mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-22 16:06:04 -05:00
6a7e17b220
Currently only stacked devices need to explicitly enable atomic writes by setting BLK_FEAT_ATOMIC_WRITES_STACKED flag. This does not work well for device mapper stacking devices, as there many sets of limits are stacked and what is the 'bottom' and 'top' device can swapped. This means that BLK_FEAT_ATOMIC_WRITES_STACKED needs to be set for many queue limits, which is messy. Generalize enabling atomic writes enabling by ensuring that all devices must explicitly set a flag - that includes NVMe, SCSI sd, and md raid. Signed-off-by: John Garry <john.g.garry@oracle.com> Reviewed-by: Mike Snitzer <snitzer@kernel.org> Link: https://lore.kernel.org/r/20250116170301.474130-2-john.g.garry@oracle.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
934 lines
29 KiB
C
934 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions related to setting various queue properties from drivers
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blk-integrity.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/backing-dev-defs.h>
|
|
#include <linux/gcd.h>
|
|
#include <linux/lcm.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-rq-qos.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
|
|
{
|
|
q->rq_timeout = timeout;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
|
|
|
|
/**
|
|
* blk_set_stacking_limits - set default limits for stacking devices
|
|
* @lim: the queue_limits structure to reset
|
|
*
|
|
* Prepare queue limits for applying limits from underlying devices using
|
|
* blk_stack_limits().
|
|
*/
|
|
void blk_set_stacking_limits(struct queue_limits *lim)
|
|
{
|
|
memset(lim, 0, sizeof(*lim));
|
|
lim->logical_block_size = SECTOR_SIZE;
|
|
lim->physical_block_size = SECTOR_SIZE;
|
|
lim->io_min = SECTOR_SIZE;
|
|
lim->discard_granularity = SECTOR_SIZE;
|
|
lim->dma_alignment = SECTOR_SIZE - 1;
|
|
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
|
|
|
|
/* Inherit limits from component devices */
|
|
lim->max_segments = USHRT_MAX;
|
|
lim->max_discard_segments = USHRT_MAX;
|
|
lim->max_hw_sectors = UINT_MAX;
|
|
lim->max_segment_size = UINT_MAX;
|
|
lim->max_sectors = UINT_MAX;
|
|
lim->max_dev_sectors = UINT_MAX;
|
|
lim->max_write_zeroes_sectors = UINT_MAX;
|
|
lim->max_hw_zone_append_sectors = UINT_MAX;
|
|
lim->max_user_discard_sectors = UINT_MAX;
|
|
}
|
|
EXPORT_SYMBOL(blk_set_stacking_limits);
|
|
|
|
void blk_apply_bdi_limits(struct backing_dev_info *bdi,
|
|
struct queue_limits *lim)
|
|
{
|
|
/*
|
|
* For read-ahead of large files to be effective, we need to read ahead
|
|
* at least twice the optimal I/O size.
|
|
*/
|
|
bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
|
|
bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
|
|
}
|
|
|
|
static int blk_validate_zoned_limits(struct queue_limits *lim)
|
|
{
|
|
if (!(lim->features & BLK_FEAT_ZONED)) {
|
|
if (WARN_ON_ONCE(lim->max_open_zones) ||
|
|
WARN_ON_ONCE(lim->max_active_zones) ||
|
|
WARN_ON_ONCE(lim->zone_write_granularity) ||
|
|
WARN_ON_ONCE(lim->max_zone_append_sectors))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Given that active zones include open zones, the maximum number of
|
|
* open zones cannot be larger than the maximum number of active zones.
|
|
*/
|
|
if (lim->max_active_zones &&
|
|
lim->max_open_zones > lim->max_active_zones)
|
|
return -EINVAL;
|
|
|
|
if (lim->zone_write_granularity < lim->logical_block_size)
|
|
lim->zone_write_granularity = lim->logical_block_size;
|
|
|
|
/*
|
|
* The Zone Append size is limited by the maximum I/O size and the zone
|
|
* size given that it can't span zones.
|
|
*
|
|
* If no max_hw_zone_append_sectors limit is provided, the block layer
|
|
* will emulated it, else we're also bound by the hardware limit.
|
|
*/
|
|
lim->max_zone_append_sectors =
|
|
min_not_zero(lim->max_hw_zone_append_sectors,
|
|
min(lim->chunk_sectors, lim->max_hw_sectors));
|
|
return 0;
|
|
}
|
|
|
|
static int blk_validate_integrity_limits(struct queue_limits *lim)
|
|
{
|
|
struct blk_integrity *bi = &lim->integrity;
|
|
|
|
if (!bi->tuple_size) {
|
|
if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
|
|
bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
|
|
pr_warn("invalid PI settings.\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
|
|
pr_warn("integrity support disabled.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
|
|
(bi->flags & BLK_INTEGRITY_REF_TAG)) {
|
|
pr_warn("ref tag not support without checksum.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!bi->interval_exp)
|
|
bi->interval_exp = ilog2(lim->logical_block_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns max guaranteed bytes which we can fit in a bio.
|
|
*
|
|
* We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
|
|
* so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
|
|
* the first and last segments.
|
|
*/
|
|
static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
|
|
{
|
|
unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
|
|
unsigned int length;
|
|
|
|
length = min(max_segments, 2) * lim->logical_block_size;
|
|
if (max_segments > 2)
|
|
length += (max_segments - 2) * PAGE_SIZE;
|
|
|
|
return length;
|
|
}
|
|
|
|
static void blk_atomic_writes_update_limits(struct queue_limits *lim)
|
|
{
|
|
unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
|
|
blk_queue_max_guaranteed_bio(lim));
|
|
|
|
unit_limit = rounddown_pow_of_two(unit_limit);
|
|
|
|
lim->atomic_write_max_sectors =
|
|
min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
|
|
lim->max_hw_sectors);
|
|
lim->atomic_write_unit_min =
|
|
min(lim->atomic_write_hw_unit_min, unit_limit);
|
|
lim->atomic_write_unit_max =
|
|
min(lim->atomic_write_hw_unit_max, unit_limit);
|
|
lim->atomic_write_boundary_sectors =
|
|
lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
|
|
}
|
|
|
|
static void blk_validate_atomic_write_limits(struct queue_limits *lim)
|
|
{
|
|
unsigned int boundary_sectors;
|
|
|
|
if (!(lim->features & BLK_FEAT_ATOMIC_WRITES))
|
|
goto unsupported;
|
|
|
|
if (!lim->atomic_write_hw_max)
|
|
goto unsupported;
|
|
|
|
if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
|
|
goto unsupported;
|
|
|
|
if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
|
|
goto unsupported;
|
|
|
|
if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
|
|
lim->atomic_write_hw_unit_max))
|
|
goto unsupported;
|
|
|
|
if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
|
|
lim->atomic_write_hw_max))
|
|
goto unsupported;
|
|
|
|
boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
|
|
|
|
if (boundary_sectors) {
|
|
if (WARN_ON_ONCE(lim->atomic_write_hw_max >
|
|
lim->atomic_write_hw_boundary))
|
|
goto unsupported;
|
|
/*
|
|
* A feature of boundary support is that it disallows bios to
|
|
* be merged which would result in a merged request which
|
|
* crosses either a chunk sector or atomic write HW boundary,
|
|
* even though chunk sectors may be just set for performance.
|
|
* For simplicity, disallow atomic writes for a chunk sector
|
|
* which is non-zero and smaller than atomic write HW boundary.
|
|
* Furthermore, chunk sectors must be a multiple of atomic
|
|
* write HW boundary. Otherwise boundary support becomes
|
|
* complicated.
|
|
* Devices which do not conform to these rules can be dealt
|
|
* with if and when they show up.
|
|
*/
|
|
if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors))
|
|
goto unsupported;
|
|
|
|
/*
|
|
* The boundary size just needs to be a multiple of unit_max
|
|
* (and not necessarily a power-of-2), so this following check
|
|
* could be relaxed in future.
|
|
* Furthermore, if needed, unit_max could even be reduced so
|
|
* that it is compliant with a !power-of-2 boundary.
|
|
*/
|
|
if (!is_power_of_2(boundary_sectors))
|
|
goto unsupported;
|
|
}
|
|
|
|
blk_atomic_writes_update_limits(lim);
|
|
return;
|
|
|
|
unsupported:
|
|
lim->atomic_write_max_sectors = 0;
|
|
lim->atomic_write_boundary_sectors = 0;
|
|
lim->atomic_write_unit_min = 0;
|
|
lim->atomic_write_unit_max = 0;
|
|
}
|
|
|
|
/*
|
|
* Check that the limits in lim are valid, initialize defaults for unset
|
|
* values, and cap values based on others where needed.
|
|
*/
|
|
int blk_validate_limits(struct queue_limits *lim)
|
|
{
|
|
unsigned int max_hw_sectors;
|
|
unsigned int logical_block_sectors;
|
|
int err;
|
|
|
|
/*
|
|
* Unless otherwise specified, default to 512 byte logical blocks and a
|
|
* physical block size equal to the logical block size.
|
|
*/
|
|
if (!lim->logical_block_size)
|
|
lim->logical_block_size = SECTOR_SIZE;
|
|
else if (blk_validate_block_size(lim->logical_block_size)) {
|
|
pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
|
|
return -EINVAL;
|
|
}
|
|
if (lim->physical_block_size < lim->logical_block_size)
|
|
lim->physical_block_size = lim->logical_block_size;
|
|
|
|
/*
|
|
* The minimum I/O size defaults to the physical block size unless
|
|
* explicitly overridden.
|
|
*/
|
|
if (lim->io_min < lim->physical_block_size)
|
|
lim->io_min = lim->physical_block_size;
|
|
|
|
/*
|
|
* The optimal I/O size may not be aligned to physical block size
|
|
* (because it may be limited by dma engines which have no clue about
|
|
* block size of the disks attached to them), so we round it down here.
|
|
*/
|
|
lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
|
|
|
|
/*
|
|
* max_hw_sectors has a somewhat weird default for historical reason,
|
|
* but driver really should set their own instead of relying on this
|
|
* value.
|
|
*
|
|
* The block layer relies on the fact that every driver can
|
|
* handle at lest a page worth of data per I/O, and needs the value
|
|
* aligned to the logical block size.
|
|
*/
|
|
if (!lim->max_hw_sectors)
|
|
lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
|
|
if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
|
|
return -EINVAL;
|
|
logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
|
|
if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
|
|
return -EINVAL;
|
|
lim->max_hw_sectors = round_down(lim->max_hw_sectors,
|
|
logical_block_sectors);
|
|
|
|
/*
|
|
* The actual max_sectors value is a complex beast and also takes the
|
|
* max_dev_sectors value (set by SCSI ULPs) and a user configurable
|
|
* value into account. The ->max_sectors value is always calculated
|
|
* from these, so directly setting it won't have any effect.
|
|
*/
|
|
max_hw_sectors = min_not_zero(lim->max_hw_sectors,
|
|
lim->max_dev_sectors);
|
|
if (lim->max_user_sectors) {
|
|
if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
|
|
return -EINVAL;
|
|
lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
|
|
} else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
|
|
lim->max_sectors =
|
|
min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
|
|
} else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
|
|
lim->max_sectors =
|
|
min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
|
|
} else {
|
|
lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
|
|
}
|
|
lim->max_sectors = round_down(lim->max_sectors,
|
|
logical_block_sectors);
|
|
|
|
/*
|
|
* Random default for the maximum number of segments. Driver should not
|
|
* rely on this and set their own.
|
|
*/
|
|
if (!lim->max_segments)
|
|
lim->max_segments = BLK_MAX_SEGMENTS;
|
|
|
|
lim->max_discard_sectors =
|
|
min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
|
|
|
|
if (!lim->max_discard_segments)
|
|
lim->max_discard_segments = 1;
|
|
|
|
if (lim->discard_granularity < lim->physical_block_size)
|
|
lim->discard_granularity = lim->physical_block_size;
|
|
|
|
/*
|
|
* By default there is no limit on the segment boundary alignment,
|
|
* but if there is one it can't be smaller than the page size as
|
|
* that would break all the normal I/O patterns.
|
|
*/
|
|
if (!lim->seg_boundary_mask)
|
|
lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
|
|
if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Stacking device may have both virtual boundary and max segment
|
|
* size limit, so allow this setting now, and long-term the two
|
|
* might need to move out of stacking limits since we have immutable
|
|
* bvec and lower layer bio splitting is supposed to handle the two
|
|
* correctly.
|
|
*/
|
|
if (lim->virt_boundary_mask) {
|
|
if (!lim->max_segment_size)
|
|
lim->max_segment_size = UINT_MAX;
|
|
} else {
|
|
/*
|
|
* The maximum segment size has an odd historic 64k default that
|
|
* drivers probably should override. Just like the I/O size we
|
|
* require drivers to at least handle a full page per segment.
|
|
*/
|
|
if (!lim->max_segment_size)
|
|
lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
|
|
if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* We require drivers to at least do logical block aligned I/O, but
|
|
* historically could not check for that due to the separate calls
|
|
* to set the limits. Once the transition is finished the check
|
|
* below should be narrowed down to check the logical block size.
|
|
*/
|
|
if (!lim->dma_alignment)
|
|
lim->dma_alignment = SECTOR_SIZE - 1;
|
|
if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
|
|
return -EINVAL;
|
|
|
|
if (lim->alignment_offset) {
|
|
lim->alignment_offset &= (lim->physical_block_size - 1);
|
|
lim->flags &= ~BLK_FLAG_MISALIGNED;
|
|
}
|
|
|
|
if (!(lim->features & BLK_FEAT_WRITE_CACHE))
|
|
lim->features &= ~BLK_FEAT_FUA;
|
|
|
|
blk_validate_atomic_write_limits(lim);
|
|
|
|
err = blk_validate_integrity_limits(lim);
|
|
if (err)
|
|
return err;
|
|
return blk_validate_zoned_limits(lim);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_validate_limits);
|
|
|
|
/*
|
|
* Set the default limits for a newly allocated queue. @lim contains the
|
|
* initial limits set by the driver, which could be no limit in which case
|
|
* all fields are cleared to zero.
|
|
*/
|
|
int blk_set_default_limits(struct queue_limits *lim)
|
|
{
|
|
/*
|
|
* Most defaults are set by capping the bounds in blk_validate_limits,
|
|
* but max_user_discard_sectors is special and needs an explicit
|
|
* initialization to the max value here.
|
|
*/
|
|
lim->max_user_discard_sectors = UINT_MAX;
|
|
return blk_validate_limits(lim);
|
|
}
|
|
|
|
/**
|
|
* queue_limits_commit_update - commit an atomic update of queue limits
|
|
* @q: queue to update
|
|
* @lim: limits to apply
|
|
*
|
|
* Apply the limits in @lim that were obtained from queue_limits_start_update()
|
|
* and updated by the caller to @q. The caller must have frozen the queue or
|
|
* ensure that there are no outstanding I/Os by other means.
|
|
*
|
|
* Returns 0 if successful, else a negative error code.
|
|
*/
|
|
int queue_limits_commit_update(struct request_queue *q,
|
|
struct queue_limits *lim)
|
|
{
|
|
int error;
|
|
|
|
error = blk_validate_limits(lim);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
#ifdef CONFIG_BLK_INLINE_ENCRYPTION
|
|
if (q->crypto_profile && lim->integrity.tag_size) {
|
|
pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
|
|
error = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
#endif
|
|
|
|
q->limits = *lim;
|
|
if (q->disk)
|
|
blk_apply_bdi_limits(q->disk->bdi, lim);
|
|
out_unlock:
|
|
mutex_unlock(&q->limits_lock);
|
|
return error;
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_commit_update);
|
|
|
|
/**
|
|
* queue_limits_commit_update_frozen - commit an atomic update of queue limits
|
|
* @q: queue to update
|
|
* @lim: limits to apply
|
|
*
|
|
* Apply the limits in @lim that were obtained from queue_limits_start_update()
|
|
* and updated with the new values by the caller to @q. Freezes the queue
|
|
* before the update and unfreezes it after.
|
|
*
|
|
* Returns 0 if successful, else a negative error code.
|
|
*/
|
|
int queue_limits_commit_update_frozen(struct request_queue *q,
|
|
struct queue_limits *lim)
|
|
{
|
|
int ret;
|
|
|
|
blk_mq_freeze_queue(q);
|
|
ret = queue_limits_commit_update(q, lim);
|
|
blk_mq_unfreeze_queue(q);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_commit_update_frozen);
|
|
|
|
/**
|
|
* queue_limits_set - apply queue limits to queue
|
|
* @q: queue to update
|
|
* @lim: limits to apply
|
|
*
|
|
* Apply the limits in @lim that were freshly initialized to @q.
|
|
* To update existing limits use queue_limits_start_update() and
|
|
* queue_limits_commit_update() instead.
|
|
*
|
|
* Returns 0 if successful, else a negative error code.
|
|
*/
|
|
int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
|
|
{
|
|
mutex_lock(&q->limits_lock);
|
|
return queue_limits_commit_update(q, lim);
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_set);
|
|
|
|
static int queue_limit_alignment_offset(const struct queue_limits *lim,
|
|
sector_t sector)
|
|
{
|
|
unsigned int granularity = max(lim->physical_block_size, lim->io_min);
|
|
unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
|
|
<< SECTOR_SHIFT;
|
|
|
|
return (granularity + lim->alignment_offset - alignment) % granularity;
|
|
}
|
|
|
|
static unsigned int queue_limit_discard_alignment(
|
|
const struct queue_limits *lim, sector_t sector)
|
|
{
|
|
unsigned int alignment, granularity, offset;
|
|
|
|
if (!lim->max_discard_sectors)
|
|
return 0;
|
|
|
|
/* Why are these in bytes, not sectors? */
|
|
alignment = lim->discard_alignment >> SECTOR_SHIFT;
|
|
granularity = lim->discard_granularity >> SECTOR_SHIFT;
|
|
|
|
/* Offset of the partition start in 'granularity' sectors */
|
|
offset = sector_div(sector, granularity);
|
|
|
|
/* And why do we do this modulus *again* in blkdev_issue_discard()? */
|
|
offset = (granularity + alignment - offset) % granularity;
|
|
|
|
/* Turn it back into bytes, gaah */
|
|
return offset << SECTOR_SHIFT;
|
|
}
|
|
|
|
static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
|
|
{
|
|
sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
|
|
if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
|
|
sectors = PAGE_SIZE >> SECTOR_SHIFT;
|
|
return sectors;
|
|
}
|
|
|
|
/* Check if second and later bottom devices are compliant */
|
|
static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
|
|
struct queue_limits *b)
|
|
{
|
|
/* We're not going to support different boundary sizes.. yet */
|
|
if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
|
|
return false;
|
|
|
|
/* Can't support this */
|
|
if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
|
|
return false;
|
|
|
|
/* Or this */
|
|
if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
|
|
return false;
|
|
|
|
t->atomic_write_hw_max = min(t->atomic_write_hw_max,
|
|
b->atomic_write_hw_max);
|
|
t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
|
|
b->atomic_write_hw_unit_min);
|
|
t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
|
|
b->atomic_write_hw_unit_max);
|
|
return true;
|
|
}
|
|
|
|
/* Check for valid boundary of first bottom device */
|
|
static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t,
|
|
struct queue_limits *b)
|
|
{
|
|
/*
|
|
* Ensure atomic write boundary is aligned with chunk sectors. Stacked
|
|
* devices store chunk sectors in t->io_min.
|
|
*/
|
|
if (b->atomic_write_hw_boundary > t->io_min &&
|
|
b->atomic_write_hw_boundary % t->io_min)
|
|
return false;
|
|
if (t->io_min > b->atomic_write_hw_boundary &&
|
|
t->io_min % b->atomic_write_hw_boundary)
|
|
return false;
|
|
|
|
t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Check stacking of first bottom device */
|
|
static bool blk_stack_atomic_writes_head(struct queue_limits *t,
|
|
struct queue_limits *b)
|
|
{
|
|
if (b->atomic_write_hw_boundary &&
|
|
!blk_stack_atomic_writes_boundary_head(t, b))
|
|
return false;
|
|
|
|
if (t->io_min <= SECTOR_SIZE) {
|
|
/* No chunk sectors, so use bottom device values directly */
|
|
t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
|
|
t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
|
|
t->atomic_write_hw_max = b->atomic_write_hw_max;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Find values for limits which work for chunk size.
|
|
* b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
|
|
* size (t->io_min), as chunk size is not restricted to a power-of-2.
|
|
* So we need to find highest power-of-2 which works for the chunk
|
|
* size.
|
|
* As an example scenario, we could have b->unit_max = 16K and
|
|
* t->io_min = 24K. For this case, reduce t->unit_max to a value
|
|
* aligned with both limits, i.e. 8K in this example.
|
|
*/
|
|
t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
|
|
while (t->io_min % t->atomic_write_hw_unit_max)
|
|
t->atomic_write_hw_unit_max /= 2;
|
|
|
|
t->atomic_write_hw_unit_min = min(b->atomic_write_hw_unit_min,
|
|
t->atomic_write_hw_unit_max);
|
|
t->atomic_write_hw_max = min(b->atomic_write_hw_max, t->io_min);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void blk_stack_atomic_writes_limits(struct queue_limits *t,
|
|
struct queue_limits *b, sector_t start)
|
|
{
|
|
if (!(b->features & BLK_FEAT_ATOMIC_WRITES))
|
|
goto unsupported;
|
|
|
|
if (!b->atomic_write_hw_unit_min)
|
|
goto unsupported;
|
|
|
|
if (!blk_atomic_write_start_sect_aligned(start, b))
|
|
goto unsupported;
|
|
|
|
/*
|
|
* If atomic_write_hw_max is set, we have already stacked 1x bottom
|
|
* device, so check for compliance.
|
|
*/
|
|
if (t->atomic_write_hw_max) {
|
|
if (!blk_stack_atomic_writes_tail(t, b))
|
|
goto unsupported;
|
|
return;
|
|
}
|
|
|
|
if (!blk_stack_atomic_writes_head(t, b))
|
|
goto unsupported;
|
|
return;
|
|
|
|
unsupported:
|
|
t->atomic_write_hw_max = 0;
|
|
t->atomic_write_hw_unit_max = 0;
|
|
t->atomic_write_hw_unit_min = 0;
|
|
t->atomic_write_hw_boundary = 0;
|
|
}
|
|
|
|
/**
|
|
* blk_stack_limits - adjust queue_limits for stacked devices
|
|
* @t: the stacking driver limits (top device)
|
|
* @b: the underlying queue limits (bottom, component device)
|
|
* @start: first data sector within component device
|
|
*
|
|
* Description:
|
|
* This function is used by stacking drivers like MD and DM to ensure
|
|
* that all component devices have compatible block sizes and
|
|
* alignments. The stacking driver must provide a queue_limits
|
|
* struct (top) and then iteratively call the stacking function for
|
|
* all component (bottom) devices. The stacking function will
|
|
* attempt to combine the values and ensure proper alignment.
|
|
*
|
|
* Returns 0 if the top and bottom queue_limits are compatible. The
|
|
* top device's block sizes and alignment offsets may be adjusted to
|
|
* ensure alignment with the bottom device. If no compatible sizes
|
|
* and alignments exist, -1 is returned and the resulting top
|
|
* queue_limits will have the misaligned flag set to indicate that
|
|
* the alignment_offset is undefined.
|
|
*/
|
|
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
|
|
sector_t start)
|
|
{
|
|
unsigned int top, bottom, alignment, ret = 0;
|
|
|
|
t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
|
|
|
|
/*
|
|
* Some feaures need to be supported both by the stacking driver and all
|
|
* underlying devices. The stacking driver sets these flags before
|
|
* stacking the limits, and this will clear the flags if any of the
|
|
* underlying devices does not support it.
|
|
*/
|
|
if (!(b->features & BLK_FEAT_NOWAIT))
|
|
t->features &= ~BLK_FEAT_NOWAIT;
|
|
if (!(b->features & BLK_FEAT_POLL))
|
|
t->features &= ~BLK_FEAT_POLL;
|
|
|
|
t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
|
|
|
|
t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
|
|
t->max_user_sectors = min_not_zero(t->max_user_sectors,
|
|
b->max_user_sectors);
|
|
t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
|
|
t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
|
|
t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
|
|
b->max_write_zeroes_sectors);
|
|
t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
|
|
b->max_hw_zone_append_sectors);
|
|
|
|
t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
|
|
b->seg_boundary_mask);
|
|
t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
|
|
b->virt_boundary_mask);
|
|
|
|
t->max_segments = min_not_zero(t->max_segments, b->max_segments);
|
|
t->max_discard_segments = min_not_zero(t->max_discard_segments,
|
|
b->max_discard_segments);
|
|
t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
|
|
b->max_integrity_segments);
|
|
|
|
t->max_segment_size = min_not_zero(t->max_segment_size,
|
|
b->max_segment_size);
|
|
|
|
alignment = queue_limit_alignment_offset(b, start);
|
|
|
|
/* Bottom device has different alignment. Check that it is
|
|
* compatible with the current top alignment.
|
|
*/
|
|
if (t->alignment_offset != alignment) {
|
|
|
|
top = max(t->physical_block_size, t->io_min)
|
|
+ t->alignment_offset;
|
|
bottom = max(b->physical_block_size, b->io_min) + alignment;
|
|
|
|
/* Verify that top and bottom intervals line up */
|
|
if (max(top, bottom) % min(top, bottom)) {
|
|
t->flags |= BLK_FLAG_MISALIGNED;
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
t->logical_block_size = max(t->logical_block_size,
|
|
b->logical_block_size);
|
|
|
|
t->physical_block_size = max(t->physical_block_size,
|
|
b->physical_block_size);
|
|
|
|
t->io_min = max(t->io_min, b->io_min);
|
|
t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
|
|
t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
|
|
|
|
/* Set non-power-of-2 compatible chunk_sectors boundary */
|
|
if (b->chunk_sectors)
|
|
t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
|
|
|
|
/* Physical block size a multiple of the logical block size? */
|
|
if (t->physical_block_size & (t->logical_block_size - 1)) {
|
|
t->physical_block_size = t->logical_block_size;
|
|
t->flags |= BLK_FLAG_MISALIGNED;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Minimum I/O a multiple of the physical block size? */
|
|
if (t->io_min & (t->physical_block_size - 1)) {
|
|
t->io_min = t->physical_block_size;
|
|
t->flags |= BLK_FLAG_MISALIGNED;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Optimal I/O a multiple of the physical block size? */
|
|
if (t->io_opt & (t->physical_block_size - 1)) {
|
|
t->io_opt = 0;
|
|
t->flags |= BLK_FLAG_MISALIGNED;
|
|
ret = -1;
|
|
}
|
|
|
|
/* chunk_sectors a multiple of the physical block size? */
|
|
if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
|
|
t->chunk_sectors = 0;
|
|
t->flags |= BLK_FLAG_MISALIGNED;
|
|
ret = -1;
|
|
}
|
|
|
|
/* Find lowest common alignment_offset */
|
|
t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
|
|
% max(t->physical_block_size, t->io_min);
|
|
|
|
/* Verify that new alignment_offset is on a logical block boundary */
|
|
if (t->alignment_offset & (t->logical_block_size - 1)) {
|
|
t->flags |= BLK_FLAG_MISALIGNED;
|
|
ret = -1;
|
|
}
|
|
|
|
t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
|
|
t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
|
|
t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
|
|
|
|
/* Discard alignment and granularity */
|
|
if (b->discard_granularity) {
|
|
alignment = queue_limit_discard_alignment(b, start);
|
|
|
|
t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
|
|
b->max_discard_sectors);
|
|
t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
|
|
b->max_hw_discard_sectors);
|
|
t->discard_granularity = max(t->discard_granularity,
|
|
b->discard_granularity);
|
|
t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
|
|
t->discard_granularity;
|
|
}
|
|
t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
|
|
b->max_secure_erase_sectors);
|
|
t->zone_write_granularity = max(t->zone_write_granularity,
|
|
b->zone_write_granularity);
|
|
if (!(t->features & BLK_FEAT_ZONED)) {
|
|
t->zone_write_granularity = 0;
|
|
t->max_zone_append_sectors = 0;
|
|
}
|
|
blk_stack_atomic_writes_limits(t, b, start);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(blk_stack_limits);
|
|
|
|
/**
|
|
* queue_limits_stack_bdev - adjust queue_limits for stacked devices
|
|
* @t: the stacking driver limits (top device)
|
|
* @bdev: the underlying block device (bottom)
|
|
* @offset: offset to beginning of data within component device
|
|
* @pfx: prefix to use for warnings logged
|
|
*
|
|
* Description:
|
|
* This function is used by stacking drivers like MD and DM to ensure
|
|
* that all component devices have compatible block sizes and
|
|
* alignments. The stacking driver must provide a queue_limits
|
|
* struct (top) and then iteratively call the stacking function for
|
|
* all component (bottom) devices. The stacking function will
|
|
* attempt to combine the values and ensure proper alignment.
|
|
*/
|
|
void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
|
|
sector_t offset, const char *pfx)
|
|
{
|
|
if (blk_stack_limits(t, bdev_limits(bdev),
|
|
get_start_sect(bdev) + offset))
|
|
pr_notice("%s: Warning: Device %pg is misaligned\n",
|
|
pfx, bdev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
|
|
|
|
/**
|
|
* queue_limits_stack_integrity - stack integrity profile
|
|
* @t: target queue limits
|
|
* @b: base queue limits
|
|
*
|
|
* Check if the integrity profile in the @b can be stacked into the
|
|
* target @t. Stacking is possible if either:
|
|
*
|
|
* a) does not have any integrity information stacked into it yet
|
|
* b) the integrity profile in @b is identical to the one in @t
|
|
*
|
|
* If @b can be stacked into @t, return %true. Else return %false and clear the
|
|
* integrity information in @t.
|
|
*/
|
|
bool queue_limits_stack_integrity(struct queue_limits *t,
|
|
struct queue_limits *b)
|
|
{
|
|
struct blk_integrity *ti = &t->integrity;
|
|
struct blk_integrity *bi = &b->integrity;
|
|
|
|
if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
|
|
return true;
|
|
|
|
if (!ti->tuple_size) {
|
|
/* inherit the settings from the first underlying device */
|
|
if (!(ti->flags & BLK_INTEGRITY_STACKED)) {
|
|
ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE |
|
|
(bi->flags & BLK_INTEGRITY_REF_TAG);
|
|
ti->csum_type = bi->csum_type;
|
|
ti->tuple_size = bi->tuple_size;
|
|
ti->pi_offset = bi->pi_offset;
|
|
ti->interval_exp = bi->interval_exp;
|
|
ti->tag_size = bi->tag_size;
|
|
goto done;
|
|
}
|
|
if (!bi->tuple_size)
|
|
goto done;
|
|
}
|
|
|
|
if (ti->tuple_size != bi->tuple_size)
|
|
goto incompatible;
|
|
if (ti->interval_exp != bi->interval_exp)
|
|
goto incompatible;
|
|
if (ti->tag_size != bi->tag_size)
|
|
goto incompatible;
|
|
if (ti->csum_type != bi->csum_type)
|
|
goto incompatible;
|
|
if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
|
|
(bi->flags & BLK_INTEGRITY_REF_TAG))
|
|
goto incompatible;
|
|
|
|
done:
|
|
ti->flags |= BLK_INTEGRITY_STACKED;
|
|
return true;
|
|
|
|
incompatible:
|
|
memset(ti, 0, sizeof(*ti));
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
|
|
|
|
/**
|
|
* blk_set_queue_depth - tell the block layer about the device queue depth
|
|
* @q: the request queue for the device
|
|
* @depth: queue depth
|
|
*
|
|
*/
|
|
void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
|
|
{
|
|
q->queue_depth = depth;
|
|
rq_qos_queue_depth_changed(q);
|
|
}
|
|
EXPORT_SYMBOL(blk_set_queue_depth);
|
|
|
|
int bdev_alignment_offset(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (q->limits.flags & BLK_FLAG_MISALIGNED)
|
|
return -1;
|
|
if (bdev_is_partition(bdev))
|
|
return queue_limit_alignment_offset(&q->limits,
|
|
bdev->bd_start_sect);
|
|
return q->limits.alignment_offset;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bdev_alignment_offset);
|
|
|
|
unsigned int bdev_discard_alignment(struct block_device *bdev)
|
|
{
|
|
struct request_queue *q = bdev_get_queue(bdev);
|
|
|
|
if (bdev_is_partition(bdev))
|
|
return queue_limit_discard_alignment(&q->limits,
|
|
bdev->bd_start_sect);
|
|
return q->limits.discard_alignment;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bdev_discard_alignment);
|