1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 07:53:11 -05:00
linux/kernel
Linus Torvalds 1a89a6924b kernel-6.14-rc1.pid
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZ4pR0wAKCRCRxhvAZXjc
 ojb2AQD5QfpTEX/ju1TkenTvoNl+JfnIjaVSY40Lm9DWYzmCMAEAuRvf5WRIV713
 00/RVOrUvsLobzhmnk0yw53EQ5A+pA0=
 =2NDA
 -----END PGP SIGNATURE-----

Merge tag 'kernel-6.14-rc1.pid' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs

Pull pid_max namespacing update from Christian Brauner:
 "The pid_max sysctl is a global value. For a long time the default
  value has been 65535 and during the pidfd dicussions Linus proposed to
  bump pid_max by default. Based on this discussion systemd started
  bumping pid_max to 2^22. So all new systems now run with a very high
  pid_max limit with some distros having also backported that change.

  The decision to bump pid_max is obviously correct. It just doesn't
  make a lot of sense nowadays to enforce such a low pid number. There's
  sufficient tooling to make selecting specific processes without typing
  really large pid numbers available.

  In any case, there are workloads that have expections about how large
  pid numbers they accept. Either for historical reasons or
  architectural reasons. One concreate example is the 32-bit version of
  Android's bionic libc which requires pid numbers less than 65536.
  There are workloads where it is run in a 32-bit container on a 64-bit
  kernel. If the host has a pid_max value greater than 65535 the libc
  will abort thread creation because of size assumptions of
  pthread_mutex_t.

  That's a fairly specific use-case however, in general specific
  workloads that are moved into containers running on a host with a new
  kernel and a new systemd can run into issues with large pid_max
  values. Obviously making assumptions about the size of the allocated
  pid is suboptimal but we have userspace that does it.

  Of course, giving containers the ability to restrict the number of
  processes in their respective pid namespace indepent of the global
  limit through pid_max is something desirable in itself and comes in
  handy in general.

  Independent of motivating use-cases the existence of pid namespaces
  makes this also a good semantical extension and there have been prior
  proposals pushing in a similar direction. The trick here is to
  minimize the risk of regressions which I think is doable. The fact
  that pid namespaces are hierarchical will help us here.

  What we mostly care about is that when the host sets a low pid_max
  limit, say (crazy number) 100 that no descendant pid namespace can
  allocate a higher pid number in its namespace. Since pid allocation is
  hierarchial this can be ensured by checking each pid allocation
  against the pid namespace's pid_max limit. This means if the
  allocation in the descendant pid namespace succeeds, the ancestor pid
  namespace can reject it. If the ancestor pid namespace has a higher
  limit than the descendant pid namespace the descendant pid namespace
  will reject the pid allocation. The ancestor pid namespace will
  obviously not care about this.

  All in all this means pid_max continues to enforce a system wide limit
  on the number of processes but allows pid namespaces sufficient leeway
  in handling workloads with assumptions about pid values and allows
  containers to restrict the number of processes in a pid namespace
  through the pid_max interface"

* tag 'kernel-6.14-rc1.pid' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
  tests/pid_namespace: add pid_max tests
  pid: allow pid_max to be set per pid namespace
2025-01-20 10:29:11 -08:00
..
bpf
cgroup
configs
debug
dma
entry
events
futex
gcov
irq
kcsan
livepatch
locking
module
power
printk
rcu
sched
time
trace kernel-6.14-rc1.pid 2025-01-20 10:29:11 -08:00
.gitignore
acct.c
async.c
audit.c
audit.h
audit_fsnotify.c
audit_tree.c
audit_watch.c
auditfilter.c
auditsc.c
backtracetest.c
bounds.c
capability.c
cfi.c
compat.c
configs.c
context_tracking.c
cpu.c
cpu_pm.c
crash_core.c
crash_reserve.c
cred.c
delayacct.c
dma.c
elfcorehdr.c
exec_domain.c
exit.c
exit.h
extable.c
fail_function.c
fork.c
freezer.c
gen_kheaders.sh
groups.c
hung_task.c
iomem.c
irq_work.c
jump_label.c
kallsyms.c
kallsyms_internal.h
kallsyms_selftest.c
kallsyms_selftest.h
kcmp.c
Kconfig.freezer
Kconfig.hz
Kconfig.kexec
Kconfig.locks
Kconfig.preempt
kcov.c
kexec.c
kexec_core.c
kexec_elf.c
kexec_file.c
kexec_internal.h
kheaders.c
kprobes.c
ksyms_common.c
ksysfs.c
kthread.c
latencytop.c
Makefile
module_signature.c
notifier.c
nsproxy.c
padata.c
panic.c
params.c
pid.c kernel-6.14-rc1.pid 2025-01-20 10:29:11 -08:00
pid_namespace.c
pid_sysctl.h
profile.c
ptrace.c
range.c
reboot.c
regset.c
relay.c
resource.c
resource_kunit.c
rseq.c
scftorture.c
scs.c
seccomp.c
signal.c
smp.c
smpboot.c
smpboot.h
softirq.c
stackleak.c
stacktrace.c
static_call.c
static_call_inline.c
stop_machine.c
sys.c
sys_ni.c
sysctl-test.c
sysctl.c
task_work.c
taskstats.c
torture.c
tracepoint.c
tsacct.c
ucount.c
uid16.c
uid16.h
umh.c
up.c
user-return-notifier.c
user.c
user_namespace.c
usermode_driver.c
utsname.c
utsname_sysctl.c
vhost_task.c
vmcore_info.c
watch_queue.c
watchdog.c
watchdog_buddy.c
watchdog_perf.c
workqueue.c
workqueue_internal.h