1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 01:09:38 -05:00
linux/sound/soc/sprd/sprd-mcdt.c
Yang Yingliang 19b71456f3
ASoC: sprd: Use devm_platform_get_and_ioremap_resource()
Use devm_platform_get_and_ioremap_resource() to simplify
code.

Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Link: https://lore.kernel.org/r/20210617033237.605808-1-yangyingliang@huawei.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2021-06-17 13:47:05 +01:00

1008 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2019 Spreadtrum Communications Inc.
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include "sprd-mcdt.h"
/* MCDT registers definition */
#define MCDT_CH0_TXD 0x0
#define MCDT_CH0_RXD 0x28
#define MCDT_DAC0_WTMK 0x60
#define MCDT_ADC0_WTMK 0x88
#define MCDT_DMA_EN 0xb0
#define MCDT_INT_EN0 0xb4
#define MCDT_INT_EN1 0xb8
#define MCDT_INT_EN2 0xbc
#define MCDT_INT_CLR0 0xc0
#define MCDT_INT_CLR1 0xc4
#define MCDT_INT_CLR2 0xc8
#define MCDT_INT_RAW1 0xcc
#define MCDT_INT_RAW2 0xd0
#define MCDT_INT_RAW3 0xd4
#define MCDT_INT_MSK1 0xd8
#define MCDT_INT_MSK2 0xdc
#define MCDT_INT_MSK3 0xe0
#define MCDT_DAC0_FIFO_ADDR_ST 0xe4
#define MCDT_ADC0_FIFO_ADDR_ST 0xe8
#define MCDT_CH_FIFO_ST0 0x134
#define MCDT_CH_FIFO_ST1 0x138
#define MCDT_CH_FIFO_ST2 0x13c
#define MCDT_INT_MSK_CFG0 0x140
#define MCDT_INT_MSK_CFG1 0x144
#define MCDT_DMA_CFG0 0x148
#define MCDT_FIFO_CLR 0x14c
#define MCDT_DMA_CFG1 0x150
#define MCDT_DMA_CFG2 0x154
#define MCDT_DMA_CFG3 0x158
#define MCDT_DMA_CFG4 0x15c
#define MCDT_DMA_CFG5 0x160
/* Channel water mark definition */
#define MCDT_CH_FIFO_AE_SHIFT 16
#define MCDT_CH_FIFO_AE_MASK GENMASK(24, 16)
#define MCDT_CH_FIFO_AF_MASK GENMASK(8, 0)
/* DMA channel select definition */
#define MCDT_DMA_CH0_SEL_MASK GENMASK(3, 0)
#define MCDT_DMA_CH0_SEL_SHIFT 0
#define MCDT_DMA_CH1_SEL_MASK GENMASK(7, 4)
#define MCDT_DMA_CH1_SEL_SHIFT 4
#define MCDT_DMA_CH2_SEL_MASK GENMASK(11, 8)
#define MCDT_DMA_CH2_SEL_SHIFT 8
#define MCDT_DMA_CH3_SEL_MASK GENMASK(15, 12)
#define MCDT_DMA_CH3_SEL_SHIFT 12
#define MCDT_DMA_CH4_SEL_MASK GENMASK(19, 16)
#define MCDT_DMA_CH4_SEL_SHIFT 16
#define MCDT_DAC_DMA_SHIFT 16
/* DMA channel ACK select definition */
#define MCDT_DMA_ACK_SEL_MASK GENMASK(3, 0)
/* Channel FIFO definition */
#define MCDT_CH_FIFO_ADDR_SHIFT 16
#define MCDT_CH_FIFO_ADDR_MASK GENMASK(9, 0)
#define MCDT_ADC_FIFO_SHIFT 16
#define MCDT_FIFO_LENGTH 512
#define MCDT_ADC_CHANNEL_NUM 10
#define MCDT_DAC_CHANNEL_NUM 10
#define MCDT_CHANNEL_NUM (MCDT_ADC_CHANNEL_NUM + MCDT_DAC_CHANNEL_NUM)
enum sprd_mcdt_fifo_int {
MCDT_ADC_FIFO_AE_INT,
MCDT_ADC_FIFO_AF_INT,
MCDT_DAC_FIFO_AE_INT,
MCDT_DAC_FIFO_AF_INT,
MCDT_ADC_FIFO_OV_INT,
MCDT_DAC_FIFO_OV_INT
};
enum sprd_mcdt_fifo_sts {
MCDT_ADC_FIFO_REAL_FULL,
MCDT_ADC_FIFO_REAL_EMPTY,
MCDT_ADC_FIFO_AF,
MCDT_ADC_FIFO_AE,
MCDT_DAC_FIFO_REAL_FULL,
MCDT_DAC_FIFO_REAL_EMPTY,
MCDT_DAC_FIFO_AF,
MCDT_DAC_FIFO_AE
};
struct sprd_mcdt_dev {
struct device *dev;
void __iomem *base;
spinlock_t lock;
struct sprd_mcdt_chan chan[MCDT_CHANNEL_NUM];
};
static LIST_HEAD(sprd_mcdt_chan_list);
static DEFINE_MUTEX(sprd_mcdt_list_mutex);
static void sprd_mcdt_update(struct sprd_mcdt_dev *mcdt, u32 reg, u32 val,
u32 mask)
{
u32 orig = readl_relaxed(mcdt->base + reg);
u32 tmp;
tmp = (orig & ~mask) | val;
writel_relaxed(tmp, mcdt->base + reg);
}
static void sprd_mcdt_dac_set_watermark(struct sprd_mcdt_dev *mcdt, u8 channel,
u32 full, u32 empty)
{
u32 reg = MCDT_DAC0_WTMK + channel * 4;
u32 water_mark =
(empty << MCDT_CH_FIFO_AE_SHIFT) & MCDT_CH_FIFO_AE_MASK;
water_mark |= full & MCDT_CH_FIFO_AF_MASK;
sprd_mcdt_update(mcdt, reg, water_mark,
MCDT_CH_FIFO_AE_MASK | MCDT_CH_FIFO_AF_MASK);
}
static void sprd_mcdt_adc_set_watermark(struct sprd_mcdt_dev *mcdt, u8 channel,
u32 full, u32 empty)
{
u32 reg = MCDT_ADC0_WTMK + channel * 4;
u32 water_mark =
(empty << MCDT_CH_FIFO_AE_SHIFT) & MCDT_CH_FIFO_AE_MASK;
water_mark |= full & MCDT_CH_FIFO_AF_MASK;
sprd_mcdt_update(mcdt, reg, water_mark,
MCDT_CH_FIFO_AE_MASK | MCDT_CH_FIFO_AF_MASK);
}
static void sprd_mcdt_dac_dma_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
bool enable)
{
u32 shift = MCDT_DAC_DMA_SHIFT + channel;
if (enable)
sprd_mcdt_update(mcdt, MCDT_DMA_EN, BIT(shift), BIT(shift));
else
sprd_mcdt_update(mcdt, MCDT_DMA_EN, 0, BIT(shift));
}
static void sprd_mcdt_adc_dma_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
bool enable)
{
if (enable)
sprd_mcdt_update(mcdt, MCDT_DMA_EN, BIT(channel), BIT(channel));
else
sprd_mcdt_update(mcdt, MCDT_DMA_EN, 0, BIT(channel));
}
static void sprd_mcdt_ap_int_enable(struct sprd_mcdt_dev *mcdt, u8 channel,
bool enable)
{
if (enable)
sprd_mcdt_update(mcdt, MCDT_INT_MSK_CFG0, BIT(channel),
BIT(channel));
else
sprd_mcdt_update(mcdt, MCDT_INT_MSK_CFG0, 0, BIT(channel));
}
static void sprd_mcdt_dac_write_fifo(struct sprd_mcdt_dev *mcdt, u8 channel,
u32 val)
{
u32 reg = MCDT_CH0_TXD + channel * 4;
writel_relaxed(val, mcdt->base + reg);
}
static void sprd_mcdt_adc_read_fifo(struct sprd_mcdt_dev *mcdt, u8 channel,
u32 *val)
{
u32 reg = MCDT_CH0_RXD + channel * 4;
*val = readl_relaxed(mcdt->base + reg);
}
static void sprd_mcdt_dac_dma_chn_select(struct sprd_mcdt_dev *mcdt, u8 channel,
enum sprd_mcdt_dma_chan dma_chan)
{
switch (dma_chan) {
case SPRD_MCDT_DMA_CH0:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
channel << MCDT_DMA_CH0_SEL_SHIFT,
MCDT_DMA_CH0_SEL_MASK);
break;
case SPRD_MCDT_DMA_CH1:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
channel << MCDT_DMA_CH1_SEL_SHIFT,
MCDT_DMA_CH1_SEL_MASK);
break;
case SPRD_MCDT_DMA_CH2:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
channel << MCDT_DMA_CH2_SEL_SHIFT,
MCDT_DMA_CH2_SEL_MASK);
break;
case SPRD_MCDT_DMA_CH3:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
channel << MCDT_DMA_CH3_SEL_SHIFT,
MCDT_DMA_CH3_SEL_MASK);
break;
case SPRD_MCDT_DMA_CH4:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG0,
channel << MCDT_DMA_CH4_SEL_SHIFT,
MCDT_DMA_CH4_SEL_MASK);
break;
}
}
static void sprd_mcdt_adc_dma_chn_select(struct sprd_mcdt_dev *mcdt, u8 channel,
enum sprd_mcdt_dma_chan dma_chan)
{
switch (dma_chan) {
case SPRD_MCDT_DMA_CH0:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
channel << MCDT_DMA_CH0_SEL_SHIFT,
MCDT_DMA_CH0_SEL_MASK);
break;
case SPRD_MCDT_DMA_CH1:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
channel << MCDT_DMA_CH1_SEL_SHIFT,
MCDT_DMA_CH1_SEL_MASK);
break;
case SPRD_MCDT_DMA_CH2:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
channel << MCDT_DMA_CH2_SEL_SHIFT,
MCDT_DMA_CH2_SEL_MASK);
break;
case SPRD_MCDT_DMA_CH3:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
channel << MCDT_DMA_CH3_SEL_SHIFT,
MCDT_DMA_CH3_SEL_MASK);
break;
case SPRD_MCDT_DMA_CH4:
sprd_mcdt_update(mcdt, MCDT_DMA_CFG1,
channel << MCDT_DMA_CH4_SEL_SHIFT,
MCDT_DMA_CH4_SEL_MASK);
break;
}
}
static u32 sprd_mcdt_dma_ack_shift(u8 channel)
{
switch (channel) {
default:
case 0:
case 8:
return 0;
case 1:
case 9:
return 4;
case 2:
return 8;
case 3:
return 12;
case 4:
return 16;
case 5:
return 20;
case 6:
return 24;
case 7:
return 28;
}
}
static void sprd_mcdt_dac_dma_ack_select(struct sprd_mcdt_dev *mcdt, u8 channel,
enum sprd_mcdt_dma_chan dma_chan)
{
u32 reg, shift = sprd_mcdt_dma_ack_shift(channel), ack = dma_chan;
switch (channel) {
case 0 ... 7:
reg = MCDT_DMA_CFG2;
break;
case 8 ... 9:
reg = MCDT_DMA_CFG3;
break;
default:
return;
}
sprd_mcdt_update(mcdt, reg, ack << shift,
MCDT_DMA_ACK_SEL_MASK << shift);
}
static void sprd_mcdt_adc_dma_ack_select(struct sprd_mcdt_dev *mcdt, u8 channel,
enum sprd_mcdt_dma_chan dma_chan)
{
u32 reg, shift = sprd_mcdt_dma_ack_shift(channel), ack = dma_chan;
switch (channel) {
case 0 ... 7:
reg = MCDT_DMA_CFG4;
break;
case 8 ... 9:
reg = MCDT_DMA_CFG5;
break;
default:
return;
}
sprd_mcdt_update(mcdt, reg, ack << shift,
MCDT_DMA_ACK_SEL_MASK << shift);
}
static bool sprd_mcdt_chan_fifo_sts(struct sprd_mcdt_dev *mcdt, u8 channel,
enum sprd_mcdt_fifo_sts fifo_sts)
{
u32 reg, shift;
switch (channel) {
case 0 ... 3:
reg = MCDT_CH_FIFO_ST0;
break;
case 4 ... 7:
reg = MCDT_CH_FIFO_ST1;
break;
case 8 ... 9:
reg = MCDT_CH_FIFO_ST2;
break;
default:
return false;
}
switch (channel) {
case 0:
case 4:
case 8:
shift = fifo_sts;
break;
case 1:
case 5:
case 9:
shift = 8 + fifo_sts;
break;
case 2:
case 6:
shift = 16 + fifo_sts;
break;
case 3:
case 7:
shift = 24 + fifo_sts;
break;
default:
return false;
}
return !!(readl_relaxed(mcdt->base + reg) & BIT(shift));
}
static void sprd_mcdt_dac_fifo_clear(struct sprd_mcdt_dev *mcdt, u8 channel)
{
sprd_mcdt_update(mcdt, MCDT_FIFO_CLR, BIT(channel), BIT(channel));
}
static void sprd_mcdt_adc_fifo_clear(struct sprd_mcdt_dev *mcdt, u8 channel)
{
u32 shift = MCDT_ADC_FIFO_SHIFT + channel;
sprd_mcdt_update(mcdt, MCDT_FIFO_CLR, BIT(shift), BIT(shift));
}
static u32 sprd_mcdt_dac_fifo_avail(struct sprd_mcdt_dev *mcdt, u8 channel)
{
u32 reg = MCDT_DAC0_FIFO_ADDR_ST + channel * 8;
u32 r_addr = (readl_relaxed(mcdt->base + reg) >>
MCDT_CH_FIFO_ADDR_SHIFT) & MCDT_CH_FIFO_ADDR_MASK;
u32 w_addr = readl_relaxed(mcdt->base + reg) & MCDT_CH_FIFO_ADDR_MASK;
if (w_addr >= r_addr)
return 4 * (MCDT_FIFO_LENGTH - w_addr + r_addr);
else
return 4 * (r_addr - w_addr);
}
static u32 sprd_mcdt_adc_fifo_avail(struct sprd_mcdt_dev *mcdt, u8 channel)
{
u32 reg = MCDT_ADC0_FIFO_ADDR_ST + channel * 8;
u32 r_addr = (readl_relaxed(mcdt->base + reg) >>
MCDT_CH_FIFO_ADDR_SHIFT) & MCDT_CH_FIFO_ADDR_MASK;
u32 w_addr = readl_relaxed(mcdt->base + reg) & MCDT_CH_FIFO_ADDR_MASK;
if (w_addr >= r_addr)
return 4 * (w_addr - r_addr);
else
return 4 * (MCDT_FIFO_LENGTH - r_addr + w_addr);
}
static u32 sprd_mcdt_int_type_shift(u8 channel,
enum sprd_mcdt_fifo_int int_type)
{
switch (channel) {
case 0:
case 4:
case 8:
return int_type;
case 1:
case 5:
case 9:
return 8 + int_type;
case 2:
case 6:
return 16 + int_type;
case 3:
case 7:
return 24 + int_type;
default:
return 0;
}
}
static void sprd_mcdt_chan_int_en(struct sprd_mcdt_dev *mcdt, u8 channel,
enum sprd_mcdt_fifo_int int_type, bool enable)
{
u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);
switch (channel) {
case 0 ... 3:
reg = MCDT_INT_EN0;
break;
case 4 ... 7:
reg = MCDT_INT_EN1;
break;
case 8 ... 9:
reg = MCDT_INT_EN2;
break;
default:
return;
}
if (enable)
sprd_mcdt_update(mcdt, reg, BIT(shift), BIT(shift));
else
sprd_mcdt_update(mcdt, reg, 0, BIT(shift));
}
static void sprd_mcdt_chan_int_clear(struct sprd_mcdt_dev *mcdt, u8 channel,
enum sprd_mcdt_fifo_int int_type)
{
u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);
switch (channel) {
case 0 ... 3:
reg = MCDT_INT_CLR0;
break;
case 4 ... 7:
reg = MCDT_INT_CLR1;
break;
case 8 ... 9:
reg = MCDT_INT_CLR2;
break;
default:
return;
}
sprd_mcdt_update(mcdt, reg, BIT(shift), BIT(shift));
}
static bool sprd_mcdt_chan_int_sts(struct sprd_mcdt_dev *mcdt, u8 channel,
enum sprd_mcdt_fifo_int int_type)
{
u32 reg, shift = sprd_mcdt_int_type_shift(channel, int_type);
switch (channel) {
case 0 ... 3:
reg = MCDT_INT_MSK1;
break;
case 4 ... 7:
reg = MCDT_INT_MSK2;
break;
case 8 ... 9:
reg = MCDT_INT_MSK3;
break;
default:
return false;
}
return !!(readl_relaxed(mcdt->base + reg) & BIT(shift));
}
static irqreturn_t sprd_mcdt_irq_handler(int irq, void *dev_id)
{
struct sprd_mcdt_dev *mcdt = (struct sprd_mcdt_dev *)dev_id;
int i;
spin_lock(&mcdt->lock);
for (i = 0; i < MCDT_ADC_CHANNEL_NUM; i++) {
if (sprd_mcdt_chan_int_sts(mcdt, i, MCDT_ADC_FIFO_AF_INT)) {
struct sprd_mcdt_chan *chan = &mcdt->chan[i];
sprd_mcdt_chan_int_clear(mcdt, i, MCDT_ADC_FIFO_AF_INT);
if (chan->cb)
chan->cb->notify(chan->cb->data);
}
}
for (i = 0; i < MCDT_DAC_CHANNEL_NUM; i++) {
if (sprd_mcdt_chan_int_sts(mcdt, i, MCDT_DAC_FIFO_AE_INT)) {
struct sprd_mcdt_chan *chan =
&mcdt->chan[i + MCDT_ADC_CHANNEL_NUM];
sprd_mcdt_chan_int_clear(mcdt, i, MCDT_DAC_FIFO_AE_INT);
if (chan->cb)
chan->cb->notify(chan->cb->data);
}
}
spin_unlock(&mcdt->lock);
return IRQ_HANDLED;
}
/**
* sprd_mcdt_chan_write - write data to the MCDT channel's fifo
* @chan: the MCDT channel
* @tx_buf: send buffer
* @size: data size
*
* Note: We can not write data to the channel fifo when enabling the DMA mode,
* otherwise the channel fifo data will be invalid.
*
* If there are not enough space of the channel fifo, it will return errors
* to users.
*
* Returns 0 on success, or an appropriate error code on failure.
*/
int sprd_mcdt_chan_write(struct sprd_mcdt_chan *chan, char *tx_buf, u32 size)
{
struct sprd_mcdt_dev *mcdt = chan->mcdt;
unsigned long flags;
int avail, i = 0, words = size / 4;
u32 *buf = (u32 *)tx_buf;
spin_lock_irqsave(&mcdt->lock, flags);
if (chan->dma_enable) {
dev_err(mcdt->dev,
"Can not write data when DMA mode enabled\n");
spin_unlock_irqrestore(&mcdt->lock, flags);
return -EINVAL;
}
if (sprd_mcdt_chan_fifo_sts(mcdt, chan->id, MCDT_DAC_FIFO_REAL_FULL)) {
dev_err(mcdt->dev, "Channel fifo is full now\n");
spin_unlock_irqrestore(&mcdt->lock, flags);
return -EBUSY;
}
avail = sprd_mcdt_dac_fifo_avail(mcdt, chan->id);
if (size > avail) {
dev_err(mcdt->dev,
"Data size is larger than the available fifo size\n");
spin_unlock_irqrestore(&mcdt->lock, flags);
return -EBUSY;
}
while (i++ < words)
sprd_mcdt_dac_write_fifo(mcdt, chan->id, *buf++);
spin_unlock_irqrestore(&mcdt->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_write);
/**
* sprd_mcdt_chan_read - read data from the MCDT channel's fifo
* @chan: the MCDT channel
* @rx_buf: receive buffer
* @size: data size
*
* Note: We can not read data from the channel fifo when enabling the DMA mode,
* otherwise the reading data will be invalid.
*
* Usually user need start to read data once receiving the fifo full interrupt.
*
* Returns data size of reading successfully, or an error code on failure.
*/
int sprd_mcdt_chan_read(struct sprd_mcdt_chan *chan, char *rx_buf, u32 size)
{
struct sprd_mcdt_dev *mcdt = chan->mcdt;
unsigned long flags;
int i = 0, avail, words = size / 4;
u32 *buf = (u32 *)rx_buf;
spin_lock_irqsave(&mcdt->lock, flags);
if (chan->dma_enable) {
dev_err(mcdt->dev, "Can not read data when DMA mode enabled\n");
spin_unlock_irqrestore(&mcdt->lock, flags);
return -EINVAL;
}
if (sprd_mcdt_chan_fifo_sts(mcdt, chan->id, MCDT_ADC_FIFO_REAL_EMPTY)) {
dev_err(mcdt->dev, "Channel fifo is empty\n");
spin_unlock_irqrestore(&mcdt->lock, flags);
return -EBUSY;
}
avail = sprd_mcdt_adc_fifo_avail(mcdt, chan->id);
if (size > avail)
words = avail / 4;
while (i++ < words)
sprd_mcdt_adc_read_fifo(mcdt, chan->id, buf++);
spin_unlock_irqrestore(&mcdt->lock, flags);
return words * 4;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_read);
/**
* sprd_mcdt_chan_int_enable - enable the interrupt mode for the MCDT channel
* @chan: the MCDT channel
* @water_mark: water mark to trigger a interrupt
* @cb: callback when a interrupt happened
*
* Now it only can enable fifo almost full interrupt for ADC channel and fifo
* almost empty interrupt for DAC channel. Morevoer for interrupt mode, user
* should use sprd_mcdt_chan_read() or sprd_mcdt_chan_write() to read or write
* data manually.
*
* For ADC channel, user can start to read data once receiving one fifo full
* interrupt. For DAC channel, user can start to write data once receiving one
* fifo empty interrupt or just call sprd_mcdt_chan_write() to write data
* directly.
*
* Returns 0 on success, or an error code on failure.
*/
int sprd_mcdt_chan_int_enable(struct sprd_mcdt_chan *chan, u32 water_mark,
struct sprd_mcdt_chan_callback *cb)
{
struct sprd_mcdt_dev *mcdt = chan->mcdt;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&mcdt->lock, flags);
if (chan->dma_enable || chan->int_enable) {
dev_err(mcdt->dev, "Failed to set interrupt mode.\n");
spin_unlock_irqrestore(&mcdt->lock, flags);
return -EINVAL;
}
switch (chan->type) {
case SPRD_MCDT_ADC_CHAN:
sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
sprd_mcdt_adc_set_watermark(mcdt, chan->id, water_mark,
MCDT_FIFO_LENGTH - 1);
sprd_mcdt_chan_int_en(mcdt, chan->id,
MCDT_ADC_FIFO_AF_INT, true);
sprd_mcdt_ap_int_enable(mcdt, chan->id, true);
break;
case SPRD_MCDT_DAC_CHAN:
sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
sprd_mcdt_dac_set_watermark(mcdt, chan->id,
MCDT_FIFO_LENGTH - 1, water_mark);
sprd_mcdt_chan_int_en(mcdt, chan->id,
MCDT_DAC_FIFO_AE_INT, true);
sprd_mcdt_ap_int_enable(mcdt, chan->id, true);
break;
default:
dev_err(mcdt->dev, "Unsupported channel type\n");
ret = -EINVAL;
}
if (!ret) {
chan->cb = cb;
chan->int_enable = true;
}
spin_unlock_irqrestore(&mcdt->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_int_enable);
/**
* sprd_mcdt_chan_int_disable - disable the interrupt mode for the MCDT channel
* @chan: the MCDT channel
*/
void sprd_mcdt_chan_int_disable(struct sprd_mcdt_chan *chan)
{
struct sprd_mcdt_dev *mcdt = chan->mcdt;
unsigned long flags;
spin_lock_irqsave(&mcdt->lock, flags);
if (!chan->int_enable) {
spin_unlock_irqrestore(&mcdt->lock, flags);
return;
}
switch (chan->type) {
case SPRD_MCDT_ADC_CHAN:
sprd_mcdt_chan_int_en(mcdt, chan->id,
MCDT_ADC_FIFO_AF_INT, false);
sprd_mcdt_chan_int_clear(mcdt, chan->id, MCDT_ADC_FIFO_AF_INT);
sprd_mcdt_ap_int_enable(mcdt, chan->id, false);
break;
case SPRD_MCDT_DAC_CHAN:
sprd_mcdt_chan_int_en(mcdt, chan->id,
MCDT_DAC_FIFO_AE_INT, false);
sprd_mcdt_chan_int_clear(mcdt, chan->id, MCDT_DAC_FIFO_AE_INT);
sprd_mcdt_ap_int_enable(mcdt, chan->id, false);
break;
default:
break;
}
chan->int_enable = false;
spin_unlock_irqrestore(&mcdt->lock, flags);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_int_disable);
/**
* sprd_mcdt_chan_dma_enable - enable the DMA mode for the MCDT channel
* @chan: the MCDT channel
* @dma_chan: specify which DMA channel will be used for this MCDT channel
* @water_mark: water mark to trigger a DMA request
*
* Enable the DMA mode for the MCDT channel, that means we can use DMA to
* transfer data to the channel fifo and do not need reading/writing data
* manually.
*
* Returns 0 on success, or an error code on failure.
*/
int sprd_mcdt_chan_dma_enable(struct sprd_mcdt_chan *chan,
enum sprd_mcdt_dma_chan dma_chan,
u32 water_mark)
{
struct sprd_mcdt_dev *mcdt = chan->mcdt;
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&mcdt->lock, flags);
if (chan->dma_enable || chan->int_enable ||
dma_chan > SPRD_MCDT_DMA_CH4) {
dev_err(mcdt->dev, "Failed to set DMA mode\n");
spin_unlock_irqrestore(&mcdt->lock, flags);
return -EINVAL;
}
switch (chan->type) {
case SPRD_MCDT_ADC_CHAN:
sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
sprd_mcdt_adc_set_watermark(mcdt, chan->id,
water_mark, MCDT_FIFO_LENGTH - 1);
sprd_mcdt_adc_dma_enable(mcdt, chan->id, true);
sprd_mcdt_adc_dma_chn_select(mcdt, chan->id, dma_chan);
sprd_mcdt_adc_dma_ack_select(mcdt, chan->id, dma_chan);
break;
case SPRD_MCDT_DAC_CHAN:
sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
sprd_mcdt_dac_set_watermark(mcdt, chan->id,
MCDT_FIFO_LENGTH - 1, water_mark);
sprd_mcdt_dac_dma_enable(mcdt, chan->id, true);
sprd_mcdt_dac_dma_chn_select(mcdt, chan->id, dma_chan);
sprd_mcdt_dac_dma_ack_select(mcdt, chan->id, dma_chan);
break;
default:
dev_err(mcdt->dev, "Unsupported channel type\n");
ret = -EINVAL;
}
if (!ret)
chan->dma_enable = true;
spin_unlock_irqrestore(&mcdt->lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_dma_enable);
/**
* sprd_mcdt_chan_dma_disable - disable the DMA mode for the MCDT channel
* @chan: the MCDT channel
*/
void sprd_mcdt_chan_dma_disable(struct sprd_mcdt_chan *chan)
{
struct sprd_mcdt_dev *mcdt = chan->mcdt;
unsigned long flags;
spin_lock_irqsave(&mcdt->lock, flags);
if (!chan->dma_enable) {
spin_unlock_irqrestore(&mcdt->lock, flags);
return;
}
switch (chan->type) {
case SPRD_MCDT_ADC_CHAN:
sprd_mcdt_adc_dma_enable(mcdt, chan->id, false);
sprd_mcdt_adc_fifo_clear(mcdt, chan->id);
break;
case SPRD_MCDT_DAC_CHAN:
sprd_mcdt_dac_dma_enable(mcdt, chan->id, false);
sprd_mcdt_dac_fifo_clear(mcdt, chan->id);
break;
default:
break;
}
chan->dma_enable = false;
spin_unlock_irqrestore(&mcdt->lock, flags);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_chan_dma_disable);
/**
* sprd_mcdt_request_chan - request one MCDT channel
* @channel: channel id
* @type: channel type, it can be one ADC channel or DAC channel
*
* Rreturn NULL if no available channel.
*/
struct sprd_mcdt_chan *sprd_mcdt_request_chan(u8 channel,
enum sprd_mcdt_channel_type type)
{
struct sprd_mcdt_chan *temp;
mutex_lock(&sprd_mcdt_list_mutex);
list_for_each_entry(temp, &sprd_mcdt_chan_list, list) {
if (temp->type == type && temp->id == channel) {
list_del_init(&temp->list);
break;
}
}
if (list_entry_is_head(temp, &sprd_mcdt_chan_list, list))
temp = NULL;
mutex_unlock(&sprd_mcdt_list_mutex);
return temp;
}
EXPORT_SYMBOL_GPL(sprd_mcdt_request_chan);
/**
* sprd_mcdt_free_chan - free one MCDT channel
* @chan: the channel to be freed
*/
void sprd_mcdt_free_chan(struct sprd_mcdt_chan *chan)
{
struct sprd_mcdt_chan *temp;
sprd_mcdt_chan_dma_disable(chan);
sprd_mcdt_chan_int_disable(chan);
mutex_lock(&sprd_mcdt_list_mutex);
list_for_each_entry(temp, &sprd_mcdt_chan_list, list) {
if (temp == chan) {
mutex_unlock(&sprd_mcdt_list_mutex);
return;
}
}
list_add_tail(&chan->list, &sprd_mcdt_chan_list);
mutex_unlock(&sprd_mcdt_list_mutex);
}
EXPORT_SYMBOL_GPL(sprd_mcdt_free_chan);
static void sprd_mcdt_init_chans(struct sprd_mcdt_dev *mcdt,
struct resource *res)
{
int i;
for (i = 0; i < MCDT_CHANNEL_NUM; i++) {
struct sprd_mcdt_chan *chan = &mcdt->chan[i];
if (i < MCDT_ADC_CHANNEL_NUM) {
chan->id = i;
chan->type = SPRD_MCDT_ADC_CHAN;
chan->fifo_phys = res->start + MCDT_CH0_RXD + i * 4;
} else {
chan->id = i - MCDT_ADC_CHANNEL_NUM;
chan->type = SPRD_MCDT_DAC_CHAN;
chan->fifo_phys = res->start + MCDT_CH0_TXD +
(i - MCDT_ADC_CHANNEL_NUM) * 4;
}
chan->mcdt = mcdt;
INIT_LIST_HEAD(&chan->list);
mutex_lock(&sprd_mcdt_list_mutex);
list_add_tail(&chan->list, &sprd_mcdt_chan_list);
mutex_unlock(&sprd_mcdt_list_mutex);
}
}
static int sprd_mcdt_probe(struct platform_device *pdev)
{
struct sprd_mcdt_dev *mcdt;
struct resource *res;
int ret, irq;
mcdt = devm_kzalloc(&pdev->dev, sizeof(*mcdt), GFP_KERNEL);
if (!mcdt)
return -ENOMEM;
mcdt->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(mcdt->base))
return PTR_ERR(mcdt->base);
mcdt->dev = &pdev->dev;
spin_lock_init(&mcdt->lock);
platform_set_drvdata(pdev, mcdt);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(&pdev->dev, irq, sprd_mcdt_irq_handler,
0, "sprd-mcdt", mcdt);
if (ret) {
dev_err(&pdev->dev, "Failed to request MCDT IRQ\n");
return ret;
}
sprd_mcdt_init_chans(mcdt, res);
return 0;
}
static int sprd_mcdt_remove(struct platform_device *pdev)
{
struct sprd_mcdt_chan *chan, *temp;
mutex_lock(&sprd_mcdt_list_mutex);
list_for_each_entry_safe(chan, temp, &sprd_mcdt_chan_list, list)
list_del(&chan->list);
mutex_unlock(&sprd_mcdt_list_mutex);
return 0;
}
static const struct of_device_id sprd_mcdt_of_match[] = {
{ .compatible = "sprd,sc9860-mcdt", },
{ }
};
MODULE_DEVICE_TABLE(of, sprd_mcdt_of_match);
static struct platform_driver sprd_mcdt_driver = {
.probe = sprd_mcdt_probe,
.remove = sprd_mcdt_remove,
.driver = {
.name = "sprd-mcdt",
.of_match_table = sprd_mcdt_of_match,
},
};
module_platform_driver(sprd_mcdt_driver);
MODULE_DESCRIPTION("Spreadtrum Multi-Channel Data Transfer Driver");
MODULE_LICENSE("GPL v2");