mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-24 09:13:20 -05:00
dd712d3d45
When entering kdb/kgdb on a kernel panic, it was be observed that the console isn't flushed before the `kdb` prompt came up. Specifically, when using the buddy lockup detector on arm64 and running: echo HARDLOCKUP > /sys/kernel/debug/provoke-crash/DIRECT I could see: [ 26.161099] lkdtm: Performing direct entry HARDLOCKUP [ 32.499881] watchdog: Watchdog detected hard LOCKUP on cpu 6 [ 32.552865] Sending NMI from CPU 5 to CPUs 6: [ 32.557359] NMI backtrace for cpu 6 ... [backtrace for cpu 6] ... [ 32.558353] NMI backtrace for cpu 5 ... [backtrace for cpu 5] ... [ 32.867471] Sending NMI from CPU 5 to CPUs 0-4,7: [ 32.872321] NMI backtrace forP cpuANC: Hard LOCKUP Entering kdb (current=..., pid 0) on processor 5 due to Keyboard Entry [5]kdb> As you can see, backtraces for the other CPUs start printing and get interleaved with the kdb PANIC print. Let's replicate the commands to flush the console in the kdb panic entry point to avoid this. Signed-off-by: Douglas Anderson <dianders@chromium.org> Link: https://lore.kernel.org/r/20230822131945.1.I5b460ae8f954e4c4f628a373d6e74713c06dd26f@changeid Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
1239 lines
29 KiB
C
1239 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Kernel Debug Core
|
|
*
|
|
* Maintainer: Jason Wessel <jason.wessel@windriver.com>
|
|
*
|
|
* Copyright (C) 2000-2001 VERITAS Software Corporation.
|
|
* Copyright (C) 2002-2004 Timesys Corporation
|
|
* Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
|
|
* Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
|
|
* Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
|
|
* Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
|
|
* Copyright (C) 2005-2009 Wind River Systems, Inc.
|
|
* Copyright (C) 2007 MontaVista Software, Inc.
|
|
* Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
|
|
*
|
|
* Contributors at various stages not listed above:
|
|
* Jason Wessel ( jason.wessel@windriver.com )
|
|
* George Anzinger <george@mvista.com>
|
|
* Anurekh Saxena (anurekh.saxena@timesys.com)
|
|
* Lake Stevens Instrument Division (Glenn Engel)
|
|
* Jim Kingdon, Cygnus Support.
|
|
*
|
|
* Original KGDB stub: David Grothe <dave@gcom.com>,
|
|
* Tigran Aivazian <tigran@sco.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "KGDB: " fmt
|
|
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/console.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/string.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sysrq.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kgdb.h>
|
|
#include <linux/kdb.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/pid.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/security.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/byteorder.h>
|
|
#include <linux/atomic.h>
|
|
|
|
#include "debug_core.h"
|
|
|
|
static int kgdb_break_asap;
|
|
|
|
struct debuggerinfo_struct kgdb_info[NR_CPUS];
|
|
|
|
/* kgdb_connected - Is a host GDB connected to us? */
|
|
int kgdb_connected;
|
|
EXPORT_SYMBOL_GPL(kgdb_connected);
|
|
|
|
/* All the KGDB handlers are installed */
|
|
int kgdb_io_module_registered;
|
|
|
|
/* Guard for recursive entry */
|
|
static int exception_level;
|
|
|
|
struct kgdb_io *dbg_io_ops;
|
|
static DEFINE_SPINLOCK(kgdb_registration_lock);
|
|
|
|
/* Action for the reboot notifier, a global allow kdb to change it */
|
|
static int kgdbreboot;
|
|
/* kgdb console driver is loaded */
|
|
static int kgdb_con_registered;
|
|
/* determine if kgdb console output should be used */
|
|
static int kgdb_use_con;
|
|
/* Flag for alternate operations for early debugging */
|
|
bool dbg_is_early = true;
|
|
/* Next cpu to become the master debug core */
|
|
int dbg_switch_cpu;
|
|
|
|
/* Use kdb or gdbserver mode */
|
|
int dbg_kdb_mode = 1;
|
|
|
|
module_param(kgdb_use_con, int, 0644);
|
|
module_param(kgdbreboot, int, 0644);
|
|
|
|
/*
|
|
* Holds information about breakpoints in a kernel. These breakpoints are
|
|
* added and removed by gdb.
|
|
*/
|
|
static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
|
|
[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
|
|
};
|
|
|
|
/*
|
|
* The CPU# of the active CPU, or -1 if none:
|
|
*/
|
|
atomic_t kgdb_active = ATOMIC_INIT(-1);
|
|
EXPORT_SYMBOL_GPL(kgdb_active);
|
|
static DEFINE_RAW_SPINLOCK(dbg_master_lock);
|
|
static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
|
|
|
|
/*
|
|
* We use NR_CPUs not PERCPU, in case kgdb is used to debug early
|
|
* bootup code (which might not have percpu set up yet):
|
|
*/
|
|
static atomic_t masters_in_kgdb;
|
|
static atomic_t slaves_in_kgdb;
|
|
atomic_t kgdb_setting_breakpoint;
|
|
|
|
struct task_struct *kgdb_usethread;
|
|
struct task_struct *kgdb_contthread;
|
|
|
|
int kgdb_single_step;
|
|
static pid_t kgdb_sstep_pid;
|
|
|
|
/* to keep track of the CPU which is doing the single stepping*/
|
|
atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
|
|
|
|
/*
|
|
* If you are debugging a problem where roundup (the collection of
|
|
* all other CPUs) is a problem [this should be extremely rare],
|
|
* then use the nokgdbroundup option to avoid roundup. In that case
|
|
* the other CPUs might interfere with your debugging context, so
|
|
* use this with care:
|
|
*/
|
|
static int kgdb_do_roundup = 1;
|
|
|
|
static int __init opt_nokgdbroundup(char *str)
|
|
{
|
|
kgdb_do_roundup = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
early_param("nokgdbroundup", opt_nokgdbroundup);
|
|
|
|
/*
|
|
* Finally, some KGDB code :-)
|
|
*/
|
|
|
|
/*
|
|
* Weak aliases for breakpoint management,
|
|
* can be overridden by architectures when needed:
|
|
*/
|
|
int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
|
|
{
|
|
int err;
|
|
|
|
err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
|
|
BREAK_INSTR_SIZE);
|
|
if (err)
|
|
return err;
|
|
err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
|
|
arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
|
|
return err;
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
|
|
|
|
int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
|
|
{
|
|
return copy_to_kernel_nofault((char *)bpt->bpt_addr,
|
|
(char *)bpt->saved_instr, BREAK_INSTR_SIZE);
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
|
|
|
|
int __weak kgdb_validate_break_address(unsigned long addr)
|
|
{
|
|
struct kgdb_bkpt tmp;
|
|
int err;
|
|
|
|
if (kgdb_within_blocklist(addr))
|
|
return -EINVAL;
|
|
|
|
/* Validate setting the breakpoint and then removing it. If the
|
|
* remove fails, the kernel needs to emit a bad message because we
|
|
* are deep trouble not being able to put things back the way we
|
|
* found them.
|
|
*/
|
|
tmp.bpt_addr = addr;
|
|
err = kgdb_arch_set_breakpoint(&tmp);
|
|
if (err)
|
|
return err;
|
|
err = kgdb_arch_remove_breakpoint(&tmp);
|
|
if (err)
|
|
pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
|
|
addr);
|
|
return err;
|
|
}
|
|
|
|
unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
|
|
{
|
|
return instruction_pointer(regs);
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_arch_pc);
|
|
|
|
int __weak kgdb_arch_init(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
|
|
{
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_skipexception);
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
/*
|
|
* Default (weak) implementation for kgdb_roundup_cpus
|
|
*/
|
|
|
|
void __weak kgdb_call_nmi_hook(void *ignored)
|
|
{
|
|
/*
|
|
* NOTE: get_irq_regs() is supposed to get the registers from
|
|
* before the IPI interrupt happened and so is supposed to
|
|
* show where the processor was. In some situations it's
|
|
* possible we might be called without an IPI, so it might be
|
|
* safer to figure out how to make kgdb_breakpoint() work
|
|
* properly here.
|
|
*/
|
|
kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
|
|
|
|
static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
|
|
CSD_INIT(kgdb_call_nmi_hook, NULL);
|
|
|
|
void __weak kgdb_roundup_cpus(void)
|
|
{
|
|
call_single_data_t *csd;
|
|
int this_cpu = raw_smp_processor_id();
|
|
int cpu;
|
|
int ret;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
/* No need to roundup ourselves */
|
|
if (cpu == this_cpu)
|
|
continue;
|
|
|
|
csd = &per_cpu(kgdb_roundup_csd, cpu);
|
|
|
|
/*
|
|
* If it didn't round up last time, don't try again
|
|
* since smp_call_function_single_async() will block.
|
|
*
|
|
* If rounding_up is false then we know that the
|
|
* previous call must have at least started and that
|
|
* means smp_call_function_single_async() won't block.
|
|
*/
|
|
if (kgdb_info[cpu].rounding_up)
|
|
continue;
|
|
kgdb_info[cpu].rounding_up = true;
|
|
|
|
ret = smp_call_function_single_async(cpu, csd);
|
|
if (ret)
|
|
kgdb_info[cpu].rounding_up = false;
|
|
}
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_roundup_cpus);
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Some architectures need cache flushes when we set/clear a
|
|
* breakpoint:
|
|
*/
|
|
static void kgdb_flush_swbreak_addr(unsigned long addr)
|
|
{
|
|
if (!CACHE_FLUSH_IS_SAFE)
|
|
return;
|
|
|
|
/* Force flush instruction cache if it was outside the mm */
|
|
flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
|
|
|
|
/*
|
|
* SW breakpoint management:
|
|
*/
|
|
int dbg_activate_sw_breakpoints(void)
|
|
{
|
|
int error;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if (kgdb_break[i].state != BP_SET)
|
|
continue;
|
|
|
|
error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
|
|
if (error) {
|
|
ret = error;
|
|
pr_info("BP install failed: %lx\n",
|
|
kgdb_break[i].bpt_addr);
|
|
continue;
|
|
}
|
|
|
|
kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
|
|
kgdb_break[i].state = BP_ACTIVE;
|
|
}
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
|
|
|
|
int dbg_set_sw_break(unsigned long addr)
|
|
{
|
|
int err = kgdb_validate_break_address(addr);
|
|
int breakno = -1;
|
|
int i;
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if ((kgdb_break[i].state == BP_SET) &&
|
|
(kgdb_break[i].bpt_addr == addr))
|
|
return -EEXIST;
|
|
}
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if (kgdb_break[i].state == BP_REMOVED &&
|
|
kgdb_break[i].bpt_addr == addr) {
|
|
breakno = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (breakno == -1) {
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if (kgdb_break[i].state == BP_UNDEFINED) {
|
|
breakno = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (breakno == -1)
|
|
return -E2BIG;
|
|
|
|
kgdb_break[breakno].state = BP_SET;
|
|
kgdb_break[breakno].type = BP_BREAKPOINT;
|
|
kgdb_break[breakno].bpt_addr = addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int dbg_deactivate_sw_breakpoints(void)
|
|
{
|
|
int error;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if (kgdb_break[i].state != BP_ACTIVE)
|
|
continue;
|
|
error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
|
|
if (error) {
|
|
pr_info("BP remove failed: %lx\n",
|
|
kgdb_break[i].bpt_addr);
|
|
ret = error;
|
|
}
|
|
|
|
kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
|
|
kgdb_break[i].state = BP_SET;
|
|
}
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
|
|
|
|
int dbg_remove_sw_break(unsigned long addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if ((kgdb_break[i].state == BP_SET) &&
|
|
(kgdb_break[i].bpt_addr == addr)) {
|
|
kgdb_break[i].state = BP_REMOVED;
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
int kgdb_isremovedbreak(unsigned long addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if ((kgdb_break[i].state == BP_REMOVED) &&
|
|
(kgdb_break[i].bpt_addr == addr))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int kgdb_has_hit_break(unsigned long addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if (kgdb_break[i].state == BP_ACTIVE &&
|
|
kgdb_break[i].bpt_addr == addr)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int dbg_remove_all_break(void)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
/* Clear memory breakpoints. */
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if (kgdb_break[i].state != BP_ACTIVE)
|
|
goto setundefined;
|
|
error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
|
|
if (error)
|
|
pr_err("breakpoint remove failed: %lx\n",
|
|
kgdb_break[i].bpt_addr);
|
|
setundefined:
|
|
kgdb_break[i].state = BP_UNDEFINED;
|
|
}
|
|
|
|
/* Clear hardware breakpoints. */
|
|
if (arch_kgdb_ops.remove_all_hw_break)
|
|
arch_kgdb_ops.remove_all_hw_break();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kgdb_free_init_mem(void)
|
|
{
|
|
int i;
|
|
|
|
/* Clear init memory breakpoints. */
|
|
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
|
|
if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0))
|
|
kgdb_break[i].state = BP_UNDEFINED;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_KGDB_KDB
|
|
void kdb_dump_stack_on_cpu(int cpu)
|
|
{
|
|
if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
|
|
kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
|
|
cpu);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* In general, architectures don't support dumping the stack of a
|
|
* "running" process that's not the current one. From the point of
|
|
* view of the Linux, kernel processes that are looping in the kgdb
|
|
* slave loop are still "running". There's also no API (that actually
|
|
* works across all architectures) that can do a stack crawl based
|
|
* on registers passed as a parameter.
|
|
*
|
|
* Solve this conundrum by asking slave CPUs to do the backtrace
|
|
* themselves.
|
|
*/
|
|
kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
|
|
while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
|
|
cpu_relax();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Return true if there is a valid kgdb I/O module. Also if no
|
|
* debugger is attached a message can be printed to the console about
|
|
* waiting for the debugger to attach.
|
|
*
|
|
* The print_wait argument is only to be true when called from inside
|
|
* the core kgdb_handle_exception, because it will wait for the
|
|
* debugger to attach.
|
|
*/
|
|
static int kgdb_io_ready(int print_wait)
|
|
{
|
|
if (!dbg_io_ops)
|
|
return 0;
|
|
if (kgdb_connected)
|
|
return 1;
|
|
if (atomic_read(&kgdb_setting_breakpoint))
|
|
return 1;
|
|
if (print_wait) {
|
|
#ifdef CONFIG_KGDB_KDB
|
|
if (!dbg_kdb_mode)
|
|
pr_crit("waiting... or $3#33 for KDB\n");
|
|
#else
|
|
pr_crit("Waiting for remote debugger\n");
|
|
#endif
|
|
}
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_io_ready);
|
|
|
|
static int kgdb_reenter_check(struct kgdb_state *ks)
|
|
{
|
|
unsigned long addr;
|
|
|
|
if (atomic_read(&kgdb_active) != raw_smp_processor_id())
|
|
return 0;
|
|
|
|
/* Panic on recursive debugger calls: */
|
|
exception_level++;
|
|
addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
|
|
dbg_deactivate_sw_breakpoints();
|
|
|
|
/*
|
|
* If the break point removed ok at the place exception
|
|
* occurred, try to recover and print a warning to the end
|
|
* user because the user planted a breakpoint in a place that
|
|
* KGDB needs in order to function.
|
|
*/
|
|
if (dbg_remove_sw_break(addr) == 0) {
|
|
exception_level = 0;
|
|
kgdb_skipexception(ks->ex_vector, ks->linux_regs);
|
|
dbg_activate_sw_breakpoints();
|
|
pr_crit("re-enter error: breakpoint removed %lx\n", addr);
|
|
WARN_ON_ONCE(1);
|
|
|
|
return 1;
|
|
}
|
|
dbg_remove_all_break();
|
|
kgdb_skipexception(ks->ex_vector, ks->linux_regs);
|
|
|
|
if (exception_level > 1) {
|
|
dump_stack();
|
|
kgdb_io_module_registered = false;
|
|
panic("Recursive entry to debugger");
|
|
}
|
|
|
|
pr_crit("re-enter exception: ALL breakpoints killed\n");
|
|
#ifdef CONFIG_KGDB_KDB
|
|
/* Allow kdb to debug itself one level */
|
|
return 0;
|
|
#endif
|
|
dump_stack();
|
|
panic("Recursive entry to debugger");
|
|
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_reenter_check);
|
|
|
|
static void dbg_touch_watchdogs(void)
|
|
{
|
|
touch_softlockup_watchdog_sync();
|
|
clocksource_touch_watchdog();
|
|
rcu_cpu_stall_reset();
|
|
}
|
|
NOKPROBE_SYMBOL(dbg_touch_watchdogs);
|
|
|
|
static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
|
|
int exception_state)
|
|
{
|
|
unsigned long flags;
|
|
int sstep_tries = 100;
|
|
int error;
|
|
int cpu;
|
|
int trace_on = 0;
|
|
int online_cpus = num_online_cpus();
|
|
u64 time_left;
|
|
|
|
kgdb_info[ks->cpu].enter_kgdb++;
|
|
kgdb_info[ks->cpu].exception_state |= exception_state;
|
|
|
|
if (exception_state == DCPU_WANT_MASTER)
|
|
atomic_inc(&masters_in_kgdb);
|
|
else
|
|
atomic_inc(&slaves_in_kgdb);
|
|
|
|
if (arch_kgdb_ops.disable_hw_break)
|
|
arch_kgdb_ops.disable_hw_break(regs);
|
|
|
|
acquirelock:
|
|
rcu_read_lock();
|
|
/*
|
|
* Interrupts will be restored by the 'trap return' code, except when
|
|
* single stepping.
|
|
*/
|
|
local_irq_save(flags);
|
|
|
|
cpu = ks->cpu;
|
|
kgdb_info[cpu].debuggerinfo = regs;
|
|
kgdb_info[cpu].task = current;
|
|
kgdb_info[cpu].ret_state = 0;
|
|
kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
|
|
|
|
/* Make sure the above info reaches the primary CPU */
|
|
smp_mb();
|
|
|
|
if (exception_level == 1) {
|
|
if (raw_spin_trylock(&dbg_master_lock))
|
|
atomic_xchg(&kgdb_active, cpu);
|
|
goto cpu_master_loop;
|
|
}
|
|
|
|
/*
|
|
* CPU will loop if it is a slave or request to become a kgdb
|
|
* master cpu and acquire the kgdb_active lock:
|
|
*/
|
|
while (1) {
|
|
cpu_loop:
|
|
if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
|
|
kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
|
|
goto cpu_master_loop;
|
|
} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
|
|
if (raw_spin_trylock(&dbg_master_lock)) {
|
|
atomic_xchg(&kgdb_active, cpu);
|
|
break;
|
|
}
|
|
} else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
|
|
dump_stack();
|
|
kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
|
|
} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
|
|
if (!raw_spin_is_locked(&dbg_slave_lock))
|
|
goto return_normal;
|
|
} else {
|
|
return_normal:
|
|
/* Return to normal operation by executing any
|
|
* hw breakpoint fixup.
|
|
*/
|
|
if (arch_kgdb_ops.correct_hw_break)
|
|
arch_kgdb_ops.correct_hw_break();
|
|
if (trace_on)
|
|
tracing_on();
|
|
kgdb_info[cpu].debuggerinfo = NULL;
|
|
kgdb_info[cpu].task = NULL;
|
|
kgdb_info[cpu].exception_state &=
|
|
~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
|
|
kgdb_info[cpu].enter_kgdb--;
|
|
smp_mb__before_atomic();
|
|
atomic_dec(&slaves_in_kgdb);
|
|
dbg_touch_watchdogs();
|
|
local_irq_restore(flags);
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
/*
|
|
* For single stepping, try to only enter on the processor
|
|
* that was single stepping. To guard against a deadlock, the
|
|
* kernel will only try for the value of sstep_tries before
|
|
* giving up and continuing on.
|
|
*/
|
|
if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
|
|
(kgdb_info[cpu].task &&
|
|
kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
|
|
atomic_set(&kgdb_active, -1);
|
|
raw_spin_unlock(&dbg_master_lock);
|
|
dbg_touch_watchdogs();
|
|
local_irq_restore(flags);
|
|
rcu_read_unlock();
|
|
|
|
goto acquirelock;
|
|
}
|
|
|
|
if (!kgdb_io_ready(1)) {
|
|
kgdb_info[cpu].ret_state = 1;
|
|
goto kgdb_restore; /* No I/O connection, resume the system */
|
|
}
|
|
|
|
/*
|
|
* Don't enter if we have hit a removed breakpoint.
|
|
*/
|
|
if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
|
|
goto kgdb_restore;
|
|
|
|
atomic_inc(&ignore_console_lock_warning);
|
|
|
|
/* Call the I/O driver's pre_exception routine */
|
|
if (dbg_io_ops->pre_exception)
|
|
dbg_io_ops->pre_exception();
|
|
|
|
/*
|
|
* Get the passive CPU lock which will hold all the non-primary
|
|
* CPU in a spin state while the debugger is active
|
|
*/
|
|
if (!kgdb_single_step)
|
|
raw_spin_lock(&dbg_slave_lock);
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* If send_ready set, slaves are already waiting */
|
|
if (ks->send_ready)
|
|
atomic_set(ks->send_ready, 1);
|
|
|
|
/* Signal the other CPUs to enter kgdb_wait() */
|
|
else if ((!kgdb_single_step) && kgdb_do_roundup)
|
|
kgdb_roundup_cpus();
|
|
#endif
|
|
|
|
/*
|
|
* Wait for the other CPUs to be notified and be waiting for us:
|
|
*/
|
|
time_left = MSEC_PER_SEC;
|
|
while (kgdb_do_roundup && --time_left &&
|
|
(atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
|
|
online_cpus)
|
|
udelay(1000);
|
|
if (!time_left)
|
|
pr_crit("Timed out waiting for secondary CPUs.\n");
|
|
|
|
/*
|
|
* At this point the primary processor is completely
|
|
* in the debugger and all secondary CPUs are quiescent
|
|
*/
|
|
dbg_deactivate_sw_breakpoints();
|
|
kgdb_single_step = 0;
|
|
kgdb_contthread = current;
|
|
exception_level = 0;
|
|
trace_on = tracing_is_on();
|
|
if (trace_on)
|
|
tracing_off();
|
|
|
|
while (1) {
|
|
cpu_master_loop:
|
|
if (dbg_kdb_mode) {
|
|
kgdb_connected = 1;
|
|
error = kdb_stub(ks);
|
|
if (error == -1)
|
|
continue;
|
|
kgdb_connected = 0;
|
|
} else {
|
|
/*
|
|
* This is a brutal way to interfere with the debugger
|
|
* and prevent gdb being used to poke at kernel memory.
|
|
* This could cause trouble if lockdown is applied when
|
|
* there is already an active gdb session. For now the
|
|
* answer is simply "don't do that". Typically lockdown
|
|
* *will* be applied before the debug core gets started
|
|
* so only developers using kgdb for fairly advanced
|
|
* early kernel debug can be biten by this. Hopefully
|
|
* they are sophisticated enough to take care of
|
|
* themselves, especially with help from the lockdown
|
|
* message printed on the console!
|
|
*/
|
|
if (security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL)) {
|
|
if (IS_ENABLED(CONFIG_KGDB_KDB)) {
|
|
/* Switch back to kdb if possible... */
|
|
dbg_kdb_mode = 1;
|
|
continue;
|
|
} else {
|
|
/* ... otherwise just bail */
|
|
break;
|
|
}
|
|
}
|
|
error = gdb_serial_stub(ks);
|
|
}
|
|
|
|
if (error == DBG_PASS_EVENT) {
|
|
dbg_kdb_mode = !dbg_kdb_mode;
|
|
} else if (error == DBG_SWITCH_CPU_EVENT) {
|
|
kgdb_info[dbg_switch_cpu].exception_state |=
|
|
DCPU_NEXT_MASTER;
|
|
goto cpu_loop;
|
|
} else {
|
|
kgdb_info[cpu].ret_state = error;
|
|
break;
|
|
}
|
|
}
|
|
|
|
dbg_activate_sw_breakpoints();
|
|
|
|
/* Call the I/O driver's post_exception routine */
|
|
if (dbg_io_ops->post_exception)
|
|
dbg_io_ops->post_exception();
|
|
|
|
atomic_dec(&ignore_console_lock_warning);
|
|
|
|
if (!kgdb_single_step) {
|
|
raw_spin_unlock(&dbg_slave_lock);
|
|
/* Wait till all the CPUs have quit from the debugger. */
|
|
while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
|
|
cpu_relax();
|
|
}
|
|
|
|
kgdb_restore:
|
|
if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
|
|
int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
|
|
if (kgdb_info[sstep_cpu].task)
|
|
kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
|
|
else
|
|
kgdb_sstep_pid = 0;
|
|
}
|
|
if (arch_kgdb_ops.correct_hw_break)
|
|
arch_kgdb_ops.correct_hw_break();
|
|
if (trace_on)
|
|
tracing_on();
|
|
|
|
kgdb_info[cpu].debuggerinfo = NULL;
|
|
kgdb_info[cpu].task = NULL;
|
|
kgdb_info[cpu].exception_state &=
|
|
~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
|
|
kgdb_info[cpu].enter_kgdb--;
|
|
smp_mb__before_atomic();
|
|
atomic_dec(&masters_in_kgdb);
|
|
/* Free kgdb_active */
|
|
atomic_set(&kgdb_active, -1);
|
|
raw_spin_unlock(&dbg_master_lock);
|
|
dbg_touch_watchdogs();
|
|
local_irq_restore(flags);
|
|
rcu_read_unlock();
|
|
|
|
return kgdb_info[cpu].ret_state;
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_cpu_enter);
|
|
|
|
/*
|
|
* kgdb_handle_exception() - main entry point from a kernel exception
|
|
*
|
|
* Locking hierarchy:
|
|
* interface locks, if any (begin_session)
|
|
* kgdb lock (kgdb_active)
|
|
*/
|
|
int
|
|
kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
|
|
{
|
|
struct kgdb_state kgdb_var;
|
|
struct kgdb_state *ks = &kgdb_var;
|
|
int ret = 0;
|
|
|
|
if (arch_kgdb_ops.enable_nmi)
|
|
arch_kgdb_ops.enable_nmi(0);
|
|
/*
|
|
* Avoid entering the debugger if we were triggered due to an oops
|
|
* but panic_timeout indicates the system should automatically
|
|
* reboot on panic. We don't want to get stuck waiting for input
|
|
* on such systems, especially if its "just" an oops.
|
|
*/
|
|
if (signo != SIGTRAP && panic_timeout)
|
|
return 1;
|
|
|
|
memset(ks, 0, sizeof(struct kgdb_state));
|
|
ks->cpu = raw_smp_processor_id();
|
|
ks->ex_vector = evector;
|
|
ks->signo = signo;
|
|
ks->err_code = ecode;
|
|
ks->linux_regs = regs;
|
|
|
|
if (kgdb_reenter_check(ks))
|
|
goto out; /* Ouch, double exception ! */
|
|
if (kgdb_info[ks->cpu].enter_kgdb != 0)
|
|
goto out;
|
|
|
|
ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
|
|
out:
|
|
if (arch_kgdb_ops.enable_nmi)
|
|
arch_kgdb_ops.enable_nmi(1);
|
|
return ret;
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_handle_exception);
|
|
|
|
/*
|
|
* GDB places a breakpoint at this function to know dynamically loaded objects.
|
|
*/
|
|
static int module_event(struct notifier_block *self, unsigned long val,
|
|
void *data)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block dbg_module_load_nb = {
|
|
.notifier_call = module_event,
|
|
};
|
|
|
|
int kgdb_nmicallback(int cpu, void *regs)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
struct kgdb_state kgdb_var;
|
|
struct kgdb_state *ks = &kgdb_var;
|
|
|
|
kgdb_info[cpu].rounding_up = false;
|
|
|
|
memset(ks, 0, sizeof(struct kgdb_state));
|
|
ks->cpu = cpu;
|
|
ks->linux_regs = regs;
|
|
|
|
if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
|
|
raw_spin_is_locked(&dbg_master_lock)) {
|
|
kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
|
|
return 0;
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_nmicallback);
|
|
|
|
int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
|
|
atomic_t *send_ready)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (!kgdb_io_ready(0) || !send_ready)
|
|
return 1;
|
|
|
|
if (kgdb_info[cpu].enter_kgdb == 0) {
|
|
struct kgdb_state kgdb_var;
|
|
struct kgdb_state *ks = &kgdb_var;
|
|
|
|
memset(ks, 0, sizeof(struct kgdb_state));
|
|
ks->cpu = cpu;
|
|
ks->ex_vector = trapnr;
|
|
ks->signo = SIGTRAP;
|
|
ks->err_code = err_code;
|
|
ks->linux_regs = regs;
|
|
ks->send_ready = send_ready;
|
|
kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
|
|
return 0;
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
NOKPROBE_SYMBOL(kgdb_nmicallin);
|
|
|
|
static void kgdb_console_write(struct console *co, const char *s,
|
|
unsigned count)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* If we're debugging, or KGDB has not connected, don't try
|
|
* and print. */
|
|
if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
gdbstub_msg_write(s, count);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static struct console kgdbcons = {
|
|
.name = "kgdb",
|
|
.write = kgdb_console_write,
|
|
.flags = CON_PRINTBUFFER | CON_ENABLED,
|
|
.index = -1,
|
|
};
|
|
|
|
static int __init opt_kgdb_con(char *str)
|
|
{
|
|
kgdb_use_con = 1;
|
|
|
|
if (kgdb_io_module_registered && !kgdb_con_registered) {
|
|
register_console(&kgdbcons);
|
|
kgdb_con_registered = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
early_param("kgdbcon", opt_kgdb_con);
|
|
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
static void sysrq_handle_dbg(u8 key)
|
|
{
|
|
if (!dbg_io_ops) {
|
|
pr_crit("ERROR: No KGDB I/O module available\n");
|
|
return;
|
|
}
|
|
if (!kgdb_connected) {
|
|
#ifdef CONFIG_KGDB_KDB
|
|
if (!dbg_kdb_mode)
|
|
pr_crit("KGDB or $3#33 for KDB\n");
|
|
#else
|
|
pr_crit("Entering KGDB\n");
|
|
#endif
|
|
}
|
|
|
|
kgdb_breakpoint();
|
|
}
|
|
|
|
static const struct sysrq_key_op sysrq_dbg_op = {
|
|
.handler = sysrq_handle_dbg,
|
|
.help_msg = "debug(g)",
|
|
.action_msg = "DEBUG",
|
|
};
|
|
#endif
|
|
|
|
void kgdb_panic(const char *msg)
|
|
{
|
|
if (!kgdb_io_module_registered)
|
|
return;
|
|
|
|
/*
|
|
* We don't want to get stuck waiting for input from user if
|
|
* "panic_timeout" indicates the system should automatically
|
|
* reboot on panic.
|
|
*/
|
|
if (panic_timeout)
|
|
return;
|
|
|
|
debug_locks_off();
|
|
console_flush_on_panic(CONSOLE_FLUSH_PENDING);
|
|
|
|
if (dbg_kdb_mode)
|
|
kdb_printf("PANIC: %s\n", msg);
|
|
|
|
kgdb_breakpoint();
|
|
}
|
|
|
|
static void kgdb_initial_breakpoint(void)
|
|
{
|
|
kgdb_break_asap = 0;
|
|
|
|
pr_crit("Waiting for connection from remote gdb...\n");
|
|
kgdb_breakpoint();
|
|
}
|
|
|
|
void __weak kgdb_arch_late(void)
|
|
{
|
|
}
|
|
|
|
void __init dbg_late_init(void)
|
|
{
|
|
dbg_is_early = false;
|
|
if (kgdb_io_module_registered)
|
|
kgdb_arch_late();
|
|
kdb_init(KDB_INIT_FULL);
|
|
|
|
if (kgdb_io_module_registered && kgdb_break_asap)
|
|
kgdb_initial_breakpoint();
|
|
}
|
|
|
|
static int
|
|
dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
|
|
{
|
|
/*
|
|
* Take the following action on reboot notify depending on value:
|
|
* 1 == Enter debugger
|
|
* 0 == [the default] detach debug client
|
|
* -1 == Do nothing... and use this until the board resets
|
|
*/
|
|
switch (kgdbreboot) {
|
|
case 1:
|
|
kgdb_breakpoint();
|
|
goto done;
|
|
case -1:
|
|
goto done;
|
|
}
|
|
if (!dbg_kdb_mode)
|
|
gdbstub_exit(code);
|
|
done:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block dbg_reboot_notifier = {
|
|
.notifier_call = dbg_notify_reboot,
|
|
.next = NULL,
|
|
.priority = INT_MAX,
|
|
};
|
|
|
|
static void kgdb_register_callbacks(void)
|
|
{
|
|
if (!kgdb_io_module_registered) {
|
|
kgdb_io_module_registered = 1;
|
|
kgdb_arch_init();
|
|
if (!dbg_is_early)
|
|
kgdb_arch_late();
|
|
register_module_notifier(&dbg_module_load_nb);
|
|
register_reboot_notifier(&dbg_reboot_notifier);
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
register_sysrq_key('g', &sysrq_dbg_op);
|
|
#endif
|
|
if (kgdb_use_con && !kgdb_con_registered) {
|
|
register_console(&kgdbcons);
|
|
kgdb_con_registered = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void kgdb_unregister_callbacks(void)
|
|
{
|
|
/*
|
|
* When this routine is called KGDB should unregister from
|
|
* handlers and clean up, making sure it is not handling any
|
|
* break exceptions at the time.
|
|
*/
|
|
if (kgdb_io_module_registered) {
|
|
kgdb_io_module_registered = 0;
|
|
unregister_reboot_notifier(&dbg_reboot_notifier);
|
|
unregister_module_notifier(&dbg_module_load_nb);
|
|
kgdb_arch_exit();
|
|
#ifdef CONFIG_MAGIC_SYSRQ
|
|
unregister_sysrq_key('g', &sysrq_dbg_op);
|
|
#endif
|
|
if (kgdb_con_registered) {
|
|
unregister_console(&kgdbcons);
|
|
kgdb_con_registered = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* kgdb_register_io_module - register KGDB IO module
|
|
* @new_dbg_io_ops: the io ops vector
|
|
*
|
|
* Register it with the KGDB core.
|
|
*/
|
|
int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
|
|
{
|
|
struct kgdb_io *old_dbg_io_ops;
|
|
int err;
|
|
|
|
spin_lock(&kgdb_registration_lock);
|
|
|
|
old_dbg_io_ops = dbg_io_ops;
|
|
if (old_dbg_io_ops) {
|
|
if (!old_dbg_io_ops->deinit) {
|
|
spin_unlock(&kgdb_registration_lock);
|
|
|
|
pr_err("KGDB I/O driver %s can't replace %s.\n",
|
|
new_dbg_io_ops->name, old_dbg_io_ops->name);
|
|
return -EBUSY;
|
|
}
|
|
pr_info("Replacing I/O driver %s with %s\n",
|
|
old_dbg_io_ops->name, new_dbg_io_ops->name);
|
|
}
|
|
|
|
if (new_dbg_io_ops->init) {
|
|
err = new_dbg_io_ops->init();
|
|
if (err) {
|
|
spin_unlock(&kgdb_registration_lock);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
dbg_io_ops = new_dbg_io_ops;
|
|
|
|
spin_unlock(&kgdb_registration_lock);
|
|
|
|
if (old_dbg_io_ops) {
|
|
old_dbg_io_ops->deinit();
|
|
return 0;
|
|
}
|
|
|
|
pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
|
|
|
|
/* Arm KGDB now. */
|
|
kgdb_register_callbacks();
|
|
|
|
if (kgdb_break_asap &&
|
|
(!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
|
|
kgdb_initial_breakpoint();
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kgdb_register_io_module);
|
|
|
|
/**
|
|
* kgdb_unregister_io_module - unregister KGDB IO module
|
|
* @old_dbg_io_ops: the io ops vector
|
|
*
|
|
* Unregister it with the KGDB core.
|
|
*/
|
|
void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
|
|
{
|
|
BUG_ON(kgdb_connected);
|
|
|
|
/*
|
|
* KGDB is no longer able to communicate out, so
|
|
* unregister our callbacks and reset state.
|
|
*/
|
|
kgdb_unregister_callbacks();
|
|
|
|
spin_lock(&kgdb_registration_lock);
|
|
|
|
WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
|
|
dbg_io_ops = NULL;
|
|
|
|
spin_unlock(&kgdb_registration_lock);
|
|
|
|
if (old_dbg_io_ops->deinit)
|
|
old_dbg_io_ops->deinit();
|
|
|
|
pr_info("Unregistered I/O driver %s, debugger disabled\n",
|
|
old_dbg_io_ops->name);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
|
|
|
|
int dbg_io_get_char(void)
|
|
{
|
|
int ret = dbg_io_ops->read_char();
|
|
if (ret == NO_POLL_CHAR)
|
|
return -1;
|
|
if (!dbg_kdb_mode)
|
|
return ret;
|
|
if (ret == 127)
|
|
return 8;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* kgdb_breakpoint - generate breakpoint exception
|
|
*
|
|
* This function will generate a breakpoint exception. It is used at the
|
|
* beginning of a program to sync up with a debugger and can be used
|
|
* otherwise as a quick means to stop program execution and "break" into
|
|
* the debugger.
|
|
*/
|
|
noinline void kgdb_breakpoint(void)
|
|
{
|
|
atomic_inc(&kgdb_setting_breakpoint);
|
|
wmb(); /* Sync point before breakpoint */
|
|
arch_kgdb_breakpoint();
|
|
wmb(); /* Sync point after breakpoint */
|
|
atomic_dec(&kgdb_setting_breakpoint);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kgdb_breakpoint);
|
|
|
|
static int __init opt_kgdb_wait(char *str)
|
|
{
|
|
kgdb_break_asap = 1;
|
|
|
|
kdb_init(KDB_INIT_EARLY);
|
|
if (kgdb_io_module_registered &&
|
|
IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
|
|
kgdb_initial_breakpoint();
|
|
|
|
return 0;
|
|
}
|
|
|
|
early_param("kgdbwait", opt_kgdb_wait);
|