1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 16:06:04 -05:00
linux/mm/numa_memblks.c
Nobuhiro Iwamatsu d95fb348f0 mm: numa_clear_kernel_node_hotplug: Add NUMA_NO_NODE check for node id
The acquired memory blocks for reserved may include blocks outside of
memory management.  In this case, the nid variable is set to NUMA_NO_NODE
(-1), so an error occurs in node_set().  This adds a check using
numa_valid_node() to numa_clear_kernel_node_hotplug() that skips
node_set() when nid is set to NUMA_NO_NODE.

Link: https://lkml.kernel.org/r/1729070461-13576-1-git-send-email-nobuhiro1.iwamatsu@toshiba.co.jp
Fixes: 8748270821 ("mm: introduce numa_memblks")
Signed-off-by: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Suggested-by: Yuji Ishikawa <yuji2.ishikawa@toshiba.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-28 21:40:40 -07:00

571 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/array_size.h>
#include <linux/sort.h>
#include <linux/printk.h>
#include <linux/memblock.h>
#include <linux/numa.h>
#include <linux/numa_memblks.h>
static int numa_distance_cnt;
static u8 *numa_distance;
nodemask_t numa_nodes_parsed __initdata;
static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
/*
* Set nodes, which have memory in @mi, in *@nodemask.
*/
static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
const struct numa_meminfo *mi)
{
int i;
for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
if (mi->blk[i].start != mi->blk[i].end &&
mi->blk[i].nid != NUMA_NO_NODE)
node_set(mi->blk[i].nid, *nodemask);
}
/**
* numa_reset_distance - Reset NUMA distance table
*
* The current table is freed. The next numa_set_distance() call will
* create a new one.
*/
void __init numa_reset_distance(void)
{
size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
/* numa_distance could be 1LU marking allocation failure, test cnt */
if (numa_distance_cnt)
memblock_free(numa_distance, size);
numa_distance_cnt = 0;
numa_distance = NULL; /* enable table creation */
}
static int __init numa_alloc_distance(void)
{
nodemask_t nodes_parsed;
size_t size;
int i, j, cnt = 0;
/* size the new table and allocate it */
nodes_parsed = numa_nodes_parsed;
numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
for_each_node_mask(i, nodes_parsed)
cnt = i;
cnt++;
size = cnt * cnt * sizeof(numa_distance[0]);
numa_distance = memblock_alloc(size, PAGE_SIZE);
if (!numa_distance) {
pr_warn("Warning: can't allocate distance table!\n");
/* don't retry until explicitly reset */
numa_distance = (void *)1LU;
return -ENOMEM;
}
numa_distance_cnt = cnt;
/* fill with the default distances */
for (i = 0; i < cnt; i++)
for (j = 0; j < cnt; j++)
numa_distance[i * cnt + j] = i == j ?
LOCAL_DISTANCE : REMOTE_DISTANCE;
printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
return 0;
}
/**
* numa_set_distance - Set NUMA distance from one NUMA to another
* @from: the 'from' node to set distance
* @to: the 'to' node to set distance
* @distance: NUMA distance
*
* Set the distance from node @from to @to to @distance. If distance table
* doesn't exist, one which is large enough to accommodate all the currently
* known nodes will be created.
*
* If such table cannot be allocated, a warning is printed and further
* calls are ignored until the distance table is reset with
* numa_reset_distance().
*
* If @from or @to is higher than the highest known node or lower than zero
* at the time of table creation or @distance doesn't make sense, the call
* is ignored.
* This is to allow simplification of specific NUMA config implementations.
*/
void __init numa_set_distance(int from, int to, int distance)
{
if (!numa_distance && numa_alloc_distance() < 0)
return;
if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
from < 0 || to < 0) {
pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
from, to, distance);
return;
}
if ((u8)distance != distance ||
(from == to && distance != LOCAL_DISTANCE)) {
pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
from, to, distance);
return;
}
numa_distance[from * numa_distance_cnt + to] = distance;
}
int __node_distance(int from, int to)
{
if (from >= numa_distance_cnt || to >= numa_distance_cnt)
return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
return numa_distance[from * numa_distance_cnt + to];
}
EXPORT_SYMBOL(__node_distance);
static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
struct numa_meminfo *mi)
{
/* ignore zero length blks */
if (start == end)
return 0;
/* whine about and ignore invalid blks */
if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
nid, start, end - 1);
return 0;
}
if (mi->nr_blks >= NR_NODE_MEMBLKS) {
pr_err("too many memblk ranges\n");
return -EINVAL;
}
mi->blk[mi->nr_blks].start = start;
mi->blk[mi->nr_blks].end = end;
mi->blk[mi->nr_blks].nid = nid;
mi->nr_blks++;
return 0;
}
/**
* numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
* @idx: Index of memblk to remove
* @mi: numa_meminfo to remove memblk from
*
* Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
* decrementing @mi->nr_blks.
*/
void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
{
mi->nr_blks--;
memmove(&mi->blk[idx], &mi->blk[idx + 1],
(mi->nr_blks - idx) * sizeof(mi->blk[0]));
}
/**
* numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
* @dst: numa_meminfo to append block to
* @idx: Index of memblk to remove
* @src: numa_meminfo to remove memblk from
*/
static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
struct numa_meminfo *src)
{
dst->blk[dst->nr_blks++] = src->blk[idx];
numa_remove_memblk_from(idx, src);
}
/**
* numa_add_memblk - Add one numa_memblk to numa_meminfo
* @nid: NUMA node ID of the new memblk
* @start: Start address of the new memblk
* @end: End address of the new memblk
*
* Add a new memblk to the default numa_meminfo.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int __init numa_add_memblk(int nid, u64 start, u64 end)
{
return numa_add_memblk_to(nid, start, end, &numa_meminfo);
}
/**
* numa_cleanup_meminfo - Cleanup a numa_meminfo
* @mi: numa_meminfo to clean up
*
* Sanitize @mi by merging and removing unnecessary memblks. Also check for
* conflicts and clear unused memblks.
*
* RETURNS:
* 0 on success, -errno on failure.
*/
int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
{
const u64 low = memblock_start_of_DRAM();
const u64 high = memblock_end_of_DRAM();
int i, j, k;
/* first, trim all entries */
for (i = 0; i < mi->nr_blks; i++) {
struct numa_memblk *bi = &mi->blk[i];
/* move / save reserved memory ranges */
if (!memblock_overlaps_region(&memblock.memory,
bi->start, bi->end - bi->start)) {
numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
continue;
}
/* make sure all non-reserved blocks are inside the limits */
bi->start = max(bi->start, low);
/* preserve info for non-RAM areas above 'max_pfn': */
if (bi->end > high) {
numa_add_memblk_to(bi->nid, high, bi->end,
&numa_reserved_meminfo);
bi->end = high;
}
/* and there's no empty block */
if (bi->start >= bi->end)
numa_remove_memblk_from(i--, mi);
}
/* merge neighboring / overlapping entries */
for (i = 0; i < mi->nr_blks; i++) {
struct numa_memblk *bi = &mi->blk[i];
for (j = i + 1; j < mi->nr_blks; j++) {
struct numa_memblk *bj = &mi->blk[j];
u64 start, end;
/*
* See whether there are overlapping blocks. Whine
* about but allow overlaps of the same nid. They
* will be merged below.
*/
if (bi->end > bj->start && bi->start < bj->end) {
if (bi->nid != bj->nid) {
pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
bi->nid, bi->start, bi->end - 1,
bj->nid, bj->start, bj->end - 1);
return -EINVAL;
}
pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
bi->nid, bi->start, bi->end - 1,
bj->start, bj->end - 1);
}
/*
* Join together blocks on the same node, holes
* between which don't overlap with memory on other
* nodes.
*/
if (bi->nid != bj->nid)
continue;
start = min(bi->start, bj->start);
end = max(bi->end, bj->end);
for (k = 0; k < mi->nr_blks; k++) {
struct numa_memblk *bk = &mi->blk[k];
if (bi->nid == bk->nid)
continue;
if (start < bk->end && end > bk->start)
break;
}
if (k < mi->nr_blks)
continue;
pr_info("NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
bi->nid, bi->start, bi->end - 1, bj->start,
bj->end - 1, start, end - 1);
bi->start = start;
bi->end = end;
numa_remove_memblk_from(j--, mi);
}
}
/* clear unused ones */
for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
mi->blk[i].start = mi->blk[i].end = 0;
mi->blk[i].nid = NUMA_NO_NODE;
}
return 0;
}
/*
* Mark all currently memblock-reserved physical memory (which covers the
* kernel's own memory ranges) as hot-unswappable.
*/
static void __init numa_clear_kernel_node_hotplug(void)
{
nodemask_t reserved_nodemask = NODE_MASK_NONE;
struct memblock_region *mb_region;
int i;
/*
* We have to do some preprocessing of memblock regions, to
* make them suitable for reservation.
*
* At this time, all memory regions reserved by memblock are
* used by the kernel, but those regions are not split up
* along node boundaries yet, and don't necessarily have their
* node ID set yet either.
*
* So iterate over all parsed memory blocks and use those ranges to
* set the nid in memblock.reserved. This will split up the
* memblock regions along node boundaries and will set the node IDs
* as well.
*/
for (i = 0; i < numa_meminfo.nr_blks; i++) {
struct numa_memblk *mb = numa_meminfo.blk + i;
int ret;
ret = memblock_set_node(mb->start, mb->end - mb->start,
&memblock.reserved, mb->nid);
WARN_ON_ONCE(ret);
}
/*
* Now go over all reserved memblock regions, to construct a
* node mask of all kernel reserved memory areas.
*
* [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
* numa_meminfo might not include all memblock.reserved
* memory ranges, because quirks such as trim_snb_memory()
* reserve specific pages for Sandy Bridge graphics. ]
*/
for_each_reserved_mem_region(mb_region) {
int nid = memblock_get_region_node(mb_region);
if (numa_valid_node(nid))
node_set(nid, reserved_nodemask);
}
/*
* Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
* belonging to the reserved node mask.
*
* Note that this will include memory regions that reside
* on nodes that contain kernel memory - entire nodes
* become hot-unpluggable:
*/
for (i = 0; i < numa_meminfo.nr_blks; i++) {
struct numa_memblk *mb = numa_meminfo.blk + i;
if (!node_isset(mb->nid, reserved_nodemask))
continue;
memblock_clear_hotplug(mb->start, mb->end - mb->start);
}
}
static int __init numa_register_meminfo(struct numa_meminfo *mi)
{
int i;
/* Account for nodes with cpus and no memory */
node_possible_map = numa_nodes_parsed;
numa_nodemask_from_meminfo(&node_possible_map, mi);
if (WARN_ON(nodes_empty(node_possible_map)))
return -EINVAL;
for (i = 0; i < mi->nr_blks; i++) {
struct numa_memblk *mb = &mi->blk[i];
memblock_set_node(mb->start, mb->end - mb->start,
&memblock.memory, mb->nid);
}
/*
* At very early time, the kernel have to use some memory such as
* loading the kernel image. We cannot prevent this anyway. So any
* node the kernel resides in should be un-hotpluggable.
*
* And when we come here, alloc node data won't fail.
*/
numa_clear_kernel_node_hotplug();
/*
* If sections array is gonna be used for pfn -> nid mapping, check
* whether its granularity is fine enough.
*/
if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
unsigned long pfn_align = node_map_pfn_alignment();
if (pfn_align && pfn_align < PAGES_PER_SECTION) {
unsigned long node_align_mb = PFN_PHYS(pfn_align) >> 20;
unsigned long sect_align_mb = PFN_PHYS(PAGES_PER_SECTION) >> 20;
pr_warn("Node alignment %luMB < min %luMB, rejecting NUMA config\n",
node_align_mb, sect_align_mb);
return -EINVAL;
}
}
return 0;
}
int __init numa_memblks_init(int (*init_func)(void),
bool memblock_force_top_down)
{
phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
int ret;
nodes_clear(numa_nodes_parsed);
nodes_clear(node_possible_map);
nodes_clear(node_online_map);
memset(&numa_meminfo, 0, sizeof(numa_meminfo));
WARN_ON(memblock_set_node(0, max_addr, &memblock.memory, NUMA_NO_NODE));
WARN_ON(memblock_set_node(0, max_addr, &memblock.reserved,
NUMA_NO_NODE));
/* In case that parsing SRAT failed. */
WARN_ON(memblock_clear_hotplug(0, max_addr));
numa_reset_distance();
ret = init_func();
if (ret < 0)
return ret;
/*
* We reset memblock back to the top-down direction
* here because if we configured ACPI_NUMA, we have
* parsed SRAT in init_func(). It is ok to have the
* reset here even if we did't configure ACPI_NUMA
* or acpi numa init fails and fallbacks to dummy
* numa init.
*/
if (memblock_force_top_down)
memblock_set_bottom_up(false);
ret = numa_cleanup_meminfo(&numa_meminfo);
if (ret < 0)
return ret;
numa_emulation(&numa_meminfo, numa_distance_cnt);
return numa_register_meminfo(&numa_meminfo);
}
static int __init cmp_memblk(const void *a, const void *b)
{
const struct numa_memblk *ma = *(const struct numa_memblk **)a;
const struct numa_memblk *mb = *(const struct numa_memblk **)b;
return (ma->start > mb->start) - (ma->start < mb->start);
}
static struct numa_memblk *numa_memblk_list[NR_NODE_MEMBLKS] __initdata;
/**
* numa_fill_memblks - Fill gaps in numa_meminfo memblks
* @start: address to begin fill
* @end: address to end fill
*
* Find and extend numa_meminfo memblks to cover the physical
* address range @start-@end
*
* RETURNS:
* 0 : Success
* NUMA_NO_MEMBLK : No memblks exist in address range @start-@end
*/
int __init numa_fill_memblks(u64 start, u64 end)
{
struct numa_memblk **blk = &numa_memblk_list[0];
struct numa_meminfo *mi = &numa_meminfo;
int count = 0;
u64 prev_end;
/*
* Create a list of pointers to numa_meminfo memblks that
* overlap start, end. The list is used to make in-place
* changes that fill out the numa_meminfo memblks.
*/
for (int i = 0; i < mi->nr_blks; i++) {
struct numa_memblk *bi = &mi->blk[i];
if (memblock_addrs_overlap(start, end - start, bi->start,
bi->end - bi->start)) {
blk[count] = &mi->blk[i];
count++;
}
}
if (!count)
return NUMA_NO_MEMBLK;
/* Sort the list of pointers in memblk->start order */
sort(&blk[0], count, sizeof(blk[0]), cmp_memblk, NULL);
/* Make sure the first/last memblks include start/end */
blk[0]->start = min(blk[0]->start, start);
blk[count - 1]->end = max(blk[count - 1]->end, end);
/*
* Fill any gaps by tracking the previous memblks
* end address and backfilling to it if needed.
*/
prev_end = blk[0]->end;
for (int i = 1; i < count; i++) {
struct numa_memblk *curr = blk[i];
if (prev_end >= curr->start) {
if (prev_end < curr->end)
prev_end = curr->end;
} else {
curr->start = prev_end;
prev_end = curr->end;
}
}
return 0;
}
#ifdef CONFIG_NUMA_KEEP_MEMINFO
static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
{
int i;
for (i = 0; i < mi->nr_blks; i++)
if (mi->blk[i].start <= start && mi->blk[i].end > start)
return mi->blk[i].nid;
return NUMA_NO_NODE;
}
int phys_to_target_node(u64 start)
{
int nid = meminfo_to_nid(&numa_meminfo, start);
/*
* Prefer online nodes, but if reserved memory might be
* hot-added continue the search with reserved ranges.
*/
if (nid != NUMA_NO_NODE)
return nid;
return meminfo_to_nid(&numa_reserved_meminfo, start);
}
EXPORT_SYMBOL_GPL(phys_to_target_node);
int memory_add_physaddr_to_nid(u64 start)
{
int nid = meminfo_to_nid(&numa_meminfo, start);
if (nid == NUMA_NO_NODE)
nid = numa_meminfo.blk[0].nid;
return nid;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif /* CONFIG_NUMA_KEEP_MEMINFO */