1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/tools/usb/hcd-tests.sh
Martin Fuzzey bc0f23dcca USB: usbtest - add alignment tests to test script
Enhance the test script to call the new tests added to usbtest
in order to detect host controllers that don't accept byte
aligned DMA.

The unaligned tests are called after their aligned
equivalents but for fewer iterations (since alignment
failure is generally immediate).

Signed-off-by: Martin Fuzzey <mfuzzey@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2011-01-22 19:42:14 -08:00

275 lines
6 KiB
Bash

#!/bin/sh
#
# test types can be passed on the command line:
#
# - control: any device can do this
# - out, in: out needs 'bulk sink' firmware, in needs 'bulk src'
# - iso-out, iso-in: out needs 'iso sink' firmware, in needs 'iso src'
# - halt: needs bulk sink+src, tests halt set/clear from host
# - unlink: needs bulk sink and/or src, test HCD unlink processing
# - loop: needs firmware that will buffer N transfers
#
# run it for hours, days, weeks.
#
#
# this default provides a steady test load for a bulk device
#
TYPES='control out in'
#TYPES='control out in halt'
#
# to test HCD code
#
# - include unlink tests
# - add some ${RANDOM}ness
# - connect several devices concurrently (same HC)
# - keep HC's IRQ lines busy with unrelated traffic (IDE, net, ...)
# - add other concurrent system loads
#
declare -i COUNT BUFLEN
COUNT=50000
BUFLEN=2048
# NOTE: the 'in' and 'out' cases are usually bulk, but can be
# set up to use interrupt transfers by 'usbtest' module options
if [ "$DEVICE" = "" ]; then
echo "testing ALL recognized usbtest devices"
echo ""
TEST_ARGS="-a"
else
TEST_ARGS=""
fi
do_test ()
{
if ! ./testusb $TEST_ARGS -s $BUFLEN -c $COUNT $* 2>/dev/null
then
echo "FAIL"
exit 1
fi
}
ARGS="$*"
if [ "$ARGS" = "" ];
then
ARGS="$TYPES"
fi
# FIXME use /sys/bus/usb/device/$THIS/bConfigurationValue to
# check and change configs
CONFIG=''
check_config ()
{
if [ "$CONFIG" = "" ]; then
CONFIG=$1
echo "assuming $CONFIG configuration"
return
fi
if [ "$CONFIG" = $1 ]; then
return
fi
echo "** device must be in $1 config, but it's $CONFIG instead"
exit 1
}
echo "TESTING: $ARGS"
while : true
do
echo $(date)
for TYPE in $ARGS
do
# restore defaults
COUNT=5000
BUFLEN=2048
# FIXME automatically multiply COUNT by 10 when
# /sys/bus/usb/device/$THIS/speed == "480"
# COUNT=50000
case $TYPE in
control)
# any device, in any configuration, can use this.
echo '** Control test cases:'
echo "test 9: ch9 postconfig"
do_test -t 9 -c 5000
echo "test 10: control queueing"
do_test -t 10 -c 5000
# this relies on some vendor-specific commands
echo "test 14: control writes"
do_test -t 14 -c 15000 -s 256 -v 1
echo "test 21: control writes, unaligned"
do_test -t 21 -c 100 -s 256 -v 1
;;
out)
check_config sink-src
echo '** Host Write (OUT) test cases:'
echo "test 1: $COUNT transfers, same size"
do_test -t 1
echo "test 3: $COUNT transfers, variable/short size"
do_test -t 3 -v 421
COUNT=100
echo "test 17: $COUNT transfers, unaligned DMA map by core"
do_test -t 17
echo "test 19: $COUNT transfers, unaligned DMA map by usb_alloc_coherent"
do_test -t 19
COUNT=2000
echo "test 5: $COUNT scatterlists, same size entries"
do_test -t 5
# try to trigger short OUT processing bugs
echo "test 7a: $COUNT scatterlists, variable size/short entries"
do_test -t 7 -v 579
BUFLEN=4096
echo "test 7b: $COUNT scatterlists, variable size/bigger entries"
do_test -t 7 -v 41
BUFLEN=64
echo "test 7c: $COUNT scatterlists, variable size/micro entries"
do_test -t 7 -v 63
;;
iso-out)
check_config sink-src
echo '** Host ISOCHRONOUS Write (OUT) test cases:'
# at peak iso transfer rates:
# - usb 2.0 high bandwidth, this is one frame.
# - usb 1.1, it's twenty-four frames.
BUFLEN=24500
COUNT=1000
# COUNT=10000
echo "test 15: $COUNT transfers, same size"
# do_test -t 15 -g 3 -v 0
BUFLEN=32768
do_test -t 15 -g 8 -v 0
# FIXME it'd make sense to have an iso OUT test issuing
# short writes on more packets than the last one
COUNT=100
echo "test 22: $COUNT transfers, non aligned"
do_test -t 22 -g 8 -v 0
;;
in)
check_config sink-src
echo '** Host Read (IN) test cases:'
# NOTE: these "variable size" reads are just multiples
# of 512 bytes, no EOVERFLOW testing is done yet
echo "test 2: $COUNT transfers, same size"
do_test -t 2
echo "test 4: $COUNT transfers, variable size"
do_test -t 4
COUNT=100
echo "test 18: $COUNT transfers, unaligned DMA map by core"
do_test -t 18
echo "test 20: $COUNT transfers, unaligned DMA map by usb_alloc_coherent"
do_test -t 20
COUNT=2000
echo "test 6: $COUNT scatterlists, same size entries"
do_test -t 6
echo "test 8: $COUNT scatterlists, variable size entries"
do_test -t 8
;;
iso-in)
check_config sink-src
echo '** Host ISOCHRONOUS Read (IN) test cases:'
# at peak iso transfer rates:
# - usb 2.0 high bandwidth, this is one frame.
# - usb 1.1, it's twenty-four frames.
BUFLEN=24500
COUNT=1000
# COUNT=10000
echo "test 16: $COUNT transfers, same size"
# do_test -t 16 -g 3 -v 0
BUFLEN=32768
do_test -t 16 -g 8 -v 0
# FIXME since iso expects faults, it'd make sense
# to have an iso IN test issuing short reads ...
COUNT=100
echo "test 23: $COUNT transfers, unaligned"
do_test -t 23 -g 8 -v 0
;;
halt)
# NOTE: sometimes hardware doesn't cooperate well with halting
# endpoints from the host side. so long as mass-storage class
# firmware can halt them from the device, don't worry much if
# you can't make this test work on your device.
COUNT=2000
echo "test 13: $COUNT halt set/clear"
do_test -t 13
;;
unlink)
COUNT=2000
echo "test 11: $COUNT read unlinks"
do_test -t 11
echo "test 12: $COUNT write unlinks"
do_test -t 12
;;
loop)
# defaults need too much buffering for ez-usb devices
BUFLEN=2048
COUNT=32
# modprobe g_zero qlen=$COUNT buflen=$BUFLEN loopdefault
check_config loopback
# FIXME someone needs to write and merge a version of this
echo "write $COUNT buffers of $BUFLEN bytes, read them back"
echo "write $COUNT variable size buffers, read them back"
;;
*)
echo "Don't understand test type $TYPE"
exit 1;
esac
echo ''
done
done
# vim: sw=4