1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 07:53:11 -05:00
linux/kernel/sched/autogroup.c
Joel Granados f532376e88 scheduler: Remove the now superfluous sentinel elements from ctl_table array
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)

rm sentinel element from ctl_table arrays

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
2024-04-24 09:43:54 +02:00

290 lines
6.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Auto-group scheduling implementation:
*/
unsigned int __read_mostly sysctl_sched_autogroup_enabled = 1;
static struct autogroup autogroup_default;
static atomic_t autogroup_seq_nr;
#ifdef CONFIG_SYSCTL
static struct ctl_table sched_autogroup_sysctls[] = {
{
.procname = "sched_autogroup_enabled",
.data = &sysctl_sched_autogroup_enabled,
.maxlen = sizeof(unsigned int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
};
static void __init sched_autogroup_sysctl_init(void)
{
register_sysctl_init("kernel", sched_autogroup_sysctls);
}
#else
#define sched_autogroup_sysctl_init() do { } while (0)
#endif
void __init autogroup_init(struct task_struct *init_task)
{
autogroup_default.tg = &root_task_group;
kref_init(&autogroup_default.kref);
init_rwsem(&autogroup_default.lock);
init_task->signal->autogroup = &autogroup_default;
sched_autogroup_sysctl_init();
}
void autogroup_free(struct task_group *tg)
{
kfree(tg->autogroup);
}
static inline void autogroup_destroy(struct kref *kref)
{
struct autogroup *ag = container_of(kref, struct autogroup, kref);
#ifdef CONFIG_RT_GROUP_SCHED
/* We've redirected RT tasks to the root task group... */
ag->tg->rt_se = NULL;
ag->tg->rt_rq = NULL;
#endif
sched_release_group(ag->tg);
sched_destroy_group(ag->tg);
}
static inline void autogroup_kref_put(struct autogroup *ag)
{
kref_put(&ag->kref, autogroup_destroy);
}
static inline struct autogroup *autogroup_kref_get(struct autogroup *ag)
{
kref_get(&ag->kref);
return ag;
}
static inline struct autogroup *autogroup_task_get(struct task_struct *p)
{
struct autogroup *ag;
unsigned long flags;
if (!lock_task_sighand(p, &flags))
return autogroup_kref_get(&autogroup_default);
ag = autogroup_kref_get(p->signal->autogroup);
unlock_task_sighand(p, &flags);
return ag;
}
static inline struct autogroup *autogroup_create(void)
{
struct autogroup *ag = kzalloc(sizeof(*ag), GFP_KERNEL);
struct task_group *tg;
if (!ag)
goto out_fail;
tg = sched_create_group(&root_task_group);
if (IS_ERR(tg))
goto out_free;
kref_init(&ag->kref);
init_rwsem(&ag->lock);
ag->id = atomic_inc_return(&autogroup_seq_nr);
ag->tg = tg;
#ifdef CONFIG_RT_GROUP_SCHED
/*
* Autogroup RT tasks are redirected to the root task group
* so we don't have to move tasks around upon policy change,
* or flail around trying to allocate bandwidth on the fly.
* A bandwidth exception in __sched_setscheduler() allows
* the policy change to proceed.
*/
free_rt_sched_group(tg);
tg->rt_se = root_task_group.rt_se;
tg->rt_rq = root_task_group.rt_rq;
#endif
tg->autogroup = ag;
sched_online_group(tg, &root_task_group);
return ag;
out_free:
kfree(ag);
out_fail:
if (printk_ratelimit()) {
printk(KERN_WARNING "autogroup_create: %s failure.\n",
ag ? "sched_create_group()" : "kzalloc()");
}
return autogroup_kref_get(&autogroup_default);
}
bool task_wants_autogroup(struct task_struct *p, struct task_group *tg)
{
if (tg != &root_task_group)
return false;
/*
* If we race with autogroup_move_group() the caller can use the old
* value of signal->autogroup but in this case sched_move_task() will
* be called again before autogroup_kref_put().
*
* However, there is no way sched_autogroup_exit_task() could tell us
* to avoid autogroup->tg, so we abuse PF_EXITING flag for this case.
*/
if (p->flags & PF_EXITING)
return false;
return true;
}
void sched_autogroup_exit_task(struct task_struct *p)
{
/*
* We are going to call exit_notify() and autogroup_move_group() can't
* see this thread after that: we can no longer use signal->autogroup.
* See the PF_EXITING check in task_wants_autogroup().
*/
sched_move_task(p);
}
static void
autogroup_move_group(struct task_struct *p, struct autogroup *ag)
{
struct autogroup *prev;
struct task_struct *t;
unsigned long flags;
if (WARN_ON_ONCE(!lock_task_sighand(p, &flags)))
return;
prev = p->signal->autogroup;
if (prev == ag) {
unlock_task_sighand(p, &flags);
return;
}
p->signal->autogroup = autogroup_kref_get(ag);
/*
* We can't avoid sched_move_task() after we changed signal->autogroup,
* this process can already run with task_group() == prev->tg or we can
* race with cgroup code which can read autogroup = prev under rq->lock.
* In the latter case for_each_thread() can not miss a migrating thread,
* cpu_cgroup_attach() must not be possible after cgroup_exit() and it
* can't be removed from thread list, we hold ->siglock.
*
* If an exiting thread was already removed from thread list we rely on
* sched_autogroup_exit_task().
*/
for_each_thread(p, t)
sched_move_task(t);
unlock_task_sighand(p, &flags);
autogroup_kref_put(prev);
}
/* Allocates GFP_KERNEL, cannot be called under any spinlock: */
void sched_autogroup_create_attach(struct task_struct *p)
{
struct autogroup *ag = autogroup_create();
autogroup_move_group(p, ag);
/* Drop extra reference added by autogroup_create(): */
autogroup_kref_put(ag);
}
EXPORT_SYMBOL(sched_autogroup_create_attach);
/* Cannot be called under siglock. Currently has no users: */
void sched_autogroup_detach(struct task_struct *p)
{
autogroup_move_group(p, &autogroup_default);
}
EXPORT_SYMBOL(sched_autogroup_detach);
void sched_autogroup_fork(struct signal_struct *sig)
{
sig->autogroup = autogroup_task_get(current);
}
void sched_autogroup_exit(struct signal_struct *sig)
{
autogroup_kref_put(sig->autogroup);
}
static int __init setup_autogroup(char *str)
{
sysctl_sched_autogroup_enabled = 0;
return 1;
}
__setup("noautogroup", setup_autogroup);
#ifdef CONFIG_PROC_FS
int proc_sched_autogroup_set_nice(struct task_struct *p, int nice)
{
static unsigned long next = INITIAL_JIFFIES;
struct autogroup *ag;
unsigned long shares;
int err, idx;
if (nice < MIN_NICE || nice > MAX_NICE)
return -EINVAL;
err = security_task_setnice(current, nice);
if (err)
return err;
if (nice < 0 && !can_nice(current, nice))
return -EPERM;
/* This is a heavy operation, taking global locks.. */
if (!capable(CAP_SYS_ADMIN) && time_before(jiffies, next))
return -EAGAIN;
next = HZ / 10 + jiffies;
ag = autogroup_task_get(p);
idx = array_index_nospec(nice + 20, 40);
shares = scale_load(sched_prio_to_weight[idx]);
down_write(&ag->lock);
err = sched_group_set_shares(ag->tg, shares);
if (!err)
ag->nice = nice;
up_write(&ag->lock);
autogroup_kref_put(ag);
return err;
}
void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m)
{
struct autogroup *ag = autogroup_task_get(p);
if (!task_group_is_autogroup(ag->tg))
goto out;
down_read(&ag->lock);
seq_printf(m, "/autogroup-%ld nice %d\n", ag->id, ag->nice);
up_read(&ag->lock);
out:
autogroup_kref_put(ag);
}
#endif /* CONFIG_PROC_FS */
int autogroup_path(struct task_group *tg, char *buf, int buflen)
{
if (!task_group_is_autogroup(tg))
return 0;
return snprintf(buf, buflen, "%s-%ld", "/autogroup", tg->autogroup->id);
}