (1 << 3))
|
|
ist <<= 3;
|
|
start_frame += ist + XHCI_CFC_DELAY;
|
|
start_frame = roundup(start_frame, 8);
|
|
|
|
/*
|
|
* Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
|
|
* is greate than 8 microframes.
|
|
*/
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->speed == USB_SPEED_FULL) {
|
|
start_frame = roundup(start_frame, urb->interval << 3);
|
|
urb->start_frame = start_frame >> 3;
|
|
} else {
|
|
start_frame = roundup(start_frame, urb->interval);
|
|
urb->start_frame = start_frame;
|
|
}
|
|
|
|
skip_start_over:
|
|
|
|
return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
|
|
}
|
|
|
|
/**** Command Ring Operations ****/
|
|
|
|
/* Generic function for queueing a command TRB on the command ring.
|
|
* Check to make sure there's room on the command ring for one command TRB.
|
|
* Also check that there's room reserved for commands that must not fail.
|
|
* If this is a command that must not fail, meaning command_must_succeed = TRUE,
|
|
* then only check for the number of reserved spots.
|
|
* Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
|
|
* because the command event handler may want to resubmit a failed command.
|
|
*/
|
|
static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 field1, u32 field2,
|
|
u32 field3, u32 field4, bool command_must_succeed)
|
|
{
|
|
int reserved_trbs = xhci->cmd_ring_reserved_trbs;
|
|
int ret;
|
|
|
|
if ((xhci->xhc_state & XHCI_STATE_DYING) ||
|
|
(xhci->xhc_state & XHCI_STATE_HALTED)) {
|
|
xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
if (!command_must_succeed)
|
|
reserved_trbs++;
|
|
|
|
ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
|
|
reserved_trbs, GFP_ATOMIC);
|
|
if (ret < 0) {
|
|
xhci_err(xhci, "ERR: No room for command on command ring\n");
|
|
if (command_must_succeed)
|
|
xhci_err(xhci, "ERR: Reserved TRB counting for "
|
|
"unfailable commands failed.\n");
|
|
return ret;
|
|
}
|
|
|
|
cmd->command_trb = xhci->cmd_ring->enqueue;
|
|
|
|
/* if there are no other commands queued we start the timeout timer */
|
|
if (list_empty(&xhci->cmd_list)) {
|
|
xhci->current_cmd = cmd;
|
|
xhci_mod_cmd_timer(xhci);
|
|
}
|
|
|
|
list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
|
|
|
|
queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
|
|
field4 | xhci->cmd_ring->cycle_state);
|
|
return 0;
|
|
}
|
|
|
|
/* Queue a slot enable or disable request on the command ring */
|
|
int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 trb_type, u32 slot_id)
|
|
{
|
|
return queue_command(xhci, cmd, 0, 0, 0,
|
|
TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
|
|
}
|
|
|
|
/* Queue an address device command TRB */
|
|
int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
|
|
{
|
|
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
|
|
upper_32_bits(in_ctx_ptr), 0,
|
|
TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
|
|
| (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
|
|
}
|
|
|
|
int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 field1, u32 field2, u32 field3, u32 field4)
|
|
{
|
|
return queue_command(xhci, cmd, field1, field2, field3, field4, false);
|
|
}
|
|
|
|
/* Queue a reset device command TRB */
|
|
int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
u32 slot_id)
|
|
{
|
|
return queue_command(xhci, cmd, 0, 0, 0,
|
|
TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
|
|
false);
|
|
}
|
|
|
|
/* Queue a configure endpoint command TRB */
|
|
int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
|
|
struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
|
|
u32 slot_id, bool command_must_succeed)
|
|
{
|
|
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
|
|
upper_32_bits(in_ctx_ptr), 0,
|
|
TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
|
|
command_must_succeed);
|
|
}
|
|
|
|
/* Queue an evaluate context command TRB */
|
|
int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
|
|
{
|
|
return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
|
|
upper_32_bits(in_ctx_ptr), 0,
|
|
TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
|
|
command_must_succeed);
|
|
}
|
|
|
|
/*
|
|
* Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
|
|
* activity on an endpoint that is about to be suspended.
|
|
*/
|
|
int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
int slot_id, unsigned int ep_index, int suspend)
|
|
{
|
|
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
|
|
u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index);
|
|
u32 type = TRB_TYPE(TRB_STOP_RING);
|
|
u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
|
|
|
|
return queue_command(xhci, cmd, 0, 0, 0,
|
|
trb_slot_id | trb_ep_index | type | trb_suspend, false);
|
|
}
|
|
|
|
int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
|
|
int slot_id, unsigned int ep_index,
|
|
enum xhci_ep_reset_type reset_type)
|
|
{
|
|
u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
|
|
u32 trb_ep_index = EP_INDEX_FOR_TRB(ep_index);
|
|
u32 type = TRB_TYPE(TRB_RESET_EP);
|
|
|
|
if (reset_type == EP_SOFT_RESET)
|
|
type |= TRB_TSP;
|
|
|
|
return queue_command(xhci, cmd, 0, 0, 0,
|
|
trb_slot_id | trb_ep_index | type, false);
|
|
}
|