1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 16:06:04 -05:00
linux/arch/x86/entry/entry_64_compat.S
Alexandre Chartre ac8b270b61 x86/bhi: Avoid warning in #DB handler due to BHI mitigation
When BHI mitigation is enabled, if SYSENTER is invoked with the TF flag set
then entry_SYSENTER_compat() uses CLEAR_BRANCH_HISTORY and calls the
clear_bhb_loop() before the TF flag is cleared. This causes the #DB handler
(exc_debug_kernel()) to issue a warning because single-step is used outside the
entry_SYSENTER_compat() function.

To address this issue, entry_SYSENTER_compat() should use CLEAR_BRANCH_HISTORY
after making sure the TF flag is cleared.

The problem can be reproduced with the following sequence:

  $ cat sysenter_step.c
  int main()
  { asm("pushf; pop %ax; bts $8,%ax; push %ax; popf; sysenter"); }

  $ gcc -o sysenter_step sysenter_step.c

  $ ./sysenter_step
  Segmentation fault (core dumped)

The program is expected to crash, and the #DB handler will issue a warning.

Kernel log:

  WARNING: CPU: 27 PID: 7000 at arch/x86/kernel/traps.c:1009 exc_debug_kernel+0xd2/0x160
  ...
  RIP: 0010:exc_debug_kernel+0xd2/0x160
  ...
  Call Trace:
  <#DB>
   ? show_regs+0x68/0x80
   ? __warn+0x8c/0x140
   ? exc_debug_kernel+0xd2/0x160
   ? report_bug+0x175/0x1a0
   ? handle_bug+0x44/0x90
   ? exc_invalid_op+0x1c/0x70
   ? asm_exc_invalid_op+0x1f/0x30
   ? exc_debug_kernel+0xd2/0x160
   exc_debug+0x43/0x50
   asm_exc_debug+0x1e/0x40
  RIP: 0010:clear_bhb_loop+0x0/0xb0
  ...
  </#DB>
  <TASK>
   ? entry_SYSENTER_compat_after_hwframe+0x6e/0x8d
  </TASK>

  [ bp: Massage commit message. ]

Fixes: 7390db8aea ("x86/bhi: Add support for clearing branch history at syscall entry")
Reported-by: Suman Maity <suman.m.maity@oracle.com>
Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240524070459.3674025-1-alexandre.chartre@oracle.com
2024-07-03 13:26:30 +02:00

299 lines
9.3 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Compatibility mode system call entry point for x86-64.
*
* Copyright 2000-2002 Andi Kleen, SuSE Labs.
*/
#include <asm/asm-offsets.h>
#include <asm/current.h>
#include <asm/errno.h>
#include <asm/thread_info.h>
#include <asm/segment.h>
#include <asm/irqflags.h>
#include <asm/asm.h>
#include <asm/smap.h>
#include <asm/nospec-branch.h>
#include <linux/linkage.h>
#include <linux/err.h>
#include "calling.h"
.section .entry.text, "ax"
/*
* 32-bit SYSENTER entry.
*
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
* on 64-bit kernels running on Intel CPUs.
*
* The SYSENTER instruction, in principle, should *only* occur in the
* vDSO. In practice, a small number of Android devices were shipped
* with a copy of Bionic that inlined a SYSENTER instruction. This
* never happened in any of Google's Bionic versions -- it only happened
* in a narrow range of Intel-provided versions.
*
* SYSENTER loads SS, RSP, CS, and RIP from previously programmed MSRs.
* IF and VM in RFLAGS are cleared (IOW: interrupts are off).
* SYSENTER does not save anything on the stack,
* and does not save old RIP (!!!), RSP, or RFLAGS.
*
* Arguments:
* eax system call number
* ebx arg1
* ecx arg2
* edx arg3
* esi arg4
* edi arg5
* ebp user stack
* 0(%ebp) arg6
*/
SYM_CODE_START(entry_SYSENTER_compat)
UNWIND_HINT_ENTRY
ENDBR
/* Interrupts are off on entry. */
swapgs
pushq %rax
SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
popq %rax
movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
/* Construct struct pt_regs on stack */
pushq $__USER_DS /* pt_regs->ss */
pushq $0 /* pt_regs->sp = 0 (placeholder) */
/*
* Push flags. This is nasty. First, interrupts are currently
* off, but we need pt_regs->flags to have IF set. Second, if TS
* was set in usermode, it's still set, and we're singlestepping
* through this code. do_SYSENTER_32() will fix up IF.
*/
pushfq /* pt_regs->flags (except IF = 0) */
pushq $__USER32_CS /* pt_regs->cs */
pushq $0 /* pt_regs->ip = 0 (placeholder) */
SYM_INNER_LABEL(entry_SYSENTER_compat_after_hwframe, SYM_L_GLOBAL)
/*
* User tracing code (ptrace or signal handlers) might assume that
* the saved RAX contains a 32-bit number when we're invoking a 32-bit
* syscall. Just in case the high bits are nonzero, zero-extend
* the syscall number. (This could almost certainly be deleted
* with no ill effects.)
*/
movl %eax, %eax
pushq %rax /* pt_regs->orig_ax */
PUSH_AND_CLEAR_REGS rax=$-ENOSYS
UNWIND_HINT_REGS
cld
/*
* SYSENTER doesn't filter flags, so we need to clear NT and AC
* ourselves. To save a few cycles, we can check whether
* either was set instead of doing an unconditional popfq.
* This needs to happen before enabling interrupts so that
* we don't get preempted with NT set.
*
* If TF is set, we will single-step all the way to here -- do_debug
* will ignore all the traps. (Yes, this is slow, but so is
* single-stepping in general. This allows us to avoid having
* a more complicated code to handle the case where a user program
* forces us to single-step through the SYSENTER entry code.)
*
* NB.: .Lsysenter_fix_flags is a label with the code under it moved
* out-of-line as an optimization: NT is unlikely to be set in the
* majority of the cases and instead of polluting the I$ unnecessarily,
* we're keeping that code behind a branch which will predict as
* not-taken and therefore its instructions won't be fetched.
*/
testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, EFLAGS(%rsp)
jnz .Lsysenter_fix_flags
.Lsysenter_flags_fixed:
/*
* CPU bugs mitigations mechanisms can call other functions. They
* should be invoked after making sure TF is cleared because
* single-step is ignored only for instructions inside the
* entry_SYSENTER_compat function.
*/
IBRS_ENTER
UNTRAIN_RET
CLEAR_BRANCH_HISTORY
movq %rsp, %rdi
call do_SYSENTER_32
jmp sysret32_from_system_call
.Lsysenter_fix_flags:
pushq $X86_EFLAGS_FIXED
popfq
jmp .Lsysenter_flags_fixed
SYM_INNER_LABEL(__end_entry_SYSENTER_compat, SYM_L_GLOBAL)
SYM_CODE_END(entry_SYSENTER_compat)
/*
* 32-bit SYSCALL entry.
*
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
* on 64-bit kernels running on AMD CPUs.
*
* The SYSCALL instruction, in principle, should *only* occur in the
* vDSO. In practice, it appears that this really is the case.
* As evidence:
*
* - The calling convention for SYSCALL has changed several times without
* anyone noticing.
*
* - Prior to the in-kernel X86_BUG_SYSRET_SS_ATTRS fixup, anything
* user task that did SYSCALL without immediately reloading SS
* would randomly crash.
*
* - Most programmers do not directly target AMD CPUs, and the 32-bit
* SYSCALL instruction does not exist on Intel CPUs. Even on AMD
* CPUs, Linux disables the SYSCALL instruction on 32-bit kernels
* because the SYSCALL instruction in legacy/native 32-bit mode (as
* opposed to compat mode) is sufficiently poorly designed as to be
* essentially unusable.
*
* 32-bit SYSCALL saves RIP to RCX, clears RFLAGS.RF, then saves
* RFLAGS to R11, then loads new SS, CS, and RIP from previously
* programmed MSRs. RFLAGS gets masked by a value from another MSR
* (so CLD and CLAC are not needed). SYSCALL does not save anything on
* the stack and does not change RSP.
*
* Note: RFLAGS saving+masking-with-MSR happens only in Long mode
* (in legacy 32-bit mode, IF, RF and VM bits are cleared and that's it).
* Don't get confused: RFLAGS saving+masking depends on Long Mode Active bit
* (EFER.LMA=1), NOT on bitness of userspace where SYSCALL executes
* or target CS descriptor's L bit (SYSCALL does not read segment descriptors).
*
* Arguments:
* eax system call number
* ecx return address
* ebx arg1
* ebp arg2 (note: not saved in the stack frame, should not be touched)
* edx arg3
* esi arg4
* edi arg5
* esp user stack
* 0(%esp) arg6
*/
SYM_CODE_START(entry_SYSCALL_compat)
UNWIND_HINT_ENTRY
ENDBR
/* Interrupts are off on entry. */
swapgs
/* Stash user ESP */
movl %esp, %r8d
/* Use %rsp as scratch reg. User ESP is stashed in r8 */
SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
/* Switch to the kernel stack */
movq PER_CPU_VAR(pcpu_hot + X86_top_of_stack), %rsp
SYM_INNER_LABEL(entry_SYSCALL_compat_safe_stack, SYM_L_GLOBAL)
ANNOTATE_NOENDBR
/* Construct struct pt_regs on stack */
pushq $__USER_DS /* pt_regs->ss */
pushq %r8 /* pt_regs->sp */
pushq %r11 /* pt_regs->flags */
pushq $__USER32_CS /* pt_regs->cs */
pushq %rcx /* pt_regs->ip */
SYM_INNER_LABEL(entry_SYSCALL_compat_after_hwframe, SYM_L_GLOBAL)
movl %eax, %eax /* discard orig_ax high bits */
pushq %rax /* pt_regs->orig_ax */
PUSH_AND_CLEAR_REGS rcx=%rbp rax=$-ENOSYS
UNWIND_HINT_REGS
IBRS_ENTER
UNTRAIN_RET
CLEAR_BRANCH_HISTORY
movq %rsp, %rdi
call do_fast_syscall_32
sysret32_from_system_call:
/* XEN PV guests always use IRET path */
ALTERNATIVE "testb %al, %al; jz swapgs_restore_regs_and_return_to_usermode", \
"jmp swapgs_restore_regs_and_return_to_usermode", X86_FEATURE_XENPV
/*
* Opportunistic SYSRET
*
* We are not going to return to userspace from the trampoline
* stack. So let's erase the thread stack right now.
*/
STACKLEAK_ERASE
IBRS_EXIT
movq RBX(%rsp), %rbx /* pt_regs->rbx */
movq RBP(%rsp), %rbp /* pt_regs->rbp */
movq EFLAGS(%rsp), %r11 /* pt_regs->flags (in r11) */
movq RIP(%rsp), %rcx /* pt_regs->ip (in rcx) */
addq $RAX, %rsp /* Skip r8-r15 */
popq %rax /* pt_regs->rax */
popq %rdx /* Skip pt_regs->cx */
popq %rdx /* pt_regs->dx */
popq %rsi /* pt_regs->si */
popq %rdi /* pt_regs->di */
/*
* USERGS_SYSRET32 does:
* GSBASE = user's GS base
* EIP = ECX
* RFLAGS = R11
* CS = __USER32_CS
* SS = __USER_DS
*
* ECX will not match pt_regs->cx, but we're returning to a vDSO
* trampoline that will fix up RCX, so this is okay.
*
* R12-R15 are callee-saved, so they contain whatever was in them
* when the system call started, which is already known to user
* code. We zero R8-R10 to avoid info leaks.
*/
movq RSP-ORIG_RAX(%rsp), %rsp
SYM_INNER_LABEL(entry_SYSRETL_compat_unsafe_stack, SYM_L_GLOBAL)
ANNOTATE_NOENDBR
/*
* The original userspace %rsp (RSP-ORIG_RAX(%rsp)) is stored
* on the process stack which is not mapped to userspace and
* not readable after we SWITCH_TO_USER_CR3. Delay the CR3
* switch until after after the last reference to the process
* stack.
*
* %r8/%r9 are zeroed before the sysret, thus safe to clobber.
*/
SWITCH_TO_USER_CR3_NOSTACK scratch_reg=%r8 scratch_reg2=%r9
xorl %r8d, %r8d
xorl %r9d, %r9d
xorl %r10d, %r10d
swapgs
CLEAR_CPU_BUFFERS
sysretl
SYM_INNER_LABEL(entry_SYSRETL_compat_end, SYM_L_GLOBAL)
ANNOTATE_NOENDBR
int3
SYM_CODE_END(entry_SYSCALL_compat)
/*
* int 0x80 is used by 32 bit mode as a system call entry. Normally idt entries
* point to C routines, however since this is a system call interface the branch
* history needs to be scrubbed to protect against BHI attacks, and that
* scrubbing needs to take place in assembly code prior to entering any C
* routines.
*/
SYM_CODE_START(int80_emulation)
ANNOTATE_NOENDBR
UNWIND_HINT_FUNC
CLEAR_BRANCH_HISTORY
jmp do_int80_emulation
SYM_CODE_END(int80_emulation)