1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 16:06:04 -05:00
linux/mm/madvise.c
Lorenzo Stoakes 662df3e5c3 mm: madvise: implement lightweight guard page mechanism
Implement a new lightweight guard page feature, that is regions of
userland virtual memory that, when accessed, cause a fatal signal to
arise.

Currently users must establish PROT_NONE ranges to achieve this.

However this is very costly memory-wise - we need a VMA for each and every
one of these regions AND they become unmergeable with surrounding VMAs.

In addition repeated mmap() calls require repeated kernel context switches
and contention of the mmap lock to install these ranges, potentially also
having to unmap memory if installed over existing ranges.

The lightweight guard approach eliminates the VMA cost altogether - rather
than establishing a PROT_NONE VMA, it operates at the level of page table
entries - establishing PTE markers such that accesses to them cause a
fault followed by a SIGSGEV signal being raised.

This is achieved through the PTE marker mechanism, which we have already
extended to provide PTE_MARKER_GUARD, which we installed via the generic
page walking logic which we have extended for this purpose.

These guard ranges are established with MADV_GUARD_INSTALL.  If the range
in which they are installed contain any existing mappings, they will be
zapped, i.e.  free the range and unmap memory (thus mimicking the
behaviour of MADV_DONTNEED in this respect).

Any existing guard entries will be left untouched.  There is therefore no
nesting of guarded pages.

Guarded ranges are NOT cleared by MADV_DONTNEED nor MADV_FREE (in both
instances the memory range may be reused at which point a user would
expect guards to still be in place), but they are cleared via
MADV_GUARD_REMOVE, process teardown or unmapping of memory ranges.

The guard property can be removed from ranges via MADV_GUARD_REMOVE.  The
ranges over which this is applied, should they contain non-guard entries,
will be untouched, with only guard entries being cleared.

We permit this operation on anonymous memory only, and only VMAs which are
non-special, non-huge and not mlock()'d (if we permitted this we'd have to
drop locked pages which would be rather counterintuitive).

Racing page faults can cause repeated attempts to install guard pages that
are interrupted, result in a zap, and this process can end up being
repeated.  If this happens more than would be expected in normal
operation, we rescind locks and retry the whole thing, which avoids lock
contention in this scenario.

Link: https://lkml.kernel.org/r/6aafb5821bf209f277dfae0787abb2ef87a37542.1730123433.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Jann Horn <jannh@google.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Arnd Bergmann <arnd@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Helge Deller <deller@gmx.de>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jeff Xu <jeffxu@chromium.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Richard Henderson <richard.henderson@linaro.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-11 00:26:45 -08:00

1804 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/madvise.c
*
* Copyright (C) 1999 Linus Torvalds
* Copyright (C) 2002 Christoph Hellwig
*/
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/syscalls.h>
#include <linux/mempolicy.h>
#include <linux/page-isolation.h>
#include <linux/page_idle.h>
#include <linux/userfaultfd_k.h>
#include <linux/hugetlb.h>
#include <linux/falloc.h>
#include <linux/fadvise.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/mm_inline.h>
#include <linux/string.h>
#include <linux/uio.h>
#include <linux/ksm.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/pagewalk.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/shmem_fs.h>
#include <linux/mmu_notifier.h>
#include <asm/tlb.h>
#include "internal.h"
#include "swap.h"
/*
* Maximum number of attempts we make to install guard pages before we give up
* and return -ERESTARTNOINTR to have userspace try again.
*/
#define MAX_MADVISE_GUARD_RETRIES 3
struct madvise_walk_private {
struct mmu_gather *tlb;
bool pageout;
};
/*
* Any behaviour which results in changes to the vma->vm_flags needs to
* take mmap_lock for writing. Others, which simply traverse vmas, need
* to only take it for reading.
*/
static int madvise_need_mmap_write(int behavior)
{
switch (behavior) {
case MADV_REMOVE:
case MADV_WILLNEED:
case MADV_DONTNEED:
case MADV_DONTNEED_LOCKED:
case MADV_COLD:
case MADV_PAGEOUT:
case MADV_FREE:
case MADV_POPULATE_READ:
case MADV_POPULATE_WRITE:
case MADV_COLLAPSE:
case MADV_GUARD_INSTALL:
case MADV_GUARD_REMOVE:
return 0;
default:
/* be safe, default to 1. list exceptions explicitly */
return 1;
}
}
#ifdef CONFIG_ANON_VMA_NAME
struct anon_vma_name *anon_vma_name_alloc(const char *name)
{
struct anon_vma_name *anon_name;
size_t count;
/* Add 1 for NUL terminator at the end of the anon_name->name */
count = strlen(name) + 1;
anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
if (anon_name) {
kref_init(&anon_name->kref);
memcpy(anon_name->name, name, count);
}
return anon_name;
}
void anon_vma_name_free(struct kref *kref)
{
struct anon_vma_name *anon_name =
container_of(kref, struct anon_vma_name, kref);
kfree(anon_name);
}
struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
{
mmap_assert_locked(vma->vm_mm);
return vma->anon_name;
}
/* mmap_lock should be write-locked */
static int replace_anon_vma_name(struct vm_area_struct *vma,
struct anon_vma_name *anon_name)
{
struct anon_vma_name *orig_name = anon_vma_name(vma);
if (!anon_name) {
vma->anon_name = NULL;
anon_vma_name_put(orig_name);
return 0;
}
if (anon_vma_name_eq(orig_name, anon_name))
return 0;
vma->anon_name = anon_vma_name_reuse(anon_name);
anon_vma_name_put(orig_name);
return 0;
}
#else /* CONFIG_ANON_VMA_NAME */
static int replace_anon_vma_name(struct vm_area_struct *vma,
struct anon_vma_name *anon_name)
{
if (anon_name)
return -EINVAL;
return 0;
}
#endif /* CONFIG_ANON_VMA_NAME */
/*
* Update the vm_flags on region of a vma, splitting it or merging it as
* necessary. Must be called with mmap_lock held for writing;
* Caller should ensure anon_name stability by raising its refcount even when
* anon_name belongs to a valid vma because this function might free that vma.
*/
static int madvise_update_vma(struct vm_area_struct *vma,
struct vm_area_struct **prev, unsigned long start,
unsigned long end, unsigned long new_flags,
struct anon_vma_name *anon_name)
{
struct mm_struct *mm = vma->vm_mm;
int error;
VMA_ITERATOR(vmi, mm, start);
if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
*prev = vma;
return 0;
}
vma = vma_modify_flags_name(&vmi, *prev, vma, start, end, new_flags,
anon_name);
if (IS_ERR(vma))
return PTR_ERR(vma);
*prev = vma;
/* vm_flags is protected by the mmap_lock held in write mode. */
vma_start_write(vma);
vm_flags_reset(vma, new_flags);
if (!vma->vm_file || vma_is_anon_shmem(vma)) {
error = replace_anon_vma_name(vma, anon_name);
if (error)
return error;
}
return 0;
}
#ifdef CONFIG_SWAP
static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
unsigned long end, struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->private;
struct swap_iocb *splug = NULL;
pte_t *ptep = NULL;
spinlock_t *ptl;
unsigned long addr;
for (addr = start; addr < end; addr += PAGE_SIZE) {
pte_t pte;
swp_entry_t entry;
struct folio *folio;
if (!ptep++) {
ptep = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
if (!ptep)
break;
}
pte = ptep_get(ptep);
if (!is_swap_pte(pte))
continue;
entry = pte_to_swp_entry(pte);
if (unlikely(non_swap_entry(entry)))
continue;
pte_unmap_unlock(ptep, ptl);
ptep = NULL;
folio = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
vma, addr, &splug);
if (folio)
folio_put(folio);
}
if (ptep)
pte_unmap_unlock(ptep, ptl);
swap_read_unplug(splug);
cond_resched();
return 0;
}
static const struct mm_walk_ops swapin_walk_ops = {
.pmd_entry = swapin_walk_pmd_entry,
.walk_lock = PGWALK_RDLOCK,
};
static void shmem_swapin_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct address_space *mapping)
{
XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
pgoff_t end_index = linear_page_index(vma, end) - 1;
struct folio *folio;
struct swap_iocb *splug = NULL;
rcu_read_lock();
xas_for_each(&xas, folio, end_index) {
unsigned long addr;
swp_entry_t entry;
if (!xa_is_value(folio))
continue;
entry = radix_to_swp_entry(folio);
/* There might be swapin error entries in shmem mapping. */
if (non_swap_entry(entry))
continue;
addr = vma->vm_start +
((xas.xa_index - vma->vm_pgoff) << PAGE_SHIFT);
xas_pause(&xas);
rcu_read_unlock();
folio = read_swap_cache_async(entry, mapping_gfp_mask(mapping),
vma, addr, &splug);
if (folio)
folio_put(folio);
rcu_read_lock();
}
rcu_read_unlock();
swap_read_unplug(splug);
}
#endif /* CONFIG_SWAP */
/*
* Schedule all required I/O operations. Do not wait for completion.
*/
static long madvise_willneed(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
struct file *file = vma->vm_file;
loff_t offset;
*prev = vma;
#ifdef CONFIG_SWAP
if (!file) {
walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
lru_add_drain(); /* Push any new pages onto the LRU now */
return 0;
}
if (shmem_mapping(file->f_mapping)) {
shmem_swapin_range(vma, start, end, file->f_mapping);
lru_add_drain(); /* Push any new pages onto the LRU now */
return 0;
}
#else
if (!file)
return -EBADF;
#endif
if (IS_DAX(file_inode(file))) {
/* no bad return value, but ignore advice */
return 0;
}
/*
* Filesystem's fadvise may need to take various locks. We need to
* explicitly grab a reference because the vma (and hence the
* vma's reference to the file) can go away as soon as we drop
* mmap_lock.
*/
*prev = NULL; /* tell sys_madvise we drop mmap_lock */
get_file(file);
offset = (loff_t)(start - vma->vm_start)
+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
mmap_read_unlock(mm);
vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
fput(file);
mmap_read_lock(mm);
return 0;
}
static inline bool can_do_file_pageout(struct vm_area_struct *vma)
{
if (!vma->vm_file)
return false;
/*
* paging out pagecache only for non-anonymous mappings that correspond
* to the files the calling process could (if tried) open for writing;
* otherwise we'd be including shared non-exclusive mappings, which
* opens a side channel.
*/
return inode_owner_or_capable(&nop_mnt_idmap,
file_inode(vma->vm_file)) ||
file_permission(vma->vm_file, MAY_WRITE) == 0;
}
static inline int madvise_folio_pte_batch(unsigned long addr, unsigned long end,
struct folio *folio, pte_t *ptep,
pte_t pte, bool *any_young,
bool *any_dirty)
{
const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
int max_nr = (end - addr) / PAGE_SIZE;
return folio_pte_batch(folio, addr, ptep, pte, max_nr, fpb_flags, NULL,
any_young, any_dirty);
}
static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
struct madvise_walk_private *private = walk->private;
struct mmu_gather *tlb = private->tlb;
bool pageout = private->pageout;
struct mm_struct *mm = tlb->mm;
struct vm_area_struct *vma = walk->vma;
pte_t *start_pte, *pte, ptent;
spinlock_t *ptl;
struct folio *folio = NULL;
LIST_HEAD(folio_list);
bool pageout_anon_only_filter;
unsigned int batch_count = 0;
int nr;
if (fatal_signal_pending(current))
return -EINTR;
pageout_anon_only_filter = pageout && !vma_is_anonymous(vma) &&
!can_do_file_pageout(vma);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (pmd_trans_huge(*pmd)) {
pmd_t orig_pmd;
unsigned long next = pmd_addr_end(addr, end);
tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
ptl = pmd_trans_huge_lock(pmd, vma);
if (!ptl)
return 0;
orig_pmd = *pmd;
if (is_huge_zero_pmd(orig_pmd))
goto huge_unlock;
if (unlikely(!pmd_present(orig_pmd))) {
VM_BUG_ON(thp_migration_supported() &&
!is_pmd_migration_entry(orig_pmd));
goto huge_unlock;
}
folio = pmd_folio(orig_pmd);
/* Do not interfere with other mappings of this folio */
if (folio_likely_mapped_shared(folio))
goto huge_unlock;
if (pageout_anon_only_filter && !folio_test_anon(folio))
goto huge_unlock;
if (next - addr != HPAGE_PMD_SIZE) {
int err;
folio_get(folio);
spin_unlock(ptl);
folio_lock(folio);
err = split_folio(folio);
folio_unlock(folio);
folio_put(folio);
if (!err)
goto regular_folio;
return 0;
}
if (!pageout && pmd_young(orig_pmd)) {
pmdp_invalidate(vma, addr, pmd);
orig_pmd = pmd_mkold(orig_pmd);
set_pmd_at(mm, addr, pmd, orig_pmd);
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
}
folio_clear_referenced(folio);
folio_test_clear_young(folio);
if (folio_test_active(folio))
folio_set_workingset(folio);
if (pageout) {
if (folio_isolate_lru(folio)) {
if (folio_test_unevictable(folio))
folio_putback_lru(folio);
else
list_add(&folio->lru, &folio_list);
}
} else
folio_deactivate(folio);
huge_unlock:
spin_unlock(ptl);
if (pageout)
reclaim_pages(&folio_list);
return 0;
}
regular_folio:
#endif
tlb_change_page_size(tlb, PAGE_SIZE);
restart:
start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
if (!start_pte)
return 0;
flush_tlb_batched_pending(mm);
arch_enter_lazy_mmu_mode();
for (; addr < end; pte += nr, addr += nr * PAGE_SIZE) {
nr = 1;
ptent = ptep_get(pte);
if (++batch_count == SWAP_CLUSTER_MAX) {
batch_count = 0;
if (need_resched()) {
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(start_pte, ptl);
cond_resched();
goto restart;
}
}
if (pte_none(ptent))
continue;
if (!pte_present(ptent))
continue;
folio = vm_normal_folio(vma, addr, ptent);
if (!folio || folio_is_zone_device(folio))
continue;
/*
* If we encounter a large folio, only split it if it is not
* fully mapped within the range we are operating on. Otherwise
* leave it as is so that it can be swapped out whole. If we
* fail to split a folio, leave it in place and advance to the
* next pte in the range.
*/
if (folio_test_large(folio)) {
bool any_young;
nr = madvise_folio_pte_batch(addr, end, folio, pte,
ptent, &any_young, NULL);
if (any_young)
ptent = pte_mkyoung(ptent);
if (nr < folio_nr_pages(folio)) {
int err;
if (folio_likely_mapped_shared(folio))
continue;
if (pageout_anon_only_filter && !folio_test_anon(folio))
continue;
if (!folio_trylock(folio))
continue;
folio_get(folio);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(start_pte, ptl);
start_pte = NULL;
err = split_folio(folio);
folio_unlock(folio);
folio_put(folio);
start_pte = pte =
pte_offset_map_lock(mm, pmd, addr, &ptl);
if (!start_pte)
break;
arch_enter_lazy_mmu_mode();
if (!err)
nr = 0;
continue;
}
}
/*
* Do not interfere with other mappings of this folio and
* non-LRU folio. If we have a large folio at this point, we
* know it is fully mapped so if its mapcount is the same as its
* number of pages, it must be exclusive.
*/
if (!folio_test_lru(folio) ||
folio_mapcount(folio) != folio_nr_pages(folio))
continue;
if (pageout_anon_only_filter && !folio_test_anon(folio))
continue;
if (!pageout && pte_young(ptent)) {
clear_young_dirty_ptes(vma, addr, pte, nr,
CYDP_CLEAR_YOUNG);
tlb_remove_tlb_entries(tlb, pte, nr, addr);
}
/*
* We are deactivating a folio for accelerating reclaiming.
* VM couldn't reclaim the folio unless we clear PG_young.
* As a side effect, it makes confuse idle-page tracking
* because they will miss recent referenced history.
*/
folio_clear_referenced(folio);
folio_test_clear_young(folio);
if (folio_test_active(folio))
folio_set_workingset(folio);
if (pageout) {
if (folio_isolate_lru(folio)) {
if (folio_test_unevictable(folio))
folio_putback_lru(folio);
else
list_add(&folio->lru, &folio_list);
}
} else
folio_deactivate(folio);
}
if (start_pte) {
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(start_pte, ptl);
}
if (pageout)
reclaim_pages(&folio_list);
cond_resched();
return 0;
}
static const struct mm_walk_ops cold_walk_ops = {
.pmd_entry = madvise_cold_or_pageout_pte_range,
.walk_lock = PGWALK_RDLOCK,
};
static void madvise_cold_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
struct madvise_walk_private walk_private = {
.pageout = false,
.tlb = tlb,
};
tlb_start_vma(tlb, vma);
walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
tlb_end_vma(tlb, vma);
}
static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
{
return !(vma->vm_flags & (VM_LOCKED|VM_PFNMAP|VM_HUGETLB));
}
static long madvise_cold(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start_addr, unsigned long end_addr)
{
struct mm_struct *mm = vma->vm_mm;
struct mmu_gather tlb;
*prev = vma;
if (!can_madv_lru_vma(vma))
return -EINVAL;
lru_add_drain();
tlb_gather_mmu(&tlb, mm);
madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
tlb_finish_mmu(&tlb);
return 0;
}
static void madvise_pageout_page_range(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
struct madvise_walk_private walk_private = {
.pageout = true,
.tlb = tlb,
};
tlb_start_vma(tlb, vma);
walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
tlb_end_vma(tlb, vma);
}
static long madvise_pageout(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start_addr, unsigned long end_addr)
{
struct mm_struct *mm = vma->vm_mm;
struct mmu_gather tlb;
*prev = vma;
if (!can_madv_lru_vma(vma))
return -EINVAL;
/*
* If the VMA belongs to a private file mapping, there can be private
* dirty pages which can be paged out if even this process is neither
* owner nor write capable of the file. We allow private file mappings
* further to pageout dirty anon pages.
*/
if (!vma_is_anonymous(vma) && (!can_do_file_pageout(vma) &&
(vma->vm_flags & VM_MAYSHARE)))
return 0;
lru_add_drain();
tlb_gather_mmu(&tlb, mm);
madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
tlb_finish_mmu(&tlb);
return 0;
}
static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
const cydp_t cydp_flags = CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY;
struct mmu_gather *tlb = walk->private;
struct mm_struct *mm = tlb->mm;
struct vm_area_struct *vma = walk->vma;
spinlock_t *ptl;
pte_t *start_pte, *pte, ptent;
struct folio *folio;
int nr_swap = 0;
unsigned long next;
int nr, max_nr;
next = pmd_addr_end(addr, end);
if (pmd_trans_huge(*pmd))
if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
return 0;
tlb_change_page_size(tlb, PAGE_SIZE);
start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
if (!start_pte)
return 0;
flush_tlb_batched_pending(mm);
arch_enter_lazy_mmu_mode();
for (; addr != end; pte += nr, addr += PAGE_SIZE * nr) {
nr = 1;
ptent = ptep_get(pte);
if (pte_none(ptent))
continue;
/*
* If the pte has swp_entry, just clear page table to
* prevent swap-in which is more expensive rather than
* (page allocation + zeroing).
*/
if (!pte_present(ptent)) {
swp_entry_t entry;
entry = pte_to_swp_entry(ptent);
if (!non_swap_entry(entry)) {
max_nr = (end - addr) / PAGE_SIZE;
nr = swap_pte_batch(pte, max_nr, ptent);
nr_swap -= nr;
free_swap_and_cache_nr(entry, nr);
clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
} else if (is_hwpoison_entry(entry) ||
is_poisoned_swp_entry(entry)) {
pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
}
continue;
}
folio = vm_normal_folio(vma, addr, ptent);
if (!folio || folio_is_zone_device(folio))
continue;
/*
* If we encounter a large folio, only split it if it is not
* fully mapped within the range we are operating on. Otherwise
* leave it as is so that it can be marked as lazyfree. If we
* fail to split a folio, leave it in place and advance to the
* next pte in the range.
*/
if (folio_test_large(folio)) {
bool any_young, any_dirty;
nr = madvise_folio_pte_batch(addr, end, folio, pte,
ptent, &any_young, &any_dirty);
if (nr < folio_nr_pages(folio)) {
int err;
if (folio_likely_mapped_shared(folio))
continue;
if (!folio_trylock(folio))
continue;
folio_get(folio);
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(start_pte, ptl);
start_pte = NULL;
err = split_folio(folio);
folio_unlock(folio);
folio_put(folio);
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
start_pte = pte;
if (!start_pte)
break;
arch_enter_lazy_mmu_mode();
if (!err)
nr = 0;
continue;
}
if (any_young)
ptent = pte_mkyoung(ptent);
if (any_dirty)
ptent = pte_mkdirty(ptent);
}
if (folio_test_swapcache(folio) || folio_test_dirty(folio)) {
if (!folio_trylock(folio))
continue;
/*
* If we have a large folio at this point, we know it is
* fully mapped so if its mapcount is the same as its
* number of pages, it must be exclusive.
*/
if (folio_mapcount(folio) != folio_nr_pages(folio)) {
folio_unlock(folio);
continue;
}
if (folio_test_swapcache(folio) &&
!folio_free_swap(folio)) {
folio_unlock(folio);
continue;
}
folio_clear_dirty(folio);
folio_unlock(folio);
}
if (pte_young(ptent) || pte_dirty(ptent)) {
clear_young_dirty_ptes(vma, addr, pte, nr, cydp_flags);
tlb_remove_tlb_entries(tlb, pte, nr, addr);
}
folio_mark_lazyfree(folio);
}
if (nr_swap)
add_mm_counter(mm, MM_SWAPENTS, nr_swap);
if (start_pte) {
arch_leave_lazy_mmu_mode();
pte_unmap_unlock(start_pte, ptl);
}
cond_resched();
return 0;
}
static const struct mm_walk_ops madvise_free_walk_ops = {
.pmd_entry = madvise_free_pte_range,
.walk_lock = PGWALK_RDLOCK,
};
static int madvise_free_single_vma(struct vm_area_struct *vma,
unsigned long start_addr, unsigned long end_addr)
{
struct mm_struct *mm = vma->vm_mm;
struct mmu_notifier_range range;
struct mmu_gather tlb;
/* MADV_FREE works for only anon vma at the moment */
if (!vma_is_anonymous(vma))
return -EINVAL;
range.start = max(vma->vm_start, start_addr);
if (range.start >= vma->vm_end)
return -EINVAL;
range.end = min(vma->vm_end, end_addr);
if (range.end <= vma->vm_start)
return -EINVAL;
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
range.start, range.end);
lru_add_drain();
tlb_gather_mmu(&tlb, mm);
update_hiwater_rss(mm);
mmu_notifier_invalidate_range_start(&range);
tlb_start_vma(&tlb, vma);
walk_page_range(vma->vm_mm, range.start, range.end,
&madvise_free_walk_ops, &tlb);
tlb_end_vma(&tlb, vma);
mmu_notifier_invalidate_range_end(&range);
tlb_finish_mmu(&tlb);
return 0;
}
/*
* Application no longer needs these pages. If the pages are dirty,
* it's OK to just throw them away. The app will be more careful about
* data it wants to keep. Be sure to free swap resources too. The
* zap_page_range_single call sets things up for shrink_active_list to actually
* free these pages later if no one else has touched them in the meantime,
* although we could add these pages to a global reuse list for
* shrink_active_list to pick up before reclaiming other pages.
*
* NB: This interface discards data rather than pushes it out to swap,
* as some implementations do. This has performance implications for
* applications like large transactional databases which want to discard
* pages in anonymous maps after committing to backing store the data
* that was kept in them. There is no reason to write this data out to
* the swap area if the application is discarding it.
*
* An interface that causes the system to free clean pages and flush
* dirty pages is already available as msync(MS_INVALIDATE).
*/
static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
zap_page_range_single(vma, start, end - start, NULL);
return 0;
}
static bool madvise_dontneed_free_valid_vma(struct vm_area_struct *vma,
unsigned long start,
unsigned long *end,
int behavior)
{
if (!is_vm_hugetlb_page(vma)) {
unsigned int forbidden = VM_PFNMAP;
if (behavior != MADV_DONTNEED_LOCKED)
forbidden |= VM_LOCKED;
return !(vma->vm_flags & forbidden);
}
if (behavior != MADV_DONTNEED && behavior != MADV_DONTNEED_LOCKED)
return false;
if (start & ~huge_page_mask(hstate_vma(vma)))
return false;
/*
* Madvise callers expect the length to be rounded up to PAGE_SIZE
* boundaries, and may be unaware that this VMA uses huge pages.
* Avoid unexpected data loss by rounding down the number of
* huge pages freed.
*/
*end = ALIGN_DOWN(*end, huge_page_size(hstate_vma(vma)));
return true;
}
static long madvise_dontneed_free(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end,
int behavior)
{
struct mm_struct *mm = vma->vm_mm;
*prev = vma;
if (!madvise_dontneed_free_valid_vma(vma, start, &end, behavior))
return -EINVAL;
if (start == end)
return 0;
if (!userfaultfd_remove(vma, start, end)) {
*prev = NULL; /* mmap_lock has been dropped, prev is stale */
mmap_read_lock(mm);
vma = vma_lookup(mm, start);
if (!vma)
return -ENOMEM;
/*
* Potential end adjustment for hugetlb vma is OK as
* the check below keeps end within vma.
*/
if (!madvise_dontneed_free_valid_vma(vma, start, &end,
behavior))
return -EINVAL;
if (end > vma->vm_end) {
/*
* Don't fail if end > vma->vm_end. If the old
* vma was split while the mmap_lock was
* released the effect of the concurrent
* operation may not cause madvise() to
* have an undefined result. There may be an
* adjacent next vma that we'll walk
* next. userfaultfd_remove() will generate an
* UFFD_EVENT_REMOVE repetition on the
* end-vma->vm_end range, but the manager can
* handle a repetition fine.
*/
end = vma->vm_end;
}
VM_WARN_ON(start >= end);
}
if (behavior == MADV_DONTNEED || behavior == MADV_DONTNEED_LOCKED)
return madvise_dontneed_single_vma(vma, start, end);
else if (behavior == MADV_FREE)
return madvise_free_single_vma(vma, start, end);
else
return -EINVAL;
}
static long madvise_populate(struct mm_struct *mm, unsigned long start,
unsigned long end, int behavior)
{
const bool write = behavior == MADV_POPULATE_WRITE;
int locked = 1;
long pages;
while (start < end) {
/* Populate (prefault) page tables readable/writable. */
pages = faultin_page_range(mm, start, end, write, &locked);
if (!locked) {
mmap_read_lock(mm);
locked = 1;
}
if (pages < 0) {
switch (pages) {
case -EINTR:
return -EINTR;
case -EINVAL: /* Incompatible mappings / permissions. */
return -EINVAL;
case -EHWPOISON:
return -EHWPOISON;
case -EFAULT: /* VM_FAULT_SIGBUS or VM_FAULT_SIGSEGV */
return -EFAULT;
default:
pr_warn_once("%s: unhandled return value: %ld\n",
__func__, pages);
fallthrough;
case -ENOMEM: /* No VMA or out of memory. */
return -ENOMEM;
}
}
start += pages * PAGE_SIZE;
}
return 0;
}
/*
* Application wants to free up the pages and associated backing store.
* This is effectively punching a hole into the middle of a file.
*/
static long madvise_remove(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
loff_t offset;
int error;
struct file *f;
struct mm_struct *mm = vma->vm_mm;
*prev = NULL; /* tell sys_madvise we drop mmap_lock */
if (vma->vm_flags & VM_LOCKED)
return -EINVAL;
f = vma->vm_file;
if (!f || !f->f_mapping || !f->f_mapping->host) {
return -EINVAL;
}
if (!vma_is_shared_maywrite(vma))
return -EACCES;
offset = (loff_t)(start - vma->vm_start)
+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
/*
* Filesystem's fallocate may need to take i_rwsem. We need to
* explicitly grab a reference because the vma (and hence the
* vma's reference to the file) can go away as soon as we drop
* mmap_lock.
*/
get_file(f);
if (userfaultfd_remove(vma, start, end)) {
/* mmap_lock was not released by userfaultfd_remove() */
mmap_read_unlock(mm);
}
error = vfs_fallocate(f,
FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
offset, end - start);
fput(f);
mmap_read_lock(mm);
return error;
}
static bool is_valid_guard_vma(struct vm_area_struct *vma, bool allow_locked)
{
vm_flags_t disallowed = VM_SPECIAL | VM_HUGETLB;
/*
* A user could lock after setting a guard range but that's fine, as
* they'd not be able to fault in. The issue arises when we try to zap
* existing locked VMAs. We don't want to do that.
*/
if (!allow_locked)
disallowed |= VM_LOCKED;
if (!vma_is_anonymous(vma))
return false;
if ((vma->vm_flags & (VM_MAYWRITE | disallowed)) != VM_MAYWRITE)
return false;
return true;
}
static bool is_guard_pte_marker(pte_t ptent)
{
return is_pte_marker(ptent) &&
is_guard_swp_entry(pte_to_swp_entry(ptent));
}
static int guard_install_pud_entry(pud_t *pud, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pud_t pudval = pudp_get(pud);
/* If huge return >0 so we abort the operation + zap. */
return pud_trans_huge(pudval) || pud_devmap(pudval);
}
static int guard_install_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pmd_t pmdval = pmdp_get(pmd);
/* If huge return >0 so we abort the operation + zap. */
return pmd_trans_huge(pmdval) || pmd_devmap(pmdval);
}
static int guard_install_pte_entry(pte_t *pte, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pte_t pteval = ptep_get(pte);
unsigned long *nr_pages = (unsigned long *)walk->private;
/* If there is already a guard page marker, we have nothing to do. */
if (is_guard_pte_marker(pteval)) {
(*nr_pages)++;
return 0;
}
/* If populated return >0 so we abort the operation + zap. */
return 1;
}
static int guard_install_set_pte(unsigned long addr, unsigned long next,
pte_t *ptep, struct mm_walk *walk)
{
unsigned long *nr_pages = (unsigned long *)walk->private;
/* Simply install a PTE marker, this causes segfault on access. */
*ptep = make_pte_marker(PTE_MARKER_GUARD);
(*nr_pages)++;
return 0;
}
static const struct mm_walk_ops guard_install_walk_ops = {
.pud_entry = guard_install_pud_entry,
.pmd_entry = guard_install_pmd_entry,
.pte_entry = guard_install_pte_entry,
.install_pte = guard_install_set_pte,
.walk_lock = PGWALK_RDLOCK,
};
static long madvise_guard_install(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
long err;
int i;
*prev = vma;
if (!is_valid_guard_vma(vma, /* allow_locked = */false))
return -EINVAL;
/*
* If we install guard markers, then the range is no longer
* empty from a page table perspective and therefore it's
* appropriate to have an anon_vma.
*
* This ensures that on fork, we copy page tables correctly.
*/
err = anon_vma_prepare(vma);
if (err)
return err;
/*
* Optimistically try to install the guard marker pages first. If any
* non-guard pages are encountered, give up and zap the range before
* trying again.
*
* We try a few times before giving up and releasing back to userland to
* loop around, releasing locks in the process to avoid contention. This
* would only happen if there was a great many racing page faults.
*
* In most cases we should simply install the guard markers immediately
* with no zap or looping.
*/
for (i = 0; i < MAX_MADVISE_GUARD_RETRIES; i++) {
unsigned long nr_pages = 0;
/* Returns < 0 on error, == 0 if success, > 0 if zap needed. */
err = walk_page_range_mm(vma->vm_mm, start, end,
&guard_install_walk_ops, &nr_pages);
if (err < 0)
return err;
if (err == 0) {
unsigned long nr_expected_pages = PHYS_PFN(end - start);
VM_WARN_ON(nr_pages != nr_expected_pages);
return 0;
}
/*
* OK some of the range have non-guard pages mapped, zap
* them. This leaves existing guard pages in place.
*/
zap_page_range_single(vma, start, end - start, NULL);
}
/*
* We were unable to install the guard pages due to being raced by page
* faults. This should not happen ordinarily. We return to userspace and
* immediately retry, relieving lock contention.
*/
return restart_syscall();
}
static int guard_remove_pud_entry(pud_t *pud, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pud_t pudval = pudp_get(pud);
/* If huge, cannot have guard pages present, so no-op - skip. */
if (pud_trans_huge(pudval) || pud_devmap(pudval))
walk->action = ACTION_CONTINUE;
return 0;
}
static int guard_remove_pmd_entry(pmd_t *pmd, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pmd_t pmdval = pmdp_get(pmd);
/* If huge, cannot have guard pages present, so no-op - skip. */
if (pmd_trans_huge(pmdval) || pmd_devmap(pmdval))
walk->action = ACTION_CONTINUE;
return 0;
}
static int guard_remove_pte_entry(pte_t *pte, unsigned long addr,
unsigned long next, struct mm_walk *walk)
{
pte_t ptent = ptep_get(pte);
if (is_guard_pte_marker(ptent)) {
/* Simply clear the PTE marker. */
pte_clear_not_present_full(walk->mm, addr, pte, false);
update_mmu_cache(walk->vma, addr, pte);
}
return 0;
}
static const struct mm_walk_ops guard_remove_walk_ops = {
.pud_entry = guard_remove_pud_entry,
.pmd_entry = guard_remove_pmd_entry,
.pte_entry = guard_remove_pte_entry,
.walk_lock = PGWALK_RDLOCK,
};
static long madvise_guard_remove(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
*prev = vma;
/*
* We're ok with removing guards in mlock()'d ranges, as this is a
* non-destructive action.
*/
if (!is_valid_guard_vma(vma, /* allow_locked = */true))
return -EINVAL;
return walk_page_range(vma->vm_mm, start, end,
&guard_remove_walk_ops, NULL);
}
/*
* Apply an madvise behavior to a region of a vma. madvise_update_vma
* will handle splitting a vm area into separate areas, each area with its own
* behavior.
*/
static int madvise_vma_behavior(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end,
unsigned long behavior)
{
int error;
struct anon_vma_name *anon_name;
unsigned long new_flags = vma->vm_flags;
if (unlikely(!can_modify_vma_madv(vma, behavior)))
return -EPERM;
switch (behavior) {
case MADV_REMOVE:
return madvise_remove(vma, prev, start, end);
case MADV_WILLNEED:
return madvise_willneed(vma, prev, start, end);
case MADV_COLD:
return madvise_cold(vma, prev, start, end);
case MADV_PAGEOUT:
return madvise_pageout(vma, prev, start, end);
case MADV_FREE:
case MADV_DONTNEED:
case MADV_DONTNEED_LOCKED:
return madvise_dontneed_free(vma, prev, start, end, behavior);
case MADV_NORMAL:
new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
break;
case MADV_SEQUENTIAL:
new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
break;
case MADV_RANDOM:
new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
break;
case MADV_DONTFORK:
new_flags |= VM_DONTCOPY;
break;
case MADV_DOFORK:
if (vma->vm_flags & VM_IO)
return -EINVAL;
new_flags &= ~VM_DONTCOPY;
break;
case MADV_WIPEONFORK:
/* MADV_WIPEONFORK is only supported on anonymous memory. */
if (vma->vm_file || vma->vm_flags & VM_SHARED)
return -EINVAL;
new_flags |= VM_WIPEONFORK;
break;
case MADV_KEEPONFORK:
if (vma->vm_flags & VM_DROPPABLE)
return -EINVAL;
new_flags &= ~VM_WIPEONFORK;
break;
case MADV_DONTDUMP:
new_flags |= VM_DONTDUMP;
break;
case MADV_DODUMP:
if ((!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) ||
(vma->vm_flags & VM_DROPPABLE))
return -EINVAL;
new_flags &= ~VM_DONTDUMP;
break;
case MADV_MERGEABLE:
case MADV_UNMERGEABLE:
error = ksm_madvise(vma, start, end, behavior, &new_flags);
if (error)
goto out;
break;
case MADV_HUGEPAGE:
case MADV_NOHUGEPAGE:
error = hugepage_madvise(vma, &new_flags, behavior);
if (error)
goto out;
break;
case MADV_COLLAPSE:
return madvise_collapse(vma, prev, start, end);
case MADV_GUARD_INSTALL:
return madvise_guard_install(vma, prev, start, end);
case MADV_GUARD_REMOVE:
return madvise_guard_remove(vma, prev, start, end);
}
anon_name = anon_vma_name(vma);
anon_vma_name_get(anon_name);
error = madvise_update_vma(vma, prev, start, end, new_flags,
anon_name);
anon_vma_name_put(anon_name);
out:
/*
* madvise() returns EAGAIN if kernel resources, such as
* slab, are temporarily unavailable.
*/
if (error == -ENOMEM)
error = -EAGAIN;
return error;
}
#ifdef CONFIG_MEMORY_FAILURE
/*
* Error injection support for memory error handling.
*/
static int madvise_inject_error(int behavior,
unsigned long start, unsigned long end)
{
unsigned long size;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
for (; start < end; start += size) {
unsigned long pfn;
struct page *page;
int ret;
ret = get_user_pages_fast(start, 1, 0, &page);
if (ret != 1)
return ret;
pfn = page_to_pfn(page);
/*
* When soft offlining hugepages, after migrating the page
* we dissolve it, therefore in the second loop "page" will
* no longer be a compound page.
*/
size = page_size(compound_head(page));
if (behavior == MADV_SOFT_OFFLINE) {
pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
pfn, start);
ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
} else {
pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
pfn, start);
ret = memory_failure(pfn, MF_ACTION_REQUIRED | MF_COUNT_INCREASED | MF_SW_SIMULATED);
if (ret == -EOPNOTSUPP)
ret = 0;
}
if (ret)
return ret;
}
return 0;
}
#endif
static bool
madvise_behavior_valid(int behavior)
{
switch (behavior) {
case MADV_DOFORK:
case MADV_DONTFORK:
case MADV_NORMAL:
case MADV_SEQUENTIAL:
case MADV_RANDOM:
case MADV_REMOVE:
case MADV_WILLNEED:
case MADV_DONTNEED:
case MADV_DONTNEED_LOCKED:
case MADV_FREE:
case MADV_COLD:
case MADV_PAGEOUT:
case MADV_POPULATE_READ:
case MADV_POPULATE_WRITE:
#ifdef CONFIG_KSM
case MADV_MERGEABLE:
case MADV_UNMERGEABLE:
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
case MADV_HUGEPAGE:
case MADV_NOHUGEPAGE:
case MADV_COLLAPSE:
#endif
case MADV_DONTDUMP:
case MADV_DODUMP:
case MADV_WIPEONFORK:
case MADV_KEEPONFORK:
case MADV_GUARD_INSTALL:
case MADV_GUARD_REMOVE:
#ifdef CONFIG_MEMORY_FAILURE
case MADV_SOFT_OFFLINE:
case MADV_HWPOISON:
#endif
return true;
default:
return false;
}
}
/* Can we invoke process_madvise() on a remote mm for the specified behavior? */
static bool process_madvise_remote_valid(int behavior)
{
switch (behavior) {
case MADV_COLD:
case MADV_PAGEOUT:
case MADV_WILLNEED:
case MADV_COLLAPSE:
return true;
default:
return false;
}
}
/*
* Walk the vmas in range [start,end), and call the visit function on each one.
* The visit function will get start and end parameters that cover the overlap
* between the current vma and the original range. Any unmapped regions in the
* original range will result in this function returning -ENOMEM while still
* calling the visit function on all of the existing vmas in the range.
* Must be called with the mmap_lock held for reading or writing.
*/
static
int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
unsigned long end, unsigned long arg,
int (*visit)(struct vm_area_struct *vma,
struct vm_area_struct **prev, unsigned long start,
unsigned long end, unsigned long arg))
{
struct vm_area_struct *vma;
struct vm_area_struct *prev;
unsigned long tmp;
int unmapped_error = 0;
/*
* If the interval [start,end) covers some unmapped address
* ranges, just ignore them, but return -ENOMEM at the end.
* - different from the way of handling in mlock etc.
*/
vma = find_vma_prev(mm, start, &prev);
if (vma && start > vma->vm_start)
prev = vma;
for (;;) {
int error;
/* Still start < end. */
if (!vma)
return -ENOMEM;
/* Here start < (end|vma->vm_end). */
if (start < vma->vm_start) {
unmapped_error = -ENOMEM;
start = vma->vm_start;
if (start >= end)
break;
}
/* Here vma->vm_start <= start < (end|vma->vm_end) */
tmp = vma->vm_end;
if (end < tmp)
tmp = end;
/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
error = visit(vma, &prev, start, tmp, arg);
if (error)
return error;
start = tmp;
if (prev && start < prev->vm_end)
start = prev->vm_end;
if (start >= end)
break;
if (prev)
vma = find_vma(mm, prev->vm_end);
else /* madvise_remove dropped mmap_lock */
vma = find_vma(mm, start);
}
return unmapped_error;
}
#ifdef CONFIG_ANON_VMA_NAME
static int madvise_vma_anon_name(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end,
unsigned long anon_name)
{
int error;
/* Only anonymous mappings can be named */
if (vma->vm_file && !vma_is_anon_shmem(vma))
return -EBADF;
error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
(struct anon_vma_name *)anon_name);
/*
* madvise() returns EAGAIN if kernel resources, such as
* slab, are temporarily unavailable.
*/
if (error == -ENOMEM)
error = -EAGAIN;
return error;
}
int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
unsigned long len_in, struct anon_vma_name *anon_name)
{
unsigned long end;
unsigned long len;
if (start & ~PAGE_MASK)
return -EINVAL;
len = (len_in + ~PAGE_MASK) & PAGE_MASK;
/* Check to see whether len was rounded up from small -ve to zero */
if (len_in && !len)
return -EINVAL;
end = start + len;
if (end < start)
return -EINVAL;
if (end == start)
return 0;
return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
madvise_vma_anon_name);
}
#endif /* CONFIG_ANON_VMA_NAME */
/*
* The madvise(2) system call.
*
* Applications can use madvise() to advise the kernel how it should
* handle paging I/O in this VM area. The idea is to help the kernel
* use appropriate read-ahead and caching techniques. The information
* provided is advisory only, and can be safely disregarded by the
* kernel without affecting the correct operation of the application.
*
* behavior values:
* MADV_NORMAL - the default behavior is to read clusters. This
* results in some read-ahead and read-behind.
* MADV_RANDOM - the system should read the minimum amount of data
* on any access, since it is unlikely that the appli-
* cation will need more than what it asks for.
* MADV_SEQUENTIAL - pages in the given range will probably be accessed
* once, so they can be aggressively read ahead, and
* can be freed soon after they are accessed.
* MADV_WILLNEED - the application is notifying the system to read
* some pages ahead.
* MADV_DONTNEED - the application is finished with the given range,
* so the kernel can free resources associated with it.
* MADV_FREE - the application marks pages in the given range as lazy free,
* where actual purges are postponed until memory pressure happens.
* MADV_REMOVE - the application wants to free up the given range of
* pages and associated backing store.
* MADV_DONTFORK - omit this area from child's address space when forking:
* typically, to avoid COWing pages pinned by get_user_pages().
* MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
* MADV_WIPEONFORK - present the child process with zero-filled memory in this
* range after a fork.
* MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
* MADV_HWPOISON - trigger memory error handler as if the given memory range
* were corrupted by unrecoverable hardware memory failure.
* MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
* MADV_MERGEABLE - the application recommends that KSM try to merge pages in
* this area with pages of identical content from other such areas.
* MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
* MADV_HUGEPAGE - the application wants to back the given range by transparent
* huge pages in the future. Existing pages might be coalesced and
* new pages might be allocated as THP.
* MADV_NOHUGEPAGE - mark the given range as not worth being backed by
* transparent huge pages so the existing pages will not be
* coalesced into THP and new pages will not be allocated as THP.
* MADV_COLLAPSE - synchronously coalesce pages into new THP.
* MADV_DONTDUMP - the application wants to prevent pages in the given range
* from being included in its core dump.
* MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
* MADV_COLD - the application is not expected to use this memory soon,
* deactivate pages in this range so that they can be reclaimed
* easily if memory pressure happens.
* MADV_PAGEOUT - the application is not expected to use this memory soon,
* page out the pages in this range immediately.
* MADV_POPULATE_READ - populate (prefault) page tables readable by
* triggering read faults if required
* MADV_POPULATE_WRITE - populate (prefault) page tables writable by
* triggering write faults if required
*
* return values:
* zero - success
* -EINVAL - start + len < 0, start is not page-aligned,
* "behavior" is not a valid value, or application
* is attempting to release locked or shared pages,
* or the specified address range includes file, Huge TLB,
* MAP_SHARED or VMPFNMAP range.
* -ENOMEM - addresses in the specified range are not currently
* mapped, or are outside the AS of the process.
* -EIO - an I/O error occurred while paging in data.
* -EBADF - map exists, but area maps something that isn't a file.
* -EAGAIN - a kernel resource was temporarily unavailable.
* -EPERM - memory is sealed.
*/
int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
{
unsigned long end;
int error;
int write;
size_t len;
struct blk_plug plug;
if (!madvise_behavior_valid(behavior))
return -EINVAL;
if (!PAGE_ALIGNED(start))
return -EINVAL;
len = PAGE_ALIGN(len_in);
/* Check to see whether len was rounded up from small -ve to zero */
if (len_in && !len)
return -EINVAL;
end = start + len;
if (end < start)
return -EINVAL;
if (end == start)
return 0;
#ifdef CONFIG_MEMORY_FAILURE
if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
return madvise_inject_error(behavior, start, start + len_in);
#endif
write = madvise_need_mmap_write(behavior);
if (write) {
if (mmap_write_lock_killable(mm))
return -EINTR;
} else {
mmap_read_lock(mm);
}
start = untagged_addr_remote(mm, start);
end = start + len;
blk_start_plug(&plug);
switch (behavior) {
case MADV_POPULATE_READ:
case MADV_POPULATE_WRITE:
error = madvise_populate(mm, start, end, behavior);
break;
default:
error = madvise_walk_vmas(mm, start, end, behavior,
madvise_vma_behavior);
break;
}
blk_finish_plug(&plug);
if (write)
mmap_write_unlock(mm);
else
mmap_read_unlock(mm);
return error;
}
SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
{
return do_madvise(current->mm, start, len_in, behavior);
}
/* Perform an madvise operation over a vector of addresses and lengths. */
static ssize_t vector_madvise(struct mm_struct *mm, struct iov_iter *iter,
int behavior)
{
ssize_t ret = 0;
size_t total_len;
total_len = iov_iter_count(iter);
while (iov_iter_count(iter)) {
ret = do_madvise(mm, (unsigned long)iter_iov_addr(iter),
iter_iov_len(iter), behavior);
/*
* An madvise operation is attempting to restart the syscall,
* but we cannot proceed as it would not be correct to repeat
* the operation in aggregate, and would be surprising to the
* user.
*
* As we have already dropped locks, it is safe to just loop and
* try again. We check for fatal signals in case we need exit
* early anyway.
*/
if (ret == -ERESTARTNOINTR) {
if (fatal_signal_pending(current)) {
ret = -EINTR;
break;
}
continue;
}
if (ret < 0)
break;
iov_iter_advance(iter, iter_iov_len(iter));
}
ret = (total_len - iov_iter_count(iter)) ? : ret;
return ret;
}
SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
size_t, vlen, int, behavior, unsigned int, flags)
{
ssize_t ret;
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
struct task_struct *task;
struct mm_struct *mm;
unsigned int f_flags;
if (flags != 0) {
ret = -EINVAL;
goto out;
}
ret = import_iovec(ITER_DEST, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
if (ret < 0)
goto out;
task = pidfd_get_task(pidfd, &f_flags);
if (IS_ERR(task)) {
ret = PTR_ERR(task);
goto free_iov;
}
/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
if (IS_ERR(mm)) {
ret = PTR_ERR(mm);
goto release_task;
}
/*
* We need only perform this check if we are attempting to manipulate a
* remote process's address space.
*/
if (mm != current->mm && !process_madvise_remote_valid(behavior)) {
ret = -EINVAL;
goto release_mm;
}
/*
* Require CAP_SYS_NICE for influencing process performance. Note that
* only non-destructive hints are currently supported for remote
* processes.
*/
if (mm != current->mm && !capable(CAP_SYS_NICE)) {
ret = -EPERM;
goto release_mm;
}
ret = vector_madvise(mm, &iter, behavior);
release_mm:
mmput(mm);
release_task:
put_task_struct(task);
free_iov:
kfree(iov);
out:
return ret;
}