mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-22 07:53:11 -05:00
1d6d399223
1) Per-CPU kthreads must stay affine to a single CPU and never execute relevant code on any other CPU. This is currently handled by smpboot code which takes care of CPU-hotplug operations. Affinity here is a correctness constraint. 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't run anywhere else. The affinity is set through kthread_bind_mask() and the subsystem takes care by itself to handle CPU-hotplug operations. Affinity here is assumed to be a correctness constraint. 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This is not a correctness constraint but merely a preference in terms of memory locality. kswapd and kcompactd both fall into this category. The affinity is set manually like for any other task and CPU-hotplug is supposed to be handled by the relevant subsystem so that the task is properly reaffined whenever a given CPU from the node comes up. Also care should be taken so that the node affinity doesn't cross isolated (nohz_full) cpumask boundaries. 4) Similar to the previous point except kthreads have a _preferred_ affinity different than a node. Both RCU boost kthreads and RCU exp kworkers fall into this category as they refer to "RCU nodes" from a distinctly distributed tree. Currently the preferred affinity patterns (3 and 4) have at least 4 identified users, with more or less success when it comes to handle CPU-hotplug operations and CPU isolation. Each of which do it in its own ad-hoc way. This is an infrastructure proposal to handle this with the following API changes: _ kthread_create_on_node() automatically affines the created kthread to its target node unless it has been set as per-cpu or bound with kthread_bind[_mask]() before the first wake-up. - kthread_affine_preferred() is a new function that can be called right after kthread_create_on_node() to specify a preferred affinity different than the specified node. When the preferred affinity can't be applied because the possible targets are offline or isolated (nohz_full), the kthread is affine to the housekeeping CPUs (which means to all online CPUs most of the time or only the non-nohz_full CPUs when nohz_full= is set). kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been converted, along with a few old drivers. Summary of the changes: * Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu() * Introduce task_cpu_fallback_mask() that defines the default last resort affinity of a task to become nohz_full aware * Add some correctness check to ensure kthread_bind() is always called before the first kthread wake up. * Default affine kthread to its preferred node. * Convert kswapd / kcompactd and remove their halfway working ad-hoc affinity implementation * Implement kthreads preferred affinity * Unify kthread worker and kthread API's style * Convert RCU kthreads to the new API and remove the ad-hoc affinity implementation. -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmeNf8gACgkQhSRUR1CO jHedQQ/+IxTjjqQiItzrq41TES2S0desHDq8lNJFb7rsR/DtKFyLx3s67cOYV+cM Yx54QHg2m/Fz4nXMQ7Po5ygOtJGCKBc5C5QQy7y0lVKeTQK+daDfEtBSa3oG7j3C u+E3tTY6qxkbCzymUyaKkHN4/ay2vLvjFS50luV7KMyI3x47Aji+t7VdCX4LCPP2 eAwOALWD0+7qLJ/VF6gsmQLKA4Qx7PQAzBa3KSBmUN9UcN8Gk1bQHCTIQKDHP9LQ v8BXrNZtYX1o2+snNYpX2z6/ECjxkdwriOgqqZY5306hd9RAQ1u46Dx3byrIqjGn ULG/XQ2istPyhTqb/h+RbrobdOcwEUIeqk8hRRbBXE8bPpqUz9EMuaCMxWDbQjgH NTuKG4ifKJ/IqstkkuDkdOiByE/ysMmwqrTXgSnu2ITNL9yY3BEgFbvA95hgo42s f7QCxEfZb1MHcNEMENSMwM3xw5lLMGMpxVZcMQ3gLwyotMBRrhFZm1qZJG7TITYW IDIeCbH4JOMdQwLs3CcWTXio0N5/85NhRNFV+IDn96OrgxObgnMtV8QwNgjXBAJ5 wGeJWt8s34W1Zo3qS9gEuVzEhW4XaxISQQMkHe8faKkK6iHmIB/VjSQikDwwUNQ/ AspYj82RyWBCDZsqhiYh71kpxjvS6Xp0bj39Ce1sNsOnuksxKkQ= =g8In -----END PGP SIGNATURE----- Merge tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks Pull kthread updates from Frederic Weisbecker: "Kthreads affinity follow either of 4 existing different patterns: 1) Per-CPU kthreads must stay affine to a single CPU and never execute relevant code on any other CPU. This is currently handled by smpboot code which takes care of CPU-hotplug operations. Affinity here is a correctness constraint. 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't run anywhere else. The affinity is set through kthread_bind_mask() and the subsystem takes care by itself to handle CPU-hotplug operations. Affinity here is assumed to be a correctness constraint. 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This is not a correctness constraint but merely a preference in terms of memory locality. kswapd and kcompactd both fall into this category. The affinity is set manually like for any other task and CPU-hotplug is supposed to be handled by the relevant subsystem so that the task is properly reaffined whenever a given CPU from the node comes up. Also care should be taken so that the node affinity doesn't cross isolated (nohz_full) cpumask boundaries. 4) Similar to the previous point except kthreads have a _preferred_ affinity different than a node. Both RCU boost kthreads and RCU exp kworkers fall into this category as they refer to "RCU nodes" from a distinctly distributed tree. Currently the preferred affinity patterns (3 and 4) have at least 4 identified users, with more or less success when it comes to handle CPU-hotplug operations and CPU isolation. Each of which do it in its own ad-hoc way. This is an infrastructure proposal to handle this with the following API changes: - kthread_create_on_node() automatically affines the created kthread to its target node unless it has been set as per-cpu or bound with kthread_bind[_mask]() before the first wake-up. - kthread_affine_preferred() is a new function that can be called right after kthread_create_on_node() to specify a preferred affinity different than the specified node. When the preferred affinity can't be applied because the possible targets are offline or isolated (nohz_full), the kthread is affine to the housekeeping CPUs (which means to all online CPUs most of the time or only the non-nohz_full CPUs when nohz_full= is set). kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been converted, along with a few old drivers. Summary of the changes: - Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu() - Introduce task_cpu_fallback_mask() that defines the default last resort affinity of a task to become nohz_full aware - Add some correctness check to ensure kthread_bind() is always called before the first kthread wake up. - Default affine kthread to its preferred node. - Convert kswapd / kcompactd and remove their halfway working ad-hoc affinity implementation - Implement kthreads preferred affinity - Unify kthread worker and kthread API's style - Convert RCU kthreads to the new API and remove the ad-hoc affinity implementation" * tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: kthread: modify kernel-doc function name to match code rcu: Use kthread preferred affinity for RCU exp kworkers treewide: Introduce kthread_run_worker[_on_cpu]() kthread: Unify kthread_create_on_cpu() and kthread_create_worker_on_cpu() automatic format rcu: Use kthread preferred affinity for RCU boost kthread: Implement preferred affinity mm: Create/affine kswapd to its preferred node mm: Create/affine kcompactd to its preferred node kthread: Default affine kthread to its preferred NUMA node kthread: Make sure kthread hasn't started while binding it sched,arm64: Handle CPU isolation on last resort fallback rq selection arm64: Exclude nohz_full CPUs from 32bits el0 support lib: test_objpool: Use kthread_run_on_cpu() kallsyms: Use kthread_run_on_cpu() soc/qman: test: Use kthread_run_on_cpu() arm/bL_switcher: Use kthread_run_on_cpu() |
||
---|---|---|
.. | ||
9p | ||
adfs | ||
affs | ||
afs | ||
autofs | ||
bcachefs | ||
befs | ||
bfs | ||
btrfs | ||
cachefiles | ||
ceph | ||
coda | ||
configfs | ||
cramfs | ||
crypto | ||
debugfs | ||
devpts | ||
dlm | ||
ecryptfs | ||
efivarfs | ||
efs | ||
erofs | ||
exfat | ||
exportfs | ||
ext2 | ||
ext4 | ||
f2fs | ||
fat | ||
freevxfs | ||
fuse | ||
gfs2 | ||
hfs | ||
hfsplus | ||
hostfs | ||
hpfs | ||
hugetlbfs | ||
iomap | ||
isofs | ||
jbd2 | ||
jffs2 | ||
jfs | ||
kernfs | ||
lockd | ||
minix | ||
netfs | ||
nfs | ||
nfs_common | ||
nfsd | ||
nilfs2 | ||
nls | ||
notify | ||
ntfs3 | ||
ocfs2 | ||
omfs | ||
openpromfs | ||
orangefs | ||
overlayfs | ||
proc | ||
pstore | ||
qnx4 | ||
qnx6 | ||
quota | ||
ramfs | ||
romfs | ||
smb | ||
squashfs | ||
sysfs | ||
sysv | ||
tests | ||
tracefs | ||
ubifs | ||
udf | ||
ufs | ||
unicode | ||
vboxsf | ||
verity | ||
xfs | ||
zonefs | ||
aio.c | ||
anon_inodes.c | ||
attr.c | ||
backing-file.c | ||
bad_inode.c | ||
binfmt_elf.c | ||
binfmt_elf_fdpic.c | ||
binfmt_flat.c | ||
binfmt_misc.c | ||
binfmt_script.c | ||
bpf_fs_kfuncs.c | ||
buffer.c | ||
char_dev.c | ||
compat_binfmt_elf.c | ||
coredump.c | ||
d_path.c | ||
dax.c | ||
dcache.c | ||
direct-io.c | ||
drop_caches.c | ||
eventfd.c | ||
eventpoll.c | ||
exec.c | ||
fcntl.c | ||
fhandle.c | ||
file.c | ||
file_table.c | ||
filesystems.c | ||
fs-writeback.c | ||
fs_context.c | ||
fs_parser.c | ||
fs_pin.c | ||
fs_struct.c | ||
fs_types.c | ||
fsopen.c | ||
init.c | ||
inode.c | ||
internal.h | ||
ioctl.c | ||
Kconfig | ||
Kconfig.binfmt | ||
kernel_read_file.c | ||
libfs.c | ||
locks.c | ||
Makefile | ||
mbcache.c | ||
mnt_idmapping.c | ||
mount.h | ||
mpage.c | ||
namei.c | ||
namespace.c | ||
nsfs.c | ||
open.c | ||
pidfs.c | ||
pipe.c | ||
pnode.c | ||
pnode.h | ||
posix_acl.c | ||
proc_namespace.c | ||
read_write.c | ||
readdir.c | ||
remap_range.c | ||
select.c | ||
seq_file.c | ||
signalfd.c | ||
splice.c | ||
stack.c | ||
stat.c | ||
statfs.c | ||
super.c | ||
sync.c | ||
sysctls.c | ||
timerfd.c | ||
userfaultfd.c | ||
utimes.c | ||
xattr.c |