1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 16:06:04 -05:00
linux/drivers/rtc/rtc-88pm80x.c
Uwe Kleine-König e5eab1aeae rtc: Switch back to struct platform_driver::remove()
After commit 0edb555a65 ("platform: Make platform_driver::remove()
return void") .remove() is (again) the right callback to implement for
platform drivers.

Convert all platform drivers below drivers/rtc to use .remove(), with
the eventual goal to drop struct platform_driver::remove_new(). As
.remove() and .remove_new() have the same prototypes, conversion is done
by just changing the structure member name in the driver initializer.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@baylibre.com>
Link: https://lore.kernel.org/r/20241007205803.444994-6-u.kleine-koenig@baylibre.com
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
2024-11-10 22:58:28 +01:00

340 lines
9.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Real Time Clock driver for Marvell 88PM80x PMIC
*
* Copyright (c) 2012 Marvell International Ltd.
* Wenzeng Chen<wzch@marvell.com>
* Qiao Zhou <zhouqiao@marvell.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/regmap.h>
#include <linux/mfd/core.h>
#include <linux/mfd/88pm80x.h>
#include <linux/rtc.h>
#define PM800_RTC_COUNTER1 (0xD1)
#define PM800_RTC_COUNTER2 (0xD2)
#define PM800_RTC_COUNTER3 (0xD3)
#define PM800_RTC_COUNTER4 (0xD4)
#define PM800_RTC_EXPIRE1_1 (0xD5)
#define PM800_RTC_EXPIRE1_2 (0xD6)
#define PM800_RTC_EXPIRE1_3 (0xD7)
#define PM800_RTC_EXPIRE1_4 (0xD8)
#define PM800_RTC_TRIM1 (0xD9)
#define PM800_RTC_TRIM2 (0xDA)
#define PM800_RTC_TRIM3 (0xDB)
#define PM800_RTC_TRIM4 (0xDC)
#define PM800_RTC_EXPIRE2_1 (0xDD)
#define PM800_RTC_EXPIRE2_2 (0xDE)
#define PM800_RTC_EXPIRE2_3 (0xDF)
#define PM800_RTC_EXPIRE2_4 (0xE0)
#define PM800_POWER_DOWN_LOG1 (0xE5)
#define PM800_POWER_DOWN_LOG2 (0xE6)
struct pm80x_rtc_info {
struct pm80x_chip *chip;
struct regmap *map;
struct rtc_device *rtc_dev;
struct device *dev;
int irq;
};
static irqreturn_t rtc_update_handler(int irq, void *data)
{
struct pm80x_rtc_info *info = (struct pm80x_rtc_info *)data;
int mask;
mask = PM800_ALARM | PM800_ALARM_WAKEUP;
regmap_update_bits(info->map, PM800_RTC_CONTROL, mask | PM800_ALARM1_EN,
mask);
rtc_update_irq(info->rtc_dev, 1, RTC_AF);
return IRQ_HANDLED;
}
static int pm80x_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct pm80x_rtc_info *info = dev_get_drvdata(dev);
if (enabled)
regmap_update_bits(info->map, PM800_RTC_CONTROL,
PM800_ALARM1_EN, PM800_ALARM1_EN);
else
regmap_update_bits(info->map, PM800_RTC_CONTROL,
PM800_ALARM1_EN, 0);
return 0;
}
/*
* Calculate the next alarm time given the requested alarm time mask
* and the current time.
*/
static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
struct rtc_time *alrm)
{
unsigned long next_time;
unsigned long now_time;
next->tm_year = now->tm_year;
next->tm_mon = now->tm_mon;
next->tm_mday = now->tm_mday;
next->tm_hour = alrm->tm_hour;
next->tm_min = alrm->tm_min;
next->tm_sec = alrm->tm_sec;
now_time = rtc_tm_to_time64(now);
next_time = rtc_tm_to_time64(next);
if (next_time < now_time) {
/* Advance one day */
next_time += 60 * 60 * 24;
rtc_time64_to_tm(next_time, next);
}
}
static int pm80x_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct pm80x_rtc_info *info = dev_get_drvdata(dev);
unsigned char buf[4];
unsigned long ticks, base, data;
regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4);
base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]);
/* load 32-bit read-only counter */
regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4);
data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
ticks = base + data;
dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
base, data, ticks);
rtc_time64_to_tm(ticks, tm);
return 0;
}
static int pm80x_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct pm80x_rtc_info *info = dev_get_drvdata(dev);
unsigned char buf[4];
unsigned long ticks, base, data;
ticks = rtc_tm_to_time64(tm);
/* load 32-bit read-only counter */
regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4);
data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
base = ticks - data;
dev_dbg(info->dev, "set base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
base, data, ticks);
buf[0] = base & 0xFF;
buf[1] = (base >> 8) & 0xFF;
buf[2] = (base >> 16) & 0xFF;
buf[3] = (base >> 24) & 0xFF;
regmap_raw_write(info->map, PM800_RTC_EXPIRE2_1, buf, 4);
return 0;
}
static int pm80x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pm80x_rtc_info *info = dev_get_drvdata(dev);
unsigned char buf[4];
unsigned long ticks, base, data;
int ret;
regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4);
base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]);
regmap_raw_read(info->map, PM800_RTC_EXPIRE1_1, buf, 4);
data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
ticks = base + data;
dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
base, data, ticks);
rtc_time64_to_tm(ticks, &alrm->time);
regmap_read(info->map, PM800_RTC_CONTROL, &ret);
alrm->enabled = (ret & PM800_ALARM1_EN) ? 1 : 0;
alrm->pending = (ret & (PM800_ALARM | PM800_ALARM_WAKEUP)) ? 1 : 0;
return 0;
}
static int pm80x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct pm80x_rtc_info *info = dev_get_drvdata(dev);
struct rtc_time now_tm, alarm_tm;
unsigned long ticks, base, data;
unsigned char buf[4];
int mask;
regmap_update_bits(info->map, PM800_RTC_CONTROL, PM800_ALARM1_EN, 0);
regmap_raw_read(info->map, PM800_RTC_EXPIRE2_1, buf, 4);
base = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
dev_dbg(info->dev, "%x-%x-%x-%x\n", buf[0], buf[1], buf[2], buf[3]);
/* load 32-bit read-only counter */
regmap_raw_read(info->map, PM800_RTC_COUNTER1, buf, 4);
data = ((unsigned long)buf[3] << 24) | (buf[2] << 16) |
(buf[1] << 8) | buf[0];
ticks = base + data;
dev_dbg(info->dev, "get base:0x%lx, RO count:0x%lx, ticks:0x%lx\n",
base, data, ticks);
rtc_time64_to_tm(ticks, &now_tm);
dev_dbg(info->dev, "%s, now time : %lu\n", __func__, ticks);
rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time);
/* get new ticks for alarm in 24 hours */
ticks = rtc_tm_to_time64(&alarm_tm);
dev_dbg(info->dev, "%s, alarm time: %lu\n", __func__, ticks);
data = ticks - base;
buf[0] = data & 0xff;
buf[1] = (data >> 8) & 0xff;
buf[2] = (data >> 16) & 0xff;
buf[3] = (data >> 24) & 0xff;
regmap_raw_write(info->map, PM800_RTC_EXPIRE1_1, buf, 4);
if (alrm->enabled) {
mask = PM800_ALARM | PM800_ALARM_WAKEUP | PM800_ALARM1_EN;
regmap_update_bits(info->map, PM800_RTC_CONTROL, mask, mask);
} else {
mask = PM800_ALARM | PM800_ALARM_WAKEUP | PM800_ALARM1_EN;
regmap_update_bits(info->map, PM800_RTC_CONTROL, mask,
PM800_ALARM | PM800_ALARM_WAKEUP);
}
return 0;
}
static const struct rtc_class_ops pm80x_rtc_ops = {
.read_time = pm80x_rtc_read_time,
.set_time = pm80x_rtc_set_time,
.read_alarm = pm80x_rtc_read_alarm,
.set_alarm = pm80x_rtc_set_alarm,
.alarm_irq_enable = pm80x_rtc_alarm_irq_enable,
};
#ifdef CONFIG_PM_SLEEP
static int pm80x_rtc_suspend(struct device *dev)
{
return pm80x_dev_suspend(dev);
}
static int pm80x_rtc_resume(struct device *dev)
{
return pm80x_dev_resume(dev);
}
#endif
static SIMPLE_DEV_PM_OPS(pm80x_rtc_pm_ops, pm80x_rtc_suspend, pm80x_rtc_resume);
static int pm80x_rtc_probe(struct platform_device *pdev)
{
struct pm80x_chip *chip = dev_get_drvdata(pdev->dev.parent);
struct pm80x_rtc_pdata *pdata = dev_get_platdata(&pdev->dev);
struct pm80x_rtc_info *info;
struct device_node *node = pdev->dev.of_node;
int ret;
if (!pdata && !node) {
dev_err(&pdev->dev,
"pm80x-rtc requires platform data or of_node\n");
return -EINVAL;
}
if (!pdata) {
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&pdev->dev, "failed to allocate memory\n");
return -ENOMEM;
}
}
info =
devm_kzalloc(&pdev->dev, sizeof(struct pm80x_rtc_info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->irq = platform_get_irq(pdev, 0);
if (info->irq < 0) {
ret = -EINVAL;
goto out;
}
info->chip = chip;
info->map = chip->regmap;
if (!info->map) {
dev_err(&pdev->dev, "no regmap!\n");
ret = -EINVAL;
goto out;
}
info->dev = &pdev->dev;
dev_set_drvdata(&pdev->dev, info);
info->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(info->rtc_dev))
return PTR_ERR(info->rtc_dev);
ret = pm80x_request_irq(chip, info->irq, rtc_update_handler,
IRQF_ONESHOT, "rtc", info);
if (ret < 0) {
dev_err(chip->dev, "Failed to request IRQ: #%d: %d\n",
info->irq, ret);
goto out;
}
info->rtc_dev->ops = &pm80x_rtc_ops;
info->rtc_dev->range_max = U32_MAX;
ret = devm_rtc_register_device(info->rtc_dev);
if (ret)
goto out_rtc;
/*
* enable internal XO instead of internal 3.25MHz clock since it can
* free running in PMIC power-down state.
*/
regmap_update_bits(info->map, PM800_RTC_CONTROL, PM800_RTC1_USE_XO,
PM800_RTC1_USE_XO);
/* remember whether this power up is caused by PMIC RTC or not */
info->rtc_dev->dev.platform_data = &pdata->rtc_wakeup;
device_init_wakeup(&pdev->dev, 1);
return 0;
out_rtc:
pm80x_free_irq(chip, info->irq, info);
out:
return ret;
}
static void pm80x_rtc_remove(struct platform_device *pdev)
{
struct pm80x_rtc_info *info = platform_get_drvdata(pdev);
pm80x_free_irq(info->chip, info->irq, info);
}
static struct platform_driver pm80x_rtc_driver = {
.driver = {
.name = "88pm80x-rtc",
.pm = &pm80x_rtc_pm_ops,
},
.probe = pm80x_rtc_probe,
.remove = pm80x_rtc_remove,
};
module_platform_driver(pm80x_rtc_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Marvell 88PM80x RTC driver");
MODULE_AUTHOR("Qiao Zhou <zhouqiao@marvell.com>");
MODULE_ALIAS("platform:88pm80x-rtc");