1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 16:06:04 -05:00
linux/drivers/spi/spi-amd.c
Raju Rangoju 6c30eee359
spi: spi_amd: Add HIDDMA basic read support
SPI index mode has hardware limitation of reading only 64 bytes per
transaction due to fixed number of FIFO registers. This constraint leads
to performance issues when reading data from NAND/NOR flash devices, as the
controller must issue multiple requests to read 64-byte chunks, even if the
slave can send up to 2 or 4 KB in single transaction. The AMD HID2 SPI
controller supports DMA mode, which allows reading up to 4 KB of data in
single transaction. This patch introduces changes to implement HID2 DMA
read support for the HID2 SPI controller.

Co-developed-by: Krishnamoorthi M <krishnamoorthi.m@amd.com>
Signed-off-by: Krishnamoorthi M <krishnamoorthi.m@amd.com>
Co-developed-by: Akshata MukundShetty <akshata.mukundshetty@amd.com>
Signed-off-by: Akshata MukundShetty <akshata.mukundshetty@amd.com>
Signed-off-by: Raju Rangoju <Raju.Rangoju@amd.com>
Link: https://patch.msgid.link/20240925133644.2922359-9-Raju.Rangoju@amd.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2024-09-30 01:11:56 +02:00

821 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
//
// AMD SPI controller driver
//
// Copyright (c) 2020, Advanced Micro Devices, Inc.
//
// Author: Sanjay R Mehta <sanju.mehta@amd.com>
#include <linux/acpi.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#define AMD_SPI_CTRL0_REG 0x00
#define AMD_SPI_EXEC_CMD BIT(16)
#define AMD_SPI_FIFO_CLEAR BIT(20)
#define AMD_SPI_BUSY BIT(31)
#define AMD_SPI_OPCODE_REG 0x45
#define AMD_SPI_CMD_TRIGGER_REG 0x47
#define AMD_SPI_TRIGGER_CMD BIT(7)
#define AMD_SPI_OPCODE_MASK 0xFF
#define AMD_SPI_ALT_CS_REG 0x1D
#define AMD_SPI_ALT_CS_MASK 0x3
#define AMD_SPI_FIFO_BASE 0x80
#define AMD_SPI_TX_COUNT_REG 0x48
#define AMD_SPI_RX_COUNT_REG 0x4B
#define AMD_SPI_STATUS_REG 0x4C
#define AMD_SPI_ADDR32CTRL_REG 0x50
#define AMD_SPI_FIFO_SIZE 70
#define AMD_SPI_MEM_SIZE 200
#define AMD_SPI_MAX_DATA 64
#define AMD_SPI_HID2_DMA_SIZE 4096
#define AMD_SPI_ENA_REG 0x20
#define AMD_SPI_ALT_SPD_SHIFT 20
#define AMD_SPI_ALT_SPD_MASK GENMASK(23, AMD_SPI_ALT_SPD_SHIFT)
#define AMD_SPI_SPI100_SHIFT 0
#define AMD_SPI_SPI100_MASK GENMASK(AMD_SPI_SPI100_SHIFT, AMD_SPI_SPI100_SHIFT)
#define AMD_SPI_SPEED_REG 0x6C
#define AMD_SPI_SPD7_SHIFT 8
#define AMD_SPI_SPD7_MASK GENMASK(13, AMD_SPI_SPD7_SHIFT)
#define AMD_SPI_HID2_INPUT_RING_BUF0 0X100
#define AMD_SPI_HID2_CNTRL 0x150
#define AMD_SPI_HID2_INT_STATUS 0x154
#define AMD_SPI_HID2_CMD_START 0x156
#define AMD_SPI_HID2_INT_MASK 0x158
#define AMD_SPI_HID2_READ_CNTRL0 0x170
#define AMD_SPI_HID2_READ_CNTRL1 0x174
#define AMD_SPI_HID2_READ_CNTRL2 0x180
#define AMD_SPI_MAX_HZ 100000000
#define AMD_SPI_MIN_HZ 800000
#define AMD_SPI_IO_SLEEP_US 20
#define AMD_SPI_IO_TIMEOUT_US 2000000
/* SPI read command opcodes */
#define AMD_SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
#define AMD_SPI_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */
#define AMD_SPI_OP_READ_1_1_2 0x3b /* Read data bytes (Dual Output SPI) */
#define AMD_SPI_OP_READ_1_2_2 0xbb /* Read data bytes (Dual I/O SPI) */
#define AMD_SPI_OP_READ_1_1_4 0x6b /* Read data bytes (Quad Output SPI) */
#define AMD_SPI_OP_READ_1_4_4 0xeb /* Read data bytes (Quad I/O SPI) */
/* SPI read command opcodes - 4B address */
#define AMD_SPI_OP_READ_FAST_4B 0x0c /* Read data bytes (high frequency) */
#define AMD_SPI_OP_READ_1_1_2_4B 0x3c /* Read data bytes (Dual Output SPI) */
#define AMD_SPI_OP_READ_1_2_2_4B 0xbc /* Read data bytes (Dual I/O SPI) */
#define AMD_SPI_OP_READ_1_1_4_4B 0x6c /* Read data bytes (Quad Output SPI) */
#define AMD_SPI_OP_READ_1_4_4_4B 0xec /* Read data bytes (Quad I/O SPI) */
/**
* enum amd_spi_versions - SPI controller versions
* @AMD_SPI_V1: AMDI0061 hardware version
* @AMD_SPI_V2: AMDI0062 hardware version
* @AMD_HID2_SPI: AMDI0063 hardware version
*/
enum amd_spi_versions {
AMD_SPI_V1 = 1,
AMD_SPI_V2,
AMD_HID2_SPI,
};
enum amd_spi_speed {
F_66_66MHz,
F_33_33MHz,
F_22_22MHz,
F_16_66MHz,
F_100MHz,
F_800KHz,
SPI_SPD7 = 0x7,
F_50MHz = 0x4,
F_4MHz = 0x32,
F_3_17MHz = 0x3F
};
/**
* struct amd_spi_freq - Matches device speed with values to write in regs
* @speed_hz: Device frequency
* @enable_val: Value to be written to "enable register"
* @spd7_val: Some frequencies requires to have a value written at SPISPEED register
*/
struct amd_spi_freq {
u32 speed_hz;
u32 enable_val;
u32 spd7_val;
};
/**
* struct amd_spi - SPI driver instance
* @io_remap_addr: Start address of the SPI controller registers
* @phy_dma_buf: Physical address of DMA buffer
* @dma_virt_addr: Virtual address of DMA buffer
* @version: SPI controller hardware version
* @speed_hz: Device frequency
*/
struct amd_spi {
void __iomem *io_remap_addr;
dma_addr_t phy_dma_buf;
void *dma_virt_addr;
enum amd_spi_versions version;
unsigned int speed_hz;
};
static inline u8 amd_spi_readreg8(struct amd_spi *amd_spi, int idx)
{
return readb((u8 __iomem *)amd_spi->io_remap_addr + idx);
}
static inline void amd_spi_writereg8(struct amd_spi *amd_spi, int idx, u8 val)
{
writeb(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx));
}
static void amd_spi_setclear_reg8(struct amd_spi *amd_spi, int idx, u8 set, u8 clear)
{
u8 tmp = amd_spi_readreg8(amd_spi, idx);
tmp = (tmp & ~clear) | set;
amd_spi_writereg8(amd_spi, idx, tmp);
}
static inline u16 amd_spi_readreg16(struct amd_spi *amd_spi, int idx)
{
return readw((u8 __iomem *)amd_spi->io_remap_addr + idx);
}
static inline void amd_spi_writereg16(struct amd_spi *amd_spi, int idx, u16 val)
{
writew(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx));
}
static inline u32 amd_spi_readreg32(struct amd_spi *amd_spi, int idx)
{
return readl((u8 __iomem *)amd_spi->io_remap_addr + idx);
}
static inline void amd_spi_writereg32(struct amd_spi *amd_spi, int idx, u32 val)
{
writel(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx));
}
static inline u64 amd_spi_readreg64(struct amd_spi *amd_spi, int idx)
{
return readq((u8 __iomem *)amd_spi->io_remap_addr + idx);
}
static inline void amd_spi_writereg64(struct amd_spi *amd_spi, int idx, u64 val)
{
writeq(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx));
}
static inline void amd_spi_setclear_reg32(struct amd_spi *amd_spi, int idx, u32 set, u32 clear)
{
u32 tmp = amd_spi_readreg32(amd_spi, idx);
tmp = (tmp & ~clear) | set;
amd_spi_writereg32(amd_spi, idx, tmp);
}
static void amd_spi_select_chip(struct amd_spi *amd_spi, u8 cs)
{
amd_spi_setclear_reg8(amd_spi, AMD_SPI_ALT_CS_REG, cs, AMD_SPI_ALT_CS_MASK);
}
static inline void amd_spi_clear_chip(struct amd_spi *amd_spi, u8 chip_select)
{
amd_spi_writereg8(amd_spi, AMD_SPI_ALT_CS_REG, chip_select & ~AMD_SPI_ALT_CS_MASK);
}
static void amd_spi_clear_fifo_ptr(struct amd_spi *amd_spi)
{
amd_spi_setclear_reg32(amd_spi, AMD_SPI_CTRL0_REG, AMD_SPI_FIFO_CLEAR, AMD_SPI_FIFO_CLEAR);
}
static int amd_spi_set_opcode(struct amd_spi *amd_spi, u8 cmd_opcode)
{
switch (amd_spi->version) {
case AMD_SPI_V1:
amd_spi_setclear_reg32(amd_spi, AMD_SPI_CTRL0_REG, cmd_opcode,
AMD_SPI_OPCODE_MASK);
return 0;
case AMD_SPI_V2:
case AMD_HID2_SPI:
amd_spi_writereg8(amd_spi, AMD_SPI_OPCODE_REG, cmd_opcode);
return 0;
default:
return -ENODEV;
}
}
static inline void amd_spi_set_rx_count(struct amd_spi *amd_spi, u8 rx_count)
{
amd_spi_writereg8(amd_spi, AMD_SPI_RX_COUNT_REG, rx_count);
}
static inline void amd_spi_set_tx_count(struct amd_spi *amd_spi, u8 tx_count)
{
amd_spi_writereg8(amd_spi, AMD_SPI_TX_COUNT_REG, tx_count);
}
static int amd_spi_busy_wait(struct amd_spi *amd_spi)
{
u32 val;
int reg;
switch (amd_spi->version) {
case AMD_SPI_V1:
reg = AMD_SPI_CTRL0_REG;
break;
case AMD_SPI_V2:
case AMD_HID2_SPI:
reg = AMD_SPI_STATUS_REG;
break;
default:
return -ENODEV;
}
return readl_poll_timeout(amd_spi->io_remap_addr + reg, val,
!(val & AMD_SPI_BUSY), 20, 2000000);
}
static int amd_spi_execute_opcode(struct amd_spi *amd_spi)
{
int ret;
ret = amd_spi_busy_wait(amd_spi);
if (ret)
return ret;
switch (amd_spi->version) {
case AMD_SPI_V1:
/* Set ExecuteOpCode bit in the CTRL0 register */
amd_spi_setclear_reg32(amd_spi, AMD_SPI_CTRL0_REG, AMD_SPI_EXEC_CMD,
AMD_SPI_EXEC_CMD);
return 0;
case AMD_SPI_V2:
case AMD_HID2_SPI:
/* Trigger the command execution */
amd_spi_setclear_reg8(amd_spi, AMD_SPI_CMD_TRIGGER_REG,
AMD_SPI_TRIGGER_CMD, AMD_SPI_TRIGGER_CMD);
return 0;
default:
return -ENODEV;
}
}
static int amd_spi_host_setup(struct spi_device *spi)
{
struct amd_spi *amd_spi = spi_controller_get_devdata(spi->controller);
amd_spi_clear_fifo_ptr(amd_spi);
return 0;
}
static const struct amd_spi_freq amd_spi_freq[] = {
{ AMD_SPI_MAX_HZ, F_100MHz, 0},
{ 66660000, F_66_66MHz, 0},
{ 50000000, SPI_SPD7, F_50MHz},
{ 33330000, F_33_33MHz, 0},
{ 22220000, F_22_22MHz, 0},
{ 16660000, F_16_66MHz, 0},
{ 4000000, SPI_SPD7, F_4MHz},
{ 3170000, SPI_SPD7, F_3_17MHz},
{ AMD_SPI_MIN_HZ, F_800KHz, 0},
};
static int amd_set_spi_freq(struct amd_spi *amd_spi, u32 speed_hz)
{
unsigned int i, spd7_val, alt_spd;
if (speed_hz < AMD_SPI_MIN_HZ)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(amd_spi_freq); i++)
if (speed_hz >= amd_spi_freq[i].speed_hz)
break;
if (amd_spi->speed_hz == amd_spi_freq[i].speed_hz)
return 0;
amd_spi->speed_hz = amd_spi_freq[i].speed_hz;
alt_spd = (amd_spi_freq[i].enable_val << AMD_SPI_ALT_SPD_SHIFT)
& AMD_SPI_ALT_SPD_MASK;
amd_spi_setclear_reg32(amd_spi, AMD_SPI_ENA_REG, alt_spd,
AMD_SPI_ALT_SPD_MASK);
if (amd_spi->speed_hz == AMD_SPI_MAX_HZ)
amd_spi_setclear_reg32(amd_spi, AMD_SPI_ENA_REG, 1,
AMD_SPI_SPI100_MASK);
if (amd_spi_freq[i].spd7_val) {
spd7_val = (amd_spi_freq[i].spd7_val << AMD_SPI_SPD7_SHIFT)
& AMD_SPI_SPD7_MASK;
amd_spi_setclear_reg32(amd_spi, AMD_SPI_SPEED_REG, spd7_val,
AMD_SPI_SPD7_MASK);
}
return 0;
}
static inline int amd_spi_fifo_xfer(struct amd_spi *amd_spi,
struct spi_controller *host,
struct spi_message *message)
{
struct spi_transfer *xfer = NULL;
struct spi_device *spi = message->spi;
u8 cmd_opcode = 0, fifo_pos = AMD_SPI_FIFO_BASE;
u8 *buf = NULL;
u32 i = 0;
u32 tx_len = 0, rx_len = 0;
list_for_each_entry(xfer, &message->transfers,
transfer_list) {
if (xfer->speed_hz)
amd_set_spi_freq(amd_spi, xfer->speed_hz);
else
amd_set_spi_freq(amd_spi, spi->max_speed_hz);
if (xfer->tx_buf) {
buf = (u8 *)xfer->tx_buf;
if (!tx_len) {
cmd_opcode = *(u8 *)xfer->tx_buf;
buf++;
xfer->len--;
}
tx_len += xfer->len;
/* Write data into the FIFO. */
for (i = 0; i < xfer->len; i++)
amd_spi_writereg8(amd_spi, fifo_pos + i, buf[i]);
fifo_pos += xfer->len;
}
/* Store no. of bytes to be received from FIFO */
if (xfer->rx_buf)
rx_len += xfer->len;
}
if (!buf) {
message->status = -EINVAL;
goto fin_msg;
}
amd_spi_set_opcode(amd_spi, cmd_opcode);
amd_spi_set_tx_count(amd_spi, tx_len);
amd_spi_set_rx_count(amd_spi, rx_len);
/* Execute command */
message->status = amd_spi_execute_opcode(amd_spi);
if (message->status)
goto fin_msg;
if (rx_len) {
message->status = amd_spi_busy_wait(amd_spi);
if (message->status)
goto fin_msg;
list_for_each_entry(xfer, &message->transfers, transfer_list)
if (xfer->rx_buf) {
buf = (u8 *)xfer->rx_buf;
/* Read data from FIFO to receive buffer */
for (i = 0; i < xfer->len; i++)
buf[i] = amd_spi_readreg8(amd_spi, fifo_pos + i);
fifo_pos += xfer->len;
}
}
/* Update statistics */
message->actual_length = tx_len + rx_len + 1;
fin_msg:
switch (amd_spi->version) {
case AMD_SPI_V1:
break;
case AMD_SPI_V2:
case AMD_HID2_SPI:
amd_spi_clear_chip(amd_spi, spi_get_chipselect(message->spi, 0));
break;
default:
return -ENODEV;
}
spi_finalize_current_message(host);
return message->status;
}
static inline bool amd_is_spi_read_cmd_4b(const u16 op)
{
switch (op) {
case AMD_SPI_OP_READ_FAST_4B:
case AMD_SPI_OP_READ_1_1_2_4B:
case AMD_SPI_OP_READ_1_2_2_4B:
case AMD_SPI_OP_READ_1_1_4_4B:
case AMD_SPI_OP_READ_1_4_4_4B:
return true;
default:
return false;
}
}
static inline bool amd_is_spi_read_cmd(const u16 op)
{
switch (op) {
case AMD_SPI_OP_READ:
case AMD_SPI_OP_READ_FAST:
case AMD_SPI_OP_READ_1_1_2:
case AMD_SPI_OP_READ_1_2_2:
case AMD_SPI_OP_READ_1_1_4:
case AMD_SPI_OP_READ_1_4_4:
return true;
default:
return amd_is_spi_read_cmd_4b(op);
}
}
static bool amd_spi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct amd_spi *amd_spi = spi_controller_get_devdata(mem->spi->controller);
/* bus width is number of IO lines used to transmit */
if (op->cmd.buswidth > 1 || op->addr.buswidth > 4)
return false;
/* AMD SPI controllers support quad mode only for read operations */
if (amd_is_spi_read_cmd(op->cmd.opcode)) {
if (op->data.buswidth > 4)
return false;
/*
* HID2 SPI controller supports DMA read up to 4K bytes and
* doesn't support 4-byte address commands.
*/
if (amd_spi->version == AMD_HID2_SPI) {
if (amd_is_spi_read_cmd_4b(op->cmd.opcode) ||
op->data.nbytes > AMD_SPI_HID2_DMA_SIZE)
return false;
} else if (op->data.nbytes > AMD_SPI_MAX_DATA) {
return false;
}
} else if (op->data.buswidth > 1 || op->data.nbytes > AMD_SPI_MAX_DATA) {
return false;
}
return spi_mem_default_supports_op(mem, op);
}
static int amd_spi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct amd_spi *amd_spi = spi_controller_get_devdata(mem->spi->controller);
/*
* HID2 SPI controller DMA read mode supports reading up to 4k
* bytes in single transaction, where as SPI0 and HID2 SPI
* controller index mode supports maximum of 64 bytes in a single
* transaction.
*/
if (amd_spi->version == AMD_HID2_SPI && amd_is_spi_read_cmd(op->cmd.opcode))
op->data.nbytes = clamp_val(op->data.nbytes, 0, AMD_SPI_HID2_DMA_SIZE);
else
op->data.nbytes = clamp_val(op->data.nbytes, 0, AMD_SPI_MAX_DATA);
return 0;
}
static void amd_spi_set_addr(struct amd_spi *amd_spi,
const struct spi_mem_op *op)
{
u8 nbytes = op->addr.nbytes;
u64 addr_val = op->addr.val;
int base_addr, i;
base_addr = AMD_SPI_FIFO_BASE + nbytes;
for (i = 0; i < nbytes; i++) {
amd_spi_writereg8(amd_spi, base_addr - i - 1, addr_val &
GENMASK(7, 0));
addr_val >>= 8;
}
}
static void amd_spi_mem_data_out(struct amd_spi *amd_spi,
const struct spi_mem_op *op)
{
int base_addr = AMD_SPI_FIFO_BASE + op->addr.nbytes;
u64 *buf_64 = (u64 *)op->data.buf.out;
u32 nbytes = op->data.nbytes;
u32 left_data = nbytes;
u8 *buf;
int i;
amd_spi_set_opcode(amd_spi, op->cmd.opcode);
amd_spi_set_addr(amd_spi, op);
for (i = 0; left_data >= 8; i++, left_data -= 8)
amd_spi_writereg64(amd_spi, base_addr + op->dummy.nbytes + (i * 8), *buf_64++);
buf = (u8 *)buf_64;
for (i = 0; i < left_data; i++) {
amd_spi_writereg8(amd_spi, base_addr + op->dummy.nbytes + nbytes + i - left_data,
buf[i]);
}
amd_spi_set_tx_count(amd_spi, op->addr.nbytes + op->data.nbytes);
amd_spi_set_rx_count(amd_spi, 0);
amd_spi_clear_fifo_ptr(amd_spi);
amd_spi_execute_opcode(amd_spi);
}
static void amd_spi_hiddma_read(struct amd_spi *amd_spi, const struct spi_mem_op *op)
{
u16 hid_cmd_start, val;
u32 hid_regval;
/* Set the opcode in hid2_read_control0 register */
hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_READ_CNTRL0);
hid_regval = (hid_regval & ~GENMASK(7, 0)) | op->cmd.opcode;
/*
* Program the address in the hid2_read_control0 register [8:31]. The address should
* be written starting from the 8th bit of the register, requiring an 8-bit shift.
* Additionally, to convert a 2-byte spinand address to a 3-byte address, another
* 8-bit shift is needed. Therefore, a total shift of 16 bits is required.
*/
hid_regval = (hid_regval & ~GENMASK(31, 8)) | (op->addr.val << 16);
amd_spi_writereg32(amd_spi, AMD_SPI_HID2_READ_CNTRL0, hid_regval);
/* Configure dummy clock cycles for fast read, dual, quad I/O commands */
hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_READ_CNTRL2);
/* Fast read dummy cycle */
hid_regval &= ~GENMASK(4, 0);
/* Fast read Dual I/O dummy cycle */
hid_regval &= ~GENMASK(12, 8);
/* Fast read Quad I/O dummy cycle */
hid_regval = (hid_regval & ~GENMASK(20, 16)) | BIT(17);
/* Set no of preamble bytecount */
hid_regval &= ~GENMASK(27, 24);
amd_spi_writereg32(amd_spi, AMD_SPI_HID2_READ_CNTRL2, hid_regval);
/*
* Program the HID2 Input Ring Buffer0. 4k aligned buf_memory_addr[31:12],
* buf_size[4:0], end_input_ring[5].
*/
hid_regval = amd_spi->phy_dma_buf | BIT(5) | BIT(0);
amd_spi_writereg32(amd_spi, AMD_SPI_HID2_INPUT_RING_BUF0, hid_regval);
/* Program max read length(no of DWs) in hid2_read_control1 register */
hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_READ_CNTRL1);
hid_regval = (hid_regval & ~GENMASK(15, 0)) | ((op->data.nbytes / 4) - 1);
amd_spi_writereg32(amd_spi, AMD_SPI_HID2_READ_CNTRL1, hid_regval);
/* Set cmd start bit in hid2_cmd_start register to trigger HID basic read operation */
hid_cmd_start = amd_spi_readreg16(amd_spi, AMD_SPI_HID2_CMD_START);
amd_spi_writereg16(amd_spi, AMD_SPI_HID2_CMD_START, (hid_cmd_start | BIT(3)));
/* Check interrupt status of HIDDMA basic read operation in hid2_int_status register */
readw_poll_timeout(amd_spi->io_remap_addr + AMD_SPI_HID2_INT_STATUS, val,
(val & BIT(3)), AMD_SPI_IO_SLEEP_US, AMD_SPI_IO_TIMEOUT_US);
/* Clear the interrupts by writing to hid2_int_status register */
val = amd_spi_readreg16(amd_spi, AMD_SPI_HID2_INT_STATUS);
amd_spi_writereg16(amd_spi, AMD_SPI_HID2_INT_STATUS, val);
}
static void amd_spi_mem_data_in(struct amd_spi *amd_spi,
const struct spi_mem_op *op)
{
int base_addr = AMD_SPI_FIFO_BASE + op->addr.nbytes;
u64 *buf_64 = (u64 *)op->data.buf.in;
u32 nbytes = op->data.nbytes;
u32 left_data = nbytes;
u32 data;
u8 *buf;
int i;
/*
* Condition for using HID read mode. Only for reading complete page data, use HID read.
* Use index mode otherwise.
*/
if (amd_spi->version == AMD_HID2_SPI && amd_is_spi_read_cmd(op->cmd.opcode)) {
amd_spi_hiddma_read(amd_spi, op);
for (i = 0; left_data >= 8; i++, left_data -= 8)
*buf_64++ = readq((u8 __iomem *)amd_spi->dma_virt_addr + (i * 8));
buf = (u8 *)buf_64;
for (i = 0; i < left_data; i++)
buf[i] = readb((u8 __iomem *)amd_spi->dma_virt_addr +
(nbytes - left_data + i));
/* Reset HID RX memory logic */
data = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_CNTRL);
amd_spi_writereg32(amd_spi, AMD_SPI_HID2_CNTRL, data | BIT(5));
} else {
/* Index mode */
amd_spi_set_opcode(amd_spi, op->cmd.opcode);
amd_spi_set_addr(amd_spi, op);
amd_spi_set_tx_count(amd_spi, op->addr.nbytes + op->dummy.nbytes);
for (i = 0; i < op->dummy.nbytes; i++)
amd_spi_writereg8(amd_spi, (base_addr + i), 0xff);
amd_spi_set_rx_count(amd_spi, op->data.nbytes);
amd_spi_clear_fifo_ptr(amd_spi);
amd_spi_execute_opcode(amd_spi);
amd_spi_busy_wait(amd_spi);
for (i = 0; left_data >= 8; i++, left_data -= 8)
*buf_64++ = amd_spi_readreg64(amd_spi, base_addr + op->dummy.nbytes +
(i * 8));
buf = (u8 *)buf_64;
for (i = 0; i < left_data; i++)
buf[i] = amd_spi_readreg8(amd_spi, base_addr + op->dummy.nbytes +
nbytes + i - left_data);
}
}
static void amd_set_spi_addr_mode(struct amd_spi *amd_spi,
const struct spi_mem_op *op)
{
u32 val = amd_spi_readreg32(amd_spi, AMD_SPI_ADDR32CTRL_REG);
if (amd_is_spi_read_cmd_4b(op->cmd.opcode))
amd_spi_writereg32(amd_spi, AMD_SPI_ADDR32CTRL_REG, val | BIT(0));
else
amd_spi_writereg32(amd_spi, AMD_SPI_ADDR32CTRL_REG, val & ~BIT(0));
}
static int amd_spi_exec_mem_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct amd_spi *amd_spi;
int ret;
amd_spi = spi_controller_get_devdata(mem->spi->controller);
ret = amd_set_spi_freq(amd_spi, mem->spi->max_speed_hz);
if (ret)
return ret;
if (amd_spi->version == AMD_SPI_V2)
amd_set_spi_addr_mode(amd_spi, op);
switch (op->data.dir) {
case SPI_MEM_DATA_IN:
amd_spi_mem_data_in(amd_spi, op);
break;
case SPI_MEM_DATA_OUT:
fallthrough;
case SPI_MEM_NO_DATA:
amd_spi_mem_data_out(amd_spi, op);
break;
default:
ret = -EOPNOTSUPP;
}
return ret;
}
static const struct spi_controller_mem_ops amd_spi_mem_ops = {
.exec_op = amd_spi_exec_mem_op,
.adjust_op_size = amd_spi_adjust_op_size,
.supports_op = amd_spi_supports_op,
};
static int amd_spi_host_transfer(struct spi_controller *host,
struct spi_message *msg)
{
struct amd_spi *amd_spi = spi_controller_get_devdata(host);
struct spi_device *spi = msg->spi;
amd_spi_select_chip(amd_spi, spi_get_chipselect(spi, 0));
/*
* Extract spi_transfers from the spi message and
* program the controller.
*/
return amd_spi_fifo_xfer(amd_spi, host, msg);
}
static size_t amd_spi_max_transfer_size(struct spi_device *spi)
{
return AMD_SPI_FIFO_SIZE;
}
static int amd_spi_setup_hiddma(struct amd_spi *amd_spi, struct device *dev)
{
u32 hid_regval;
/* Allocate DMA buffer to use for HID basic read operation */
amd_spi->dma_virt_addr = dma_alloc_coherent(dev, AMD_SPI_HID2_DMA_SIZE,
&amd_spi->phy_dma_buf, GFP_KERNEL);
if (!amd_spi->dma_virt_addr)
return -ENOMEM;
/*
* Enable interrupts and set mask bits in hid2_int_mask register to generate interrupt
* properly for HIDDMA basic read operations.
*/
hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_INT_MASK);
hid_regval = (hid_regval & GENMASK(31, 8)) | BIT(19);
amd_spi_writereg32(amd_spi, AMD_SPI_HID2_INT_MASK, hid_regval);
/* Configure buffer unit(4k) in hid2_control register */
hid_regval = amd_spi_readreg32(amd_spi, AMD_SPI_HID2_CNTRL);
amd_spi_writereg32(amd_spi, AMD_SPI_HID2_CNTRL, hid_regval & ~BIT(3));
return 0;
}
static int amd_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_controller *host;
struct amd_spi *amd_spi;
int err;
/* Allocate storage for host and driver private data */
host = devm_spi_alloc_host(dev, sizeof(struct amd_spi));
if (!host)
return dev_err_probe(dev, -ENOMEM, "Error allocating SPI host\n");
amd_spi = spi_controller_get_devdata(host);
amd_spi->io_remap_addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(amd_spi->io_remap_addr))
return dev_err_probe(dev, PTR_ERR(amd_spi->io_remap_addr),
"ioremap of SPI registers failed\n");
dev_dbg(dev, "io_remap_address: %p\n", amd_spi->io_remap_addr);
amd_spi->version = (uintptr_t) device_get_match_data(dev);
/* Initialize the spi_controller fields */
host->bus_num = (amd_spi->version == AMD_HID2_SPI) ? 2 : 0;
host->num_chipselect = 4;
host->mode_bits = SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD;
host->flags = SPI_CONTROLLER_HALF_DUPLEX;
host->max_speed_hz = AMD_SPI_MAX_HZ;
host->min_speed_hz = AMD_SPI_MIN_HZ;
host->setup = amd_spi_host_setup;
host->transfer_one_message = amd_spi_host_transfer;
host->mem_ops = &amd_spi_mem_ops;
host->max_transfer_size = amd_spi_max_transfer_size;
host->max_message_size = amd_spi_max_transfer_size;
/* Register the controller with SPI framework */
err = devm_spi_register_controller(dev, host);
if (err)
return dev_err_probe(dev, err, "error registering SPI controller\n");
if (amd_spi->version == AMD_HID2_SPI)
err = amd_spi_setup_hiddma(amd_spi, dev);
return err;
}
#ifdef CONFIG_ACPI
static const struct acpi_device_id spi_acpi_match[] = {
{ "AMDI0061", AMD_SPI_V1 },
{ "AMDI0062", AMD_SPI_V2 },
{ "AMDI0063", AMD_HID2_SPI },
{},
};
MODULE_DEVICE_TABLE(acpi, spi_acpi_match);
#endif
static struct platform_driver amd_spi_driver = {
.driver = {
.name = "amd_spi",
.acpi_match_table = ACPI_PTR(spi_acpi_match),
},
.probe = amd_spi_probe,
};
module_platform_driver(amd_spi_driver);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Sanjay Mehta <sanju.mehta@amd.com>");
MODULE_DESCRIPTION("AMD SPI Master Controller Driver");