1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/fs/pipe.c
Anatol Pomozov 39b6525274 fs: Preserve error code in get_empty_filp(), part 2
Allocating a file structure in function get_empty_filp() might fail because
of several reasons:
 - not enough memory for file structures
 - operation is not allowed
 - user is over its limit

Currently the function returns NULL in all cases and we loose the exact
reason of the error. All callers of get_empty_filp() assume that the function
can fail with ENFILE only.

Return error through pointer. Change all callers to preserve this error code.

[AV: cleaned up a bit, carved the get_empty_filp() part out into a separate commit
(things remaining here deal with alloc_file()), removed pipe(2) behaviour change]

Signed-off-by: Anatol Pomozov <anatol.pomozov@gmail.com>
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-02-22 23:31:32 -05:00

1314 lines
29 KiB
C

/*
* linux/fs/pipe.c
*
* Copyright (C) 1991, 1992, 1999 Linus Torvalds
*/
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/poll.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/log2.h>
#include <linux/mount.h>
#include <linux/magic.h>
#include <linux/pipe_fs_i.h>
#include <linux/uio.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/audit.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <asm/uaccess.h>
#include <asm/ioctls.h>
/*
* The max size that a non-root user is allowed to grow the pipe. Can
* be set by root in /proc/sys/fs/pipe-max-size
*/
unsigned int pipe_max_size = 1048576;
/*
* Minimum pipe size, as required by POSIX
*/
unsigned int pipe_min_size = PAGE_SIZE;
/*
* We use a start+len construction, which provides full use of the
* allocated memory.
* -- Florian Coosmann (FGC)
*
* Reads with count = 0 should always return 0.
* -- Julian Bradfield 1999-06-07.
*
* FIFOs and Pipes now generate SIGIO for both readers and writers.
* -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
*
* pipe_read & write cleanup
* -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
*/
static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
{
if (pipe->inode)
mutex_lock_nested(&pipe->inode->i_mutex, subclass);
}
void pipe_lock(struct pipe_inode_info *pipe)
{
/*
* pipe_lock() nests non-pipe inode locks (for writing to a file)
*/
pipe_lock_nested(pipe, I_MUTEX_PARENT);
}
EXPORT_SYMBOL(pipe_lock);
void pipe_unlock(struct pipe_inode_info *pipe)
{
if (pipe->inode)
mutex_unlock(&pipe->inode->i_mutex);
}
EXPORT_SYMBOL(pipe_unlock);
void pipe_double_lock(struct pipe_inode_info *pipe1,
struct pipe_inode_info *pipe2)
{
BUG_ON(pipe1 == pipe2);
if (pipe1 < pipe2) {
pipe_lock_nested(pipe1, I_MUTEX_PARENT);
pipe_lock_nested(pipe2, I_MUTEX_CHILD);
} else {
pipe_lock_nested(pipe2, I_MUTEX_PARENT);
pipe_lock_nested(pipe1, I_MUTEX_CHILD);
}
}
/* Drop the inode semaphore and wait for a pipe event, atomically */
void pipe_wait(struct pipe_inode_info *pipe)
{
DEFINE_WAIT(wait);
/*
* Pipes are system-local resources, so sleeping on them
* is considered a noninteractive wait:
*/
prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
pipe_unlock(pipe);
schedule();
finish_wait(&pipe->wait, &wait);
pipe_lock(pipe);
}
static int
pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
int atomic)
{
unsigned long copy;
while (len > 0) {
while (!iov->iov_len)
iov++;
copy = min_t(unsigned long, len, iov->iov_len);
if (atomic) {
if (__copy_from_user_inatomic(to, iov->iov_base, copy))
return -EFAULT;
} else {
if (copy_from_user(to, iov->iov_base, copy))
return -EFAULT;
}
to += copy;
len -= copy;
iov->iov_base += copy;
iov->iov_len -= copy;
}
return 0;
}
static int
pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
int atomic)
{
unsigned long copy;
while (len > 0) {
while (!iov->iov_len)
iov++;
copy = min_t(unsigned long, len, iov->iov_len);
if (atomic) {
if (__copy_to_user_inatomic(iov->iov_base, from, copy))
return -EFAULT;
} else {
if (copy_to_user(iov->iov_base, from, copy))
return -EFAULT;
}
from += copy;
len -= copy;
iov->iov_base += copy;
iov->iov_len -= copy;
}
return 0;
}
/*
* Attempt to pre-fault in the user memory, so we can use atomic copies.
* Returns the number of bytes not faulted in.
*/
static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
{
while (!iov->iov_len)
iov++;
while (len > 0) {
unsigned long this_len;
this_len = min_t(unsigned long, len, iov->iov_len);
if (fault_in_pages_writeable(iov->iov_base, this_len))
break;
len -= this_len;
iov++;
}
return len;
}
/*
* Pre-fault in the user memory, so we can use atomic copies.
*/
static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
{
while (!iov->iov_len)
iov++;
while (len > 0) {
unsigned long this_len;
this_len = min_t(unsigned long, len, iov->iov_len);
fault_in_pages_readable(iov->iov_base, this_len);
len -= this_len;
iov++;
}
}
static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct page *page = buf->page;
/*
* If nobody else uses this page, and we don't already have a
* temporary page, let's keep track of it as a one-deep
* allocation cache. (Otherwise just release our reference to it)
*/
if (page_count(page) == 1 && !pipe->tmp_page)
pipe->tmp_page = page;
else
page_cache_release(page);
}
/**
* generic_pipe_buf_map - virtually map a pipe buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer that should be mapped
* @atomic: whether to use an atomic map
*
* Description:
* This function returns a kernel virtual address mapping for the
* pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
* and the caller has to be careful not to fault before calling
* the unmap function.
*
* Note that this function calls kmap_atomic() if @atomic != 0.
*/
void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
struct pipe_buffer *buf, int atomic)
{
if (atomic) {
buf->flags |= PIPE_BUF_FLAG_ATOMIC;
return kmap_atomic(buf->page);
}
return kmap(buf->page);
}
EXPORT_SYMBOL(generic_pipe_buf_map);
/**
* generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer that should be unmapped
* @map_data: the data that the mapping function returned
*
* Description:
* This function undoes the mapping that ->map() provided.
*/
void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
struct pipe_buffer *buf, void *map_data)
{
if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
kunmap_atomic(map_data);
} else
kunmap(buf->page);
}
EXPORT_SYMBOL(generic_pipe_buf_unmap);
/**
* generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to attempt to steal
*
* Description:
* This function attempts to steal the &struct page attached to
* @buf. If successful, this function returns 0 and returns with
* the page locked. The caller may then reuse the page for whatever
* he wishes; the typical use is insertion into a different file
* page cache.
*/
int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
struct page *page = buf->page;
/*
* A reference of one is golden, that means that the owner of this
* page is the only one holding a reference to it. lock the page
* and return OK.
*/
if (page_count(page) == 1) {
lock_page(page);
return 0;
}
return 1;
}
EXPORT_SYMBOL(generic_pipe_buf_steal);
/**
* generic_pipe_buf_get - get a reference to a &struct pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to get a reference to
*
* Description:
* This function grabs an extra reference to @buf. It's used in
* in the tee() system call, when we duplicate the buffers in one
* pipe into another.
*/
void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
{
page_cache_get(buf->page);
}
EXPORT_SYMBOL(generic_pipe_buf_get);
/**
* generic_pipe_buf_confirm - verify contents of the pipe buffer
* @info: the pipe that the buffer belongs to
* @buf: the buffer to confirm
*
* Description:
* This function does nothing, because the generic pipe code uses
* pages that are always good when inserted into the pipe.
*/
int generic_pipe_buf_confirm(struct pipe_inode_info *info,
struct pipe_buffer *buf)
{
return 0;
}
EXPORT_SYMBOL(generic_pipe_buf_confirm);
/**
* generic_pipe_buf_release - put a reference to a &struct pipe_buffer
* @pipe: the pipe that the buffer belongs to
* @buf: the buffer to put a reference to
*
* Description:
* This function releases a reference to @buf.
*/
void generic_pipe_buf_release(struct pipe_inode_info *pipe,
struct pipe_buffer *buf)
{
page_cache_release(buf->page);
}
EXPORT_SYMBOL(generic_pipe_buf_release);
static const struct pipe_buf_operations anon_pipe_buf_ops = {
.can_merge = 1,
.map = generic_pipe_buf_map,
.unmap = generic_pipe_buf_unmap,
.confirm = generic_pipe_buf_confirm,
.release = anon_pipe_buf_release,
.steal = generic_pipe_buf_steal,
.get = generic_pipe_buf_get,
};
static const struct pipe_buf_operations packet_pipe_buf_ops = {
.can_merge = 0,
.map = generic_pipe_buf_map,
.unmap = generic_pipe_buf_unmap,
.confirm = generic_pipe_buf_confirm,
.release = anon_pipe_buf_release,
.steal = generic_pipe_buf_steal,
.get = generic_pipe_buf_get,
};
static ssize_t
pipe_read(struct kiocb *iocb, const struct iovec *_iov,
unsigned long nr_segs, loff_t pos)
{
struct file *filp = iocb->ki_filp;
struct inode *inode = file_inode(filp);
struct pipe_inode_info *pipe;
int do_wakeup;
ssize_t ret;
struct iovec *iov = (struct iovec *)_iov;
size_t total_len;
total_len = iov_length(iov, nr_segs);
/* Null read succeeds. */
if (unlikely(total_len == 0))
return 0;
do_wakeup = 0;
ret = 0;
mutex_lock(&inode->i_mutex);
pipe = inode->i_pipe;
for (;;) {
int bufs = pipe->nrbufs;
if (bufs) {
int curbuf = pipe->curbuf;
struct pipe_buffer *buf = pipe->bufs + curbuf;
const struct pipe_buf_operations *ops = buf->ops;
void *addr;
size_t chars = buf->len;
int error, atomic;
if (chars > total_len)
chars = total_len;
error = ops->confirm(pipe, buf);
if (error) {
if (!ret)
ret = error;
break;
}
atomic = !iov_fault_in_pages_write(iov, chars);
redo:
addr = ops->map(pipe, buf, atomic);
error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
ops->unmap(pipe, buf, addr);
if (unlikely(error)) {
/*
* Just retry with the slow path if we failed.
*/
if (atomic) {
atomic = 0;
goto redo;
}
if (!ret)
ret = error;
break;
}
ret += chars;
buf->offset += chars;
buf->len -= chars;
/* Was it a packet buffer? Clean up and exit */
if (buf->flags & PIPE_BUF_FLAG_PACKET) {
total_len = chars;
buf->len = 0;
}
if (!buf->len) {
buf->ops = NULL;
ops->release(pipe, buf);
curbuf = (curbuf + 1) & (pipe->buffers - 1);
pipe->curbuf = curbuf;
pipe->nrbufs = --bufs;
do_wakeup = 1;
}
total_len -= chars;
if (!total_len)
break; /* common path: read succeeded */
}
if (bufs) /* More to do? */
continue;
if (!pipe->writers)
break;
if (!pipe->waiting_writers) {
/* syscall merging: Usually we must not sleep
* if O_NONBLOCK is set, or if we got some data.
* But if a writer sleeps in kernel space, then
* we can wait for that data without violating POSIX.
*/
if (ret)
break;
if (filp->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
break;
}
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
if (do_wakeup) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
pipe_wait(pipe);
}
mutex_unlock(&inode->i_mutex);
/* Signal writers asynchronously that there is more room. */
if (do_wakeup) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
if (ret > 0)
file_accessed(filp);
return ret;
}
static inline int is_packetized(struct file *file)
{
return (file->f_flags & O_DIRECT) != 0;
}
static ssize_t
pipe_write(struct kiocb *iocb, const struct iovec *_iov,
unsigned long nr_segs, loff_t ppos)
{
struct file *filp = iocb->ki_filp;
struct inode *inode = file_inode(filp);
struct pipe_inode_info *pipe;
ssize_t ret;
int do_wakeup;
struct iovec *iov = (struct iovec *)_iov;
size_t total_len;
ssize_t chars;
total_len = iov_length(iov, nr_segs);
/* Null write succeeds. */
if (unlikely(total_len == 0))
return 0;
do_wakeup = 0;
ret = 0;
mutex_lock(&inode->i_mutex);
pipe = inode->i_pipe;
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
ret = -EPIPE;
goto out;
}
/* We try to merge small writes */
chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
if (pipe->nrbufs && chars != 0) {
int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
(pipe->buffers - 1);
struct pipe_buffer *buf = pipe->bufs + lastbuf;
const struct pipe_buf_operations *ops = buf->ops;
int offset = buf->offset + buf->len;
if (ops->can_merge && offset + chars <= PAGE_SIZE) {
int error, atomic = 1;
void *addr;
error = ops->confirm(pipe, buf);
if (error)
goto out;
iov_fault_in_pages_read(iov, chars);
redo1:
addr = ops->map(pipe, buf, atomic);
error = pipe_iov_copy_from_user(offset + addr, iov,
chars, atomic);
ops->unmap(pipe, buf, addr);
ret = error;
do_wakeup = 1;
if (error) {
if (atomic) {
atomic = 0;
goto redo1;
}
goto out;
}
buf->len += chars;
total_len -= chars;
ret = chars;
if (!total_len)
goto out;
}
}
for (;;) {
int bufs;
if (!pipe->readers) {
send_sig(SIGPIPE, current, 0);
if (!ret)
ret = -EPIPE;
break;
}
bufs = pipe->nrbufs;
if (bufs < pipe->buffers) {
int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
struct pipe_buffer *buf = pipe->bufs + newbuf;
struct page *page = pipe->tmp_page;
char *src;
int error, atomic = 1;
if (!page) {
page = alloc_page(GFP_HIGHUSER);
if (unlikely(!page)) {
ret = ret ? : -ENOMEM;
break;
}
pipe->tmp_page = page;
}
/* Always wake up, even if the copy fails. Otherwise
* we lock up (O_NONBLOCK-)readers that sleep due to
* syscall merging.
* FIXME! Is this really true?
*/
do_wakeup = 1;
chars = PAGE_SIZE;
if (chars > total_len)
chars = total_len;
iov_fault_in_pages_read(iov, chars);
redo2:
if (atomic)
src = kmap_atomic(page);
else
src = kmap(page);
error = pipe_iov_copy_from_user(src, iov, chars,
atomic);
if (atomic)
kunmap_atomic(src);
else
kunmap(page);
if (unlikely(error)) {
if (atomic) {
atomic = 0;
goto redo2;
}
if (!ret)
ret = error;
break;
}
ret += chars;
/* Insert it into the buffer array */
buf->page = page;
buf->ops = &anon_pipe_buf_ops;
buf->offset = 0;
buf->len = chars;
buf->flags = 0;
if (is_packetized(filp)) {
buf->ops = &packet_pipe_buf_ops;
buf->flags = PIPE_BUF_FLAG_PACKET;
}
pipe->nrbufs = ++bufs;
pipe->tmp_page = NULL;
total_len -= chars;
if (!total_len)
break;
}
if (bufs < pipe->buffers)
continue;
if (filp->f_flags & O_NONBLOCK) {
if (!ret)
ret = -EAGAIN;
break;
}
if (signal_pending(current)) {
if (!ret)
ret = -ERESTARTSYS;
break;
}
if (do_wakeup) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
do_wakeup = 0;
}
pipe->waiting_writers++;
pipe_wait(pipe);
pipe->waiting_writers--;
}
out:
mutex_unlock(&inode->i_mutex);
if (do_wakeup) {
wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
}
if (ret > 0) {
int err = file_update_time(filp);
if (err)
ret = err;
}
return ret;
}
static ssize_t
bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
{
return -EBADF;
}
static ssize_t
bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
loff_t *ppos)
{
return -EBADF;
}
static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
struct inode *inode = file_inode(filp);
struct pipe_inode_info *pipe;
int count, buf, nrbufs;
switch (cmd) {
case FIONREAD:
mutex_lock(&inode->i_mutex);
pipe = inode->i_pipe;
count = 0;
buf = pipe->curbuf;
nrbufs = pipe->nrbufs;
while (--nrbufs >= 0) {
count += pipe->bufs[buf].len;
buf = (buf+1) & (pipe->buffers - 1);
}
mutex_unlock(&inode->i_mutex);
return put_user(count, (int __user *)arg);
default:
return -ENOIOCTLCMD;
}
}
/* No kernel lock held - fine */
static unsigned int
pipe_poll(struct file *filp, poll_table *wait)
{
unsigned int mask;
struct inode *inode = file_inode(filp);
struct pipe_inode_info *pipe = inode->i_pipe;
int nrbufs;
poll_wait(filp, &pipe->wait, wait);
/* Reading only -- no need for acquiring the semaphore. */
nrbufs = pipe->nrbufs;
mask = 0;
if (filp->f_mode & FMODE_READ) {
mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
if (!pipe->writers && filp->f_version != pipe->w_counter)
mask |= POLLHUP;
}
if (filp->f_mode & FMODE_WRITE) {
mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
/*
* Most Unices do not set POLLERR for FIFOs but on Linux they
* behave exactly like pipes for poll().
*/
if (!pipe->readers)
mask |= POLLERR;
}
return mask;
}
static int
pipe_release(struct inode *inode, int decr, int decw)
{
struct pipe_inode_info *pipe;
mutex_lock(&inode->i_mutex);
pipe = inode->i_pipe;
pipe->readers -= decr;
pipe->writers -= decw;
if (!pipe->readers && !pipe->writers) {
free_pipe_info(inode);
} else {
wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
}
mutex_unlock(&inode->i_mutex);
return 0;
}
static int
pipe_read_fasync(int fd, struct file *filp, int on)
{
struct inode *inode = file_inode(filp);
int retval;
mutex_lock(&inode->i_mutex);
retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
mutex_unlock(&inode->i_mutex);
return retval;
}
static int
pipe_write_fasync(int fd, struct file *filp, int on)
{
struct inode *inode = file_inode(filp);
int retval;
mutex_lock(&inode->i_mutex);
retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
mutex_unlock(&inode->i_mutex);
return retval;
}
static int
pipe_rdwr_fasync(int fd, struct file *filp, int on)
{
struct inode *inode = file_inode(filp);
struct pipe_inode_info *pipe = inode->i_pipe;
int retval;
mutex_lock(&inode->i_mutex);
retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
if (retval >= 0) {
retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
if (retval < 0) /* this can happen only if on == T */
fasync_helper(-1, filp, 0, &pipe->fasync_readers);
}
mutex_unlock(&inode->i_mutex);
return retval;
}
static int
pipe_read_release(struct inode *inode, struct file *filp)
{
return pipe_release(inode, 1, 0);
}
static int
pipe_write_release(struct inode *inode, struct file *filp)
{
return pipe_release(inode, 0, 1);
}
static int
pipe_rdwr_release(struct inode *inode, struct file *filp)
{
int decr, decw;
decr = (filp->f_mode & FMODE_READ) != 0;
decw = (filp->f_mode & FMODE_WRITE) != 0;
return pipe_release(inode, decr, decw);
}
static int
pipe_read_open(struct inode *inode, struct file *filp)
{
int ret = -ENOENT;
mutex_lock(&inode->i_mutex);
if (inode->i_pipe) {
ret = 0;
inode->i_pipe->readers++;
}
mutex_unlock(&inode->i_mutex);
return ret;
}
static int
pipe_write_open(struct inode *inode, struct file *filp)
{
int ret = -ENOENT;
mutex_lock(&inode->i_mutex);
if (inode->i_pipe) {
ret = 0;
inode->i_pipe->writers++;
}
mutex_unlock(&inode->i_mutex);
return ret;
}
static int
pipe_rdwr_open(struct inode *inode, struct file *filp)
{
int ret = -ENOENT;
mutex_lock(&inode->i_mutex);
if (inode->i_pipe) {
ret = 0;
if (filp->f_mode & FMODE_READ)
inode->i_pipe->readers++;
if (filp->f_mode & FMODE_WRITE)
inode->i_pipe->writers++;
}
mutex_unlock(&inode->i_mutex);
return ret;
}
/*
* The file_operations structs are not static because they
* are also used in linux/fs/fifo.c to do operations on FIFOs.
*
* Pipes reuse fifos' file_operations structs.
*/
const struct file_operations read_pipefifo_fops = {
.llseek = no_llseek,
.read = do_sync_read,
.aio_read = pipe_read,
.write = bad_pipe_w,
.poll = pipe_poll,
.unlocked_ioctl = pipe_ioctl,
.open = pipe_read_open,
.release = pipe_read_release,
.fasync = pipe_read_fasync,
};
const struct file_operations write_pipefifo_fops = {
.llseek = no_llseek,
.read = bad_pipe_r,
.write = do_sync_write,
.aio_write = pipe_write,
.poll = pipe_poll,
.unlocked_ioctl = pipe_ioctl,
.open = pipe_write_open,
.release = pipe_write_release,
.fasync = pipe_write_fasync,
};
const struct file_operations rdwr_pipefifo_fops = {
.llseek = no_llseek,
.read = do_sync_read,
.aio_read = pipe_read,
.write = do_sync_write,
.aio_write = pipe_write,
.poll = pipe_poll,
.unlocked_ioctl = pipe_ioctl,
.open = pipe_rdwr_open,
.release = pipe_rdwr_release,
.fasync = pipe_rdwr_fasync,
};
struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
{
struct pipe_inode_info *pipe;
pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
if (pipe) {
pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
if (pipe->bufs) {
init_waitqueue_head(&pipe->wait);
pipe->r_counter = pipe->w_counter = 1;
pipe->inode = inode;
pipe->buffers = PIPE_DEF_BUFFERS;
return pipe;
}
kfree(pipe);
}
return NULL;
}
void __free_pipe_info(struct pipe_inode_info *pipe)
{
int i;
for (i = 0; i < pipe->buffers; i++) {
struct pipe_buffer *buf = pipe->bufs + i;
if (buf->ops)
buf->ops->release(pipe, buf);
}
if (pipe->tmp_page)
__free_page(pipe->tmp_page);
kfree(pipe->bufs);
kfree(pipe);
}
void free_pipe_info(struct inode *inode)
{
__free_pipe_info(inode->i_pipe);
inode->i_pipe = NULL;
}
static struct vfsmount *pipe_mnt __read_mostly;
/*
* pipefs_dname() is called from d_path().
*/
static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
{
return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
dentry->d_inode->i_ino);
}
static const struct dentry_operations pipefs_dentry_operations = {
.d_dname = pipefs_dname,
};
static struct inode * get_pipe_inode(void)
{
struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
struct pipe_inode_info *pipe;
if (!inode)
goto fail_inode;
inode->i_ino = get_next_ino();
pipe = alloc_pipe_info(inode);
if (!pipe)
goto fail_iput;
inode->i_pipe = pipe;
pipe->readers = pipe->writers = 1;
inode->i_fop = &rdwr_pipefifo_fops;
/*
* Mark the inode dirty from the very beginning,
* that way it will never be moved to the dirty
* list because "mark_inode_dirty()" will think
* that it already _is_ on the dirty list.
*/
inode->i_state = I_DIRTY;
inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
inode->i_uid = current_fsuid();
inode->i_gid = current_fsgid();
inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
return inode;
fail_iput:
iput(inode);
fail_inode:
return NULL;
}
int create_pipe_files(struct file **res, int flags)
{
int err;
struct inode *inode = get_pipe_inode();
struct file *f;
struct path path;
static struct qstr name = { .name = "" };
if (!inode)
return -ENFILE;
err = -ENOMEM;
path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
if (!path.dentry)
goto err_inode;
path.mnt = mntget(pipe_mnt);
d_instantiate(path.dentry, inode);
err = -ENFILE;
f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
if (IS_ERR(f))
goto err_dentry;
f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
res[0] = alloc_file(&path, FMODE_READ, &read_pipefifo_fops);
if (IS_ERR(res[0]))
goto err_file;
path_get(&path);
res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
res[1] = f;
return 0;
err_file:
put_filp(f);
err_dentry:
free_pipe_info(inode);
path_put(&path);
return err;
err_inode:
free_pipe_info(inode);
iput(inode);
return err;
}
static int __do_pipe_flags(int *fd, struct file **files, int flags)
{
int error;
int fdw, fdr;
if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
return -EINVAL;
error = create_pipe_files(files, flags);
if (error)
return error;
error = get_unused_fd_flags(flags);
if (error < 0)
goto err_read_pipe;
fdr = error;
error = get_unused_fd_flags(flags);
if (error < 0)
goto err_fdr;
fdw = error;
audit_fd_pair(fdr, fdw);
fd[0] = fdr;
fd[1] = fdw;
return 0;
err_fdr:
put_unused_fd(fdr);
err_read_pipe:
fput(files[0]);
fput(files[1]);
return error;
}
int do_pipe_flags(int *fd, int flags)
{
struct file *files[2];
int error = __do_pipe_flags(fd, files, flags);
if (!error) {
fd_install(fd[0], files[0]);
fd_install(fd[1], files[1]);
}
return error;
}
/*
* sys_pipe() is the normal C calling standard for creating
* a pipe. It's not the way Unix traditionally does this, though.
*/
SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
{
struct file *files[2];
int fd[2];
int error;
error = __do_pipe_flags(fd, files, flags);
if (!error) {
if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
fput(files[0]);
fput(files[1]);
put_unused_fd(fd[0]);
put_unused_fd(fd[1]);
error = -EFAULT;
} else {
fd_install(fd[0], files[0]);
fd_install(fd[1], files[1]);
}
}
return error;
}
SYSCALL_DEFINE1(pipe, int __user *, fildes)
{
return sys_pipe2(fildes, 0);
}
/*
* Allocate a new array of pipe buffers and copy the info over. Returns the
* pipe size if successful, or return -ERROR on error.
*/
static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
{
struct pipe_buffer *bufs;
/*
* We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
* expect a lot of shrink+grow operations, just free and allocate
* again like we would do for growing. If the pipe currently
* contains more buffers than arg, then return busy.
*/
if (nr_pages < pipe->nrbufs)
return -EBUSY;
bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
if (unlikely(!bufs))
return -ENOMEM;
/*
* The pipe array wraps around, so just start the new one at zero
* and adjust the indexes.
*/
if (pipe->nrbufs) {
unsigned int tail;
unsigned int head;
tail = pipe->curbuf + pipe->nrbufs;
if (tail < pipe->buffers)
tail = 0;
else
tail &= (pipe->buffers - 1);
head = pipe->nrbufs - tail;
if (head)
memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
if (tail)
memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
}
pipe->curbuf = 0;
kfree(pipe->bufs);
pipe->bufs = bufs;
pipe->buffers = nr_pages;
return nr_pages * PAGE_SIZE;
}
/*
* Currently we rely on the pipe array holding a power-of-2 number
* of pages.
*/
static inline unsigned int round_pipe_size(unsigned int size)
{
unsigned long nr_pages;
nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
}
/*
* This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
* will return an error.
*/
int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
if (ret < 0 || !write)
return ret;
pipe_max_size = round_pipe_size(pipe_max_size);
return ret;
}
/*
* After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
* location, so checking ->i_pipe is not enough to verify that this is a
* pipe.
*/
struct pipe_inode_info *get_pipe_info(struct file *file)
{
struct inode *i = file_inode(file);
return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
}
long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct pipe_inode_info *pipe;
long ret;
pipe = get_pipe_info(file);
if (!pipe)
return -EBADF;
mutex_lock(&pipe->inode->i_mutex);
switch (cmd) {
case F_SETPIPE_SZ: {
unsigned int size, nr_pages;
size = round_pipe_size(arg);
nr_pages = size >> PAGE_SHIFT;
ret = -EINVAL;
if (!nr_pages)
goto out;
if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
ret = -EPERM;
goto out;
}
ret = pipe_set_size(pipe, nr_pages);
break;
}
case F_GETPIPE_SZ:
ret = pipe->buffers * PAGE_SIZE;
break;
default:
ret = -EINVAL;
break;
}
out:
mutex_unlock(&pipe->inode->i_mutex);
return ret;
}
static const struct super_operations pipefs_ops = {
.destroy_inode = free_inode_nonrcu,
.statfs = simple_statfs,
};
/*
* pipefs should _never_ be mounted by userland - too much of security hassle,
* no real gain from having the whole whorehouse mounted. So we don't need
* any operations on the root directory. However, we need a non-trivial
* d_name - pipe: will go nicely and kill the special-casing in procfs.
*/
static struct dentry *pipefs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
&pipefs_dentry_operations, PIPEFS_MAGIC);
}
static struct file_system_type pipe_fs_type = {
.name = "pipefs",
.mount = pipefs_mount,
.kill_sb = kill_anon_super,
};
static int __init init_pipe_fs(void)
{
int err = register_filesystem(&pipe_fs_type);
if (!err) {
pipe_mnt = kern_mount(&pipe_fs_type);
if (IS_ERR(pipe_mnt)) {
err = PTR_ERR(pipe_mnt);
unregister_filesystem(&pipe_fs_type);
}
}
return err;
}
fs_initcall(init_pipe_fs);