mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-22 16:06:04 -05:00
b7175e24d6
blk_rq_map_sg is maze of nested loops. Untangle it by creating an iterator that returns [paddr,len] tuples for DMA mapping, and then implement the DMA logic on top of this. This not only removes code at the source level, but also generates nicer binary code: $ size block/blk-merge.o.* text data bss dec hex filename 10001 432 0 10433 28c1 block/blk-merge.o.new 10317 468 0 10785 2a21 block/blk-merge.o.old Last but not least it will be used as a building block for a new DMA mapping helper that doesn't rely on struct scatterlist. Signed-off-by: Christoph Hellwig <hch@lst.de> Link: https://lore.kernel.org/r/20250106081609.798289-1-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk>
1204 lines
32 KiB
C
1204 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions related to segment and merge handling
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-integrity.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/part_stat.h>
|
|
#include <linux/blk-cgroup.h>
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq-sched.h"
|
|
#include "blk-rq-qos.h"
|
|
#include "blk-throttle.h"
|
|
|
|
static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
|
|
{
|
|
*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
|
|
}
|
|
|
|
static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
|
|
{
|
|
struct bvec_iter iter = bio->bi_iter;
|
|
int idx;
|
|
|
|
bio_get_first_bvec(bio, bv);
|
|
if (bv->bv_len == bio->bi_iter.bi_size)
|
|
return; /* this bio only has a single bvec */
|
|
|
|
bio_advance_iter(bio, &iter, iter.bi_size);
|
|
|
|
if (!iter.bi_bvec_done)
|
|
idx = iter.bi_idx - 1;
|
|
else /* in the middle of bvec */
|
|
idx = iter.bi_idx;
|
|
|
|
*bv = bio->bi_io_vec[idx];
|
|
|
|
/*
|
|
* iter.bi_bvec_done records actual length of the last bvec
|
|
* if this bio ends in the middle of one io vector
|
|
*/
|
|
if (iter.bi_bvec_done)
|
|
bv->bv_len = iter.bi_bvec_done;
|
|
}
|
|
|
|
static inline bool bio_will_gap(struct request_queue *q,
|
|
struct request *prev_rq, struct bio *prev, struct bio *next)
|
|
{
|
|
struct bio_vec pb, nb;
|
|
|
|
if (!bio_has_data(prev) || !queue_virt_boundary(q))
|
|
return false;
|
|
|
|
/*
|
|
* Don't merge if the 1st bio starts with non-zero offset, otherwise it
|
|
* is quite difficult to respect the sg gap limit. We work hard to
|
|
* merge a huge number of small single bios in case of mkfs.
|
|
*/
|
|
if (prev_rq)
|
|
bio_get_first_bvec(prev_rq->bio, &pb);
|
|
else
|
|
bio_get_first_bvec(prev, &pb);
|
|
if (pb.bv_offset & queue_virt_boundary(q))
|
|
return true;
|
|
|
|
/*
|
|
* We don't need to worry about the situation that the merged segment
|
|
* ends in unaligned virt boundary:
|
|
*
|
|
* - if 'pb' ends aligned, the merged segment ends aligned
|
|
* - if 'pb' ends unaligned, the next bio must include
|
|
* one single bvec of 'nb', otherwise the 'nb' can't
|
|
* merge with 'pb'
|
|
*/
|
|
bio_get_last_bvec(prev, &pb);
|
|
bio_get_first_bvec(next, &nb);
|
|
if (biovec_phys_mergeable(q, &pb, &nb))
|
|
return false;
|
|
return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
|
|
}
|
|
|
|
static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
|
|
{
|
|
return bio_will_gap(req->q, req, req->biotail, bio);
|
|
}
|
|
|
|
static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
|
|
{
|
|
return bio_will_gap(req->q, NULL, bio, req->bio);
|
|
}
|
|
|
|
/*
|
|
* The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
|
|
* is defined as 'unsigned int', meantime it has to be aligned to with the
|
|
* logical block size, which is the minimum accepted unit by hardware.
|
|
*/
|
|
static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
|
|
{
|
|
return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
|
|
}
|
|
|
|
static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
|
|
{
|
|
if (unlikely(split_sectors < 0))
|
|
goto error;
|
|
|
|
if (split_sectors) {
|
|
struct bio *split;
|
|
|
|
split = bio_split(bio, split_sectors, GFP_NOIO,
|
|
&bio->bi_bdev->bd_disk->bio_split);
|
|
if (IS_ERR(split)) {
|
|
split_sectors = PTR_ERR(split);
|
|
goto error;
|
|
}
|
|
split->bi_opf |= REQ_NOMERGE;
|
|
blkcg_bio_issue_init(split);
|
|
bio_chain(split, bio);
|
|
trace_block_split(split, bio->bi_iter.bi_sector);
|
|
WARN_ON_ONCE(bio_zone_write_plugging(bio));
|
|
submit_bio_noacct(bio);
|
|
return split;
|
|
}
|
|
|
|
return bio;
|
|
error:
|
|
bio->bi_status = errno_to_blk_status(split_sectors);
|
|
bio_endio(bio);
|
|
return NULL;
|
|
}
|
|
|
|
struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
|
|
unsigned *nsegs)
|
|
{
|
|
unsigned int max_discard_sectors, granularity;
|
|
sector_t tmp;
|
|
unsigned split_sectors;
|
|
|
|
*nsegs = 1;
|
|
|
|
granularity = max(lim->discard_granularity >> 9, 1U);
|
|
|
|
max_discard_sectors =
|
|
min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
|
|
max_discard_sectors -= max_discard_sectors % granularity;
|
|
if (unlikely(!max_discard_sectors))
|
|
return bio;
|
|
|
|
if (bio_sectors(bio) <= max_discard_sectors)
|
|
return bio;
|
|
|
|
split_sectors = max_discard_sectors;
|
|
|
|
/*
|
|
* If the next starting sector would be misaligned, stop the discard at
|
|
* the previous aligned sector.
|
|
*/
|
|
tmp = bio->bi_iter.bi_sector + split_sectors -
|
|
((lim->discard_alignment >> 9) % granularity);
|
|
tmp = sector_div(tmp, granularity);
|
|
|
|
if (split_sectors > tmp)
|
|
split_sectors -= tmp;
|
|
|
|
return bio_submit_split(bio, split_sectors);
|
|
}
|
|
|
|
static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
|
|
bool is_atomic)
|
|
{
|
|
/*
|
|
* chunk_sectors must be a multiple of atomic_write_boundary_sectors if
|
|
* both non-zero.
|
|
*/
|
|
if (is_atomic && lim->atomic_write_boundary_sectors)
|
|
return lim->atomic_write_boundary_sectors;
|
|
|
|
return lim->chunk_sectors;
|
|
}
|
|
|
|
/*
|
|
* Return the maximum number of sectors from the start of a bio that may be
|
|
* submitted as a single request to a block device. If enough sectors remain,
|
|
* align the end to the physical block size. Otherwise align the end to the
|
|
* logical block size. This approach minimizes the number of non-aligned
|
|
* requests that are submitted to a block device if the start of a bio is not
|
|
* aligned to a physical block boundary.
|
|
*/
|
|
static inline unsigned get_max_io_size(struct bio *bio,
|
|
const struct queue_limits *lim)
|
|
{
|
|
unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
|
|
unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
|
|
bool is_atomic = bio->bi_opf & REQ_ATOMIC;
|
|
unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
|
|
unsigned max_sectors, start, end;
|
|
|
|
/*
|
|
* We ignore lim->max_sectors for atomic writes because it may less
|
|
* than the actual bio size, which we cannot tolerate.
|
|
*/
|
|
if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
|
|
max_sectors = lim->max_write_zeroes_sectors;
|
|
else if (is_atomic)
|
|
max_sectors = lim->atomic_write_max_sectors;
|
|
else
|
|
max_sectors = lim->max_sectors;
|
|
|
|
if (boundary_sectors) {
|
|
max_sectors = min(max_sectors,
|
|
blk_boundary_sectors_left(bio->bi_iter.bi_sector,
|
|
boundary_sectors));
|
|
}
|
|
|
|
start = bio->bi_iter.bi_sector & (pbs - 1);
|
|
end = (start + max_sectors) & ~(pbs - 1);
|
|
if (end > start)
|
|
return end - start;
|
|
return max_sectors & ~(lbs - 1);
|
|
}
|
|
|
|
/**
|
|
* get_max_segment_size() - maximum number of bytes to add as a single segment
|
|
* @lim: Request queue limits.
|
|
* @paddr: address of the range to add
|
|
* @len: maximum length available to add at @paddr
|
|
*
|
|
* Returns the maximum number of bytes of the range starting at @paddr that can
|
|
* be added to a single segment.
|
|
*/
|
|
static inline unsigned get_max_segment_size(const struct queue_limits *lim,
|
|
phys_addr_t paddr, unsigned int len)
|
|
{
|
|
/*
|
|
* Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
|
|
* after having calculated the minimum.
|
|
*/
|
|
return min_t(unsigned long, len,
|
|
min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
|
|
(unsigned long)lim->max_segment_size - 1) + 1);
|
|
}
|
|
|
|
/**
|
|
* bvec_split_segs - verify whether or not a bvec should be split in the middle
|
|
* @lim: [in] queue limits to split based on
|
|
* @bv: [in] bvec to examine
|
|
* @nsegs: [in,out] Number of segments in the bio being built. Incremented
|
|
* by the number of segments from @bv that may be appended to that
|
|
* bio without exceeding @max_segs
|
|
* @bytes: [in,out] Number of bytes in the bio being built. Incremented
|
|
* by the number of bytes from @bv that may be appended to that
|
|
* bio without exceeding @max_bytes
|
|
* @max_segs: [in] upper bound for *@nsegs
|
|
* @max_bytes: [in] upper bound for *@bytes
|
|
*
|
|
* When splitting a bio, it can happen that a bvec is encountered that is too
|
|
* big to fit in a single segment and hence that it has to be split in the
|
|
* middle. This function verifies whether or not that should happen. The value
|
|
* %true is returned if and only if appending the entire @bv to a bio with
|
|
* *@nsegs segments and *@sectors sectors would make that bio unacceptable for
|
|
* the block driver.
|
|
*/
|
|
static bool bvec_split_segs(const struct queue_limits *lim,
|
|
const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
|
|
unsigned max_segs, unsigned max_bytes)
|
|
{
|
|
unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
|
|
unsigned len = min(bv->bv_len, max_len);
|
|
unsigned total_len = 0;
|
|
unsigned seg_size = 0;
|
|
|
|
while (len && *nsegs < max_segs) {
|
|
seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
|
|
|
|
(*nsegs)++;
|
|
total_len += seg_size;
|
|
len -= seg_size;
|
|
|
|
if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
|
|
break;
|
|
}
|
|
|
|
*bytes += total_len;
|
|
|
|
/* tell the caller to split the bvec if it is too big to fit */
|
|
return len > 0 || bv->bv_len > max_len;
|
|
}
|
|
|
|
static unsigned int bio_split_alignment(struct bio *bio,
|
|
const struct queue_limits *lim)
|
|
{
|
|
if (op_is_write(bio_op(bio)) && lim->zone_write_granularity)
|
|
return lim->zone_write_granularity;
|
|
return lim->logical_block_size;
|
|
}
|
|
|
|
/**
|
|
* bio_split_rw_at - check if and where to split a read/write bio
|
|
* @bio: [in] bio to be split
|
|
* @lim: [in] queue limits to split based on
|
|
* @segs: [out] number of segments in the bio with the first half of the sectors
|
|
* @max_bytes: [in] maximum number of bytes per bio
|
|
*
|
|
* Find out if @bio needs to be split to fit the queue limits in @lim and a
|
|
* maximum size of @max_bytes. Returns a negative error number if @bio can't be
|
|
* split, 0 if the bio doesn't have to be split, or a positive sector offset if
|
|
* @bio needs to be split.
|
|
*/
|
|
int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
|
|
unsigned *segs, unsigned max_bytes)
|
|
{
|
|
struct bio_vec bv, bvprv, *bvprvp = NULL;
|
|
struct bvec_iter iter;
|
|
unsigned nsegs = 0, bytes = 0;
|
|
|
|
bio_for_each_bvec(bv, bio, iter) {
|
|
/*
|
|
* If the queue doesn't support SG gaps and adding this
|
|
* offset would create a gap, disallow it.
|
|
*/
|
|
if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
|
|
goto split;
|
|
|
|
if (nsegs < lim->max_segments &&
|
|
bytes + bv.bv_len <= max_bytes &&
|
|
bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
|
|
nsegs++;
|
|
bytes += bv.bv_len;
|
|
} else {
|
|
if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
|
|
lim->max_segments, max_bytes))
|
|
goto split;
|
|
}
|
|
|
|
bvprv = bv;
|
|
bvprvp = &bvprv;
|
|
}
|
|
|
|
*segs = nsegs;
|
|
return 0;
|
|
split:
|
|
if (bio->bi_opf & REQ_ATOMIC)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* We can't sanely support splitting for a REQ_NOWAIT bio. End it
|
|
* with EAGAIN if splitting is required and return an error pointer.
|
|
*/
|
|
if (bio->bi_opf & REQ_NOWAIT)
|
|
return -EAGAIN;
|
|
|
|
*segs = nsegs;
|
|
|
|
/*
|
|
* Individual bvecs might not be logical block aligned. Round down the
|
|
* split size so that each bio is properly block size aligned, even if
|
|
* we do not use the full hardware limits.
|
|
*/
|
|
bytes = ALIGN_DOWN(bytes, bio_split_alignment(bio, lim));
|
|
|
|
/*
|
|
* Bio splitting may cause subtle trouble such as hang when doing sync
|
|
* iopoll in direct IO routine. Given performance gain of iopoll for
|
|
* big IO can be trival, disable iopoll when split needed.
|
|
*/
|
|
bio_clear_polled(bio);
|
|
return bytes >> SECTOR_SHIFT;
|
|
}
|
|
EXPORT_SYMBOL_GPL(bio_split_rw_at);
|
|
|
|
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
|
|
unsigned *nr_segs)
|
|
{
|
|
return bio_submit_split(bio,
|
|
bio_split_rw_at(bio, lim, nr_segs,
|
|
get_max_io_size(bio, lim) << SECTOR_SHIFT));
|
|
}
|
|
|
|
/*
|
|
* REQ_OP_ZONE_APPEND bios must never be split by the block layer.
|
|
*
|
|
* But we want the nr_segs calculation provided by bio_split_rw_at, and having
|
|
* a good sanity check that the submitter built the bio correctly is nice to
|
|
* have as well.
|
|
*/
|
|
struct bio *bio_split_zone_append(struct bio *bio,
|
|
const struct queue_limits *lim, unsigned *nr_segs)
|
|
{
|
|
int split_sectors;
|
|
|
|
split_sectors = bio_split_rw_at(bio, lim, nr_segs,
|
|
lim->max_zone_append_sectors << SECTOR_SHIFT);
|
|
if (WARN_ON_ONCE(split_sectors > 0))
|
|
split_sectors = -EINVAL;
|
|
return bio_submit_split(bio, split_sectors);
|
|
}
|
|
|
|
struct bio *bio_split_write_zeroes(struct bio *bio,
|
|
const struct queue_limits *lim, unsigned *nsegs)
|
|
{
|
|
unsigned int max_sectors = get_max_io_size(bio, lim);
|
|
|
|
*nsegs = 0;
|
|
|
|
/*
|
|
* An unset limit should normally not happen, as bio submission is keyed
|
|
* off having a non-zero limit. But SCSI can clear the limit in the
|
|
* I/O completion handler, and we can race and see this. Splitting to a
|
|
* zero limit obviously doesn't make sense, so band-aid it here.
|
|
*/
|
|
if (!max_sectors)
|
|
return bio;
|
|
if (bio_sectors(bio) <= max_sectors)
|
|
return bio;
|
|
return bio_submit_split(bio, max_sectors);
|
|
}
|
|
|
|
/**
|
|
* bio_split_to_limits - split a bio to fit the queue limits
|
|
* @bio: bio to be split
|
|
*
|
|
* Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
|
|
* if so split off a bio fitting the limits from the beginning of @bio and
|
|
* return it. @bio is shortened to the remainder and re-submitted.
|
|
*
|
|
* The split bio is allocated from @q->bio_split, which is provided by the
|
|
* block layer.
|
|
*/
|
|
struct bio *bio_split_to_limits(struct bio *bio)
|
|
{
|
|
unsigned int nr_segs;
|
|
|
|
return __bio_split_to_limits(bio, bdev_limits(bio->bi_bdev), &nr_segs);
|
|
}
|
|
EXPORT_SYMBOL(bio_split_to_limits);
|
|
|
|
unsigned int blk_recalc_rq_segments(struct request *rq)
|
|
{
|
|
unsigned int nr_phys_segs = 0;
|
|
unsigned int bytes = 0;
|
|
struct req_iterator iter;
|
|
struct bio_vec bv;
|
|
|
|
if (!rq->bio)
|
|
return 0;
|
|
|
|
switch (bio_op(rq->bio)) {
|
|
case REQ_OP_DISCARD:
|
|
case REQ_OP_SECURE_ERASE:
|
|
if (queue_max_discard_segments(rq->q) > 1) {
|
|
struct bio *bio = rq->bio;
|
|
|
|
for_each_bio(bio)
|
|
nr_phys_segs++;
|
|
return nr_phys_segs;
|
|
}
|
|
return 1;
|
|
case REQ_OP_WRITE_ZEROES:
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
rq_for_each_bvec(bv, rq, iter)
|
|
bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
|
|
UINT_MAX, UINT_MAX);
|
|
return nr_phys_segs;
|
|
}
|
|
|
|
struct phys_vec {
|
|
phys_addr_t paddr;
|
|
u32 len;
|
|
};
|
|
|
|
static bool blk_map_iter_next(struct request *req,
|
|
struct req_iterator *iter, struct phys_vec *vec)
|
|
{
|
|
unsigned int max_size;
|
|
struct bio_vec bv;
|
|
|
|
if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
|
|
if (!iter->bio)
|
|
return false;
|
|
vec->paddr = bvec_phys(&req->special_vec);
|
|
vec->len = req->special_vec.bv_len;
|
|
iter->bio = NULL;
|
|
return true;
|
|
}
|
|
|
|
if (!iter->iter.bi_size)
|
|
return false;
|
|
|
|
bv = mp_bvec_iter_bvec(iter->bio->bi_io_vec, iter->iter);
|
|
vec->paddr = bvec_phys(&bv);
|
|
max_size = get_max_segment_size(&req->q->limits, vec->paddr, UINT_MAX);
|
|
bv.bv_len = min(bv.bv_len, max_size);
|
|
bio_advance_iter_single(iter->bio, &iter->iter, bv.bv_len);
|
|
|
|
/*
|
|
* If we are entirely done with this bi_io_vec entry, check if the next
|
|
* one could be merged into it. This typically happens when moving to
|
|
* the next bio, but some callers also don't pack bvecs tight.
|
|
*/
|
|
while (!iter->iter.bi_size || !iter->iter.bi_bvec_done) {
|
|
struct bio_vec next;
|
|
|
|
if (!iter->iter.bi_size) {
|
|
if (!iter->bio->bi_next)
|
|
break;
|
|
iter->bio = iter->bio->bi_next;
|
|
iter->iter = iter->bio->bi_iter;
|
|
}
|
|
|
|
next = mp_bvec_iter_bvec(iter->bio->bi_io_vec, iter->iter);
|
|
if (bv.bv_len + next.bv_len > max_size ||
|
|
!biovec_phys_mergeable(req->q, &bv, &next))
|
|
break;
|
|
|
|
bv.bv_len += next.bv_len;
|
|
bio_advance_iter_single(iter->bio, &iter->iter, next.bv_len);
|
|
}
|
|
|
|
vec->len = bv.bv_len;
|
|
return true;
|
|
}
|
|
|
|
static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
|
|
struct scatterlist *sglist)
|
|
{
|
|
if (!*sg)
|
|
return sglist;
|
|
|
|
/*
|
|
* If the driver previously mapped a shorter list, we could see a
|
|
* termination bit prematurely unless it fully inits the sg table
|
|
* on each mapping. We KNOW that there must be more entries here
|
|
* or the driver would be buggy, so force clear the termination bit
|
|
* to avoid doing a full sg_init_table() in drivers for each command.
|
|
*/
|
|
sg_unmark_end(*sg);
|
|
return sg_next(*sg);
|
|
}
|
|
|
|
/*
|
|
* Map a request to scatterlist, return number of sg entries setup. Caller
|
|
* must make sure sg can hold rq->nr_phys_segments entries.
|
|
*/
|
|
int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
|
|
struct scatterlist *sglist, struct scatterlist **last_sg)
|
|
{
|
|
struct req_iterator iter = {
|
|
.bio = rq->bio,
|
|
.iter = rq->bio->bi_iter,
|
|
};
|
|
struct phys_vec vec;
|
|
int nsegs = 0;
|
|
|
|
while (blk_map_iter_next(rq, &iter, &vec)) {
|
|
*last_sg = blk_next_sg(last_sg, sglist);
|
|
sg_set_page(*last_sg, phys_to_page(vec.paddr), vec.len,
|
|
offset_in_page(vec.paddr));
|
|
nsegs++;
|
|
}
|
|
|
|
if (*last_sg)
|
|
sg_mark_end(*last_sg);
|
|
|
|
/*
|
|
* Something must have been wrong if the figured number of
|
|
* segment is bigger than number of req's physical segments
|
|
*/
|
|
WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
|
|
|
|
return nsegs;
|
|
}
|
|
EXPORT_SYMBOL(__blk_rq_map_sg);
|
|
|
|
static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
|
|
sector_t offset)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct queue_limits *lim = &q->limits;
|
|
unsigned int max_sectors, boundary_sectors;
|
|
bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
|
|
|
|
if (blk_rq_is_passthrough(rq))
|
|
return q->limits.max_hw_sectors;
|
|
|
|
boundary_sectors = blk_boundary_sectors(lim, is_atomic);
|
|
max_sectors = blk_queue_get_max_sectors(rq);
|
|
|
|
if (!boundary_sectors ||
|
|
req_op(rq) == REQ_OP_DISCARD ||
|
|
req_op(rq) == REQ_OP_SECURE_ERASE)
|
|
return max_sectors;
|
|
return min(max_sectors,
|
|
blk_boundary_sectors_left(offset, boundary_sectors));
|
|
}
|
|
|
|
static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
|
|
unsigned int nr_phys_segs)
|
|
{
|
|
if (!blk_cgroup_mergeable(req, bio))
|
|
goto no_merge;
|
|
|
|
if (blk_integrity_merge_bio(req->q, req, bio) == false)
|
|
goto no_merge;
|
|
|
|
/* discard request merge won't add new segment */
|
|
if (req_op(req) == REQ_OP_DISCARD)
|
|
return 1;
|
|
|
|
if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
|
|
goto no_merge;
|
|
|
|
/*
|
|
* This will form the start of a new hw segment. Bump both
|
|
* counters.
|
|
*/
|
|
req->nr_phys_segments += nr_phys_segs;
|
|
if (bio_integrity(bio))
|
|
req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
|
|
bio);
|
|
return 1;
|
|
|
|
no_merge:
|
|
req_set_nomerge(req->q, req);
|
|
return 0;
|
|
}
|
|
|
|
int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
|
|
{
|
|
if (req_gap_back_merge(req, bio))
|
|
return 0;
|
|
if (blk_integrity_rq(req) &&
|
|
integrity_req_gap_back_merge(req, bio))
|
|
return 0;
|
|
if (!bio_crypt_ctx_back_mergeable(req, bio))
|
|
return 0;
|
|
if (blk_rq_sectors(req) + bio_sectors(bio) >
|
|
blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
|
|
req_set_nomerge(req->q, req);
|
|
return 0;
|
|
}
|
|
|
|
return ll_new_hw_segment(req, bio, nr_segs);
|
|
}
|
|
|
|
static int ll_front_merge_fn(struct request *req, struct bio *bio,
|
|
unsigned int nr_segs)
|
|
{
|
|
if (req_gap_front_merge(req, bio))
|
|
return 0;
|
|
if (blk_integrity_rq(req) &&
|
|
integrity_req_gap_front_merge(req, bio))
|
|
return 0;
|
|
if (!bio_crypt_ctx_front_mergeable(req, bio))
|
|
return 0;
|
|
if (blk_rq_sectors(req) + bio_sectors(bio) >
|
|
blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
|
|
req_set_nomerge(req->q, req);
|
|
return 0;
|
|
}
|
|
|
|
return ll_new_hw_segment(req, bio, nr_segs);
|
|
}
|
|
|
|
static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
|
|
struct request *next)
|
|
{
|
|
unsigned short segments = blk_rq_nr_discard_segments(req);
|
|
|
|
if (segments >= queue_max_discard_segments(q))
|
|
goto no_merge;
|
|
if (blk_rq_sectors(req) + bio_sectors(next->bio) >
|
|
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
|
|
goto no_merge;
|
|
|
|
req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
|
|
return true;
|
|
no_merge:
|
|
req_set_nomerge(q, req);
|
|
return false;
|
|
}
|
|
|
|
static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
|
|
struct request *next)
|
|
{
|
|
int total_phys_segments;
|
|
|
|
if (req_gap_back_merge(req, next->bio))
|
|
return 0;
|
|
|
|
/*
|
|
* Will it become too large?
|
|
*/
|
|
if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
|
|
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
|
|
return 0;
|
|
|
|
total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
|
|
if (total_phys_segments > blk_rq_get_max_segments(req))
|
|
return 0;
|
|
|
|
if (!blk_cgroup_mergeable(req, next->bio))
|
|
return 0;
|
|
|
|
if (blk_integrity_merge_rq(q, req, next) == false)
|
|
return 0;
|
|
|
|
if (!bio_crypt_ctx_merge_rq(req, next))
|
|
return 0;
|
|
|
|
/* Merge is OK... */
|
|
req->nr_phys_segments = total_phys_segments;
|
|
req->nr_integrity_segments += next->nr_integrity_segments;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* blk_rq_set_mixed_merge - mark a request as mixed merge
|
|
* @rq: request to mark as mixed merge
|
|
*
|
|
* Description:
|
|
* @rq is about to be mixed merged. Make sure the attributes
|
|
* which can be mixed are set in each bio and mark @rq as mixed
|
|
* merged.
|
|
*/
|
|
static void blk_rq_set_mixed_merge(struct request *rq)
|
|
{
|
|
blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
|
|
struct bio *bio;
|
|
|
|
if (rq->rq_flags & RQF_MIXED_MERGE)
|
|
return;
|
|
|
|
/*
|
|
* @rq will no longer represent mixable attributes for all the
|
|
* contained bios. It will just track those of the first one.
|
|
* Distributes the attributs to each bio.
|
|
*/
|
|
for (bio = rq->bio; bio; bio = bio->bi_next) {
|
|
WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
|
|
(bio->bi_opf & REQ_FAILFAST_MASK) != ff);
|
|
bio->bi_opf |= ff;
|
|
}
|
|
rq->rq_flags |= RQF_MIXED_MERGE;
|
|
}
|
|
|
|
static inline blk_opf_t bio_failfast(const struct bio *bio)
|
|
{
|
|
if (bio->bi_opf & REQ_RAHEAD)
|
|
return REQ_FAILFAST_MASK;
|
|
|
|
return bio->bi_opf & REQ_FAILFAST_MASK;
|
|
}
|
|
|
|
/*
|
|
* After we are marked as MIXED_MERGE, any new RA bio has to be updated
|
|
* as failfast, and request's failfast has to be updated in case of
|
|
* front merge.
|
|
*/
|
|
static inline void blk_update_mixed_merge(struct request *req,
|
|
struct bio *bio, bool front_merge)
|
|
{
|
|
if (req->rq_flags & RQF_MIXED_MERGE) {
|
|
if (bio->bi_opf & REQ_RAHEAD)
|
|
bio->bi_opf |= REQ_FAILFAST_MASK;
|
|
|
|
if (front_merge) {
|
|
req->cmd_flags &= ~REQ_FAILFAST_MASK;
|
|
req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void blk_account_io_merge_request(struct request *req)
|
|
{
|
|
if (req->rq_flags & RQF_IO_STAT) {
|
|
part_stat_lock();
|
|
part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
|
|
part_stat_local_dec(req->part,
|
|
in_flight[op_is_write(req_op(req))]);
|
|
part_stat_unlock();
|
|
}
|
|
}
|
|
|
|
static enum elv_merge blk_try_req_merge(struct request *req,
|
|
struct request *next)
|
|
{
|
|
if (blk_discard_mergable(req))
|
|
return ELEVATOR_DISCARD_MERGE;
|
|
else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
|
|
return ELEVATOR_BACK_MERGE;
|
|
|
|
return ELEVATOR_NO_MERGE;
|
|
}
|
|
|
|
static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
|
|
struct bio *bio)
|
|
{
|
|
return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
|
|
}
|
|
|
|
static bool blk_atomic_write_mergeable_rqs(struct request *rq,
|
|
struct request *next)
|
|
{
|
|
return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
|
|
}
|
|
|
|
/*
|
|
* For non-mq, this has to be called with the request spinlock acquired.
|
|
* For mq with scheduling, the appropriate queue wide lock should be held.
|
|
*/
|
|
static struct request *attempt_merge(struct request_queue *q,
|
|
struct request *req, struct request *next)
|
|
{
|
|
if (!rq_mergeable(req) || !rq_mergeable(next))
|
|
return NULL;
|
|
|
|
if (req_op(req) != req_op(next))
|
|
return NULL;
|
|
|
|
if (req->bio->bi_write_hint != next->bio->bi_write_hint)
|
|
return NULL;
|
|
if (req->bio->bi_ioprio != next->bio->bi_ioprio)
|
|
return NULL;
|
|
if (!blk_atomic_write_mergeable_rqs(req, next))
|
|
return NULL;
|
|
|
|
/*
|
|
* If we are allowed to merge, then append bio list
|
|
* from next to rq and release next. merge_requests_fn
|
|
* will have updated segment counts, update sector
|
|
* counts here. Handle DISCARDs separately, as they
|
|
* have separate settings.
|
|
*/
|
|
|
|
switch (blk_try_req_merge(req, next)) {
|
|
case ELEVATOR_DISCARD_MERGE:
|
|
if (!req_attempt_discard_merge(q, req, next))
|
|
return NULL;
|
|
break;
|
|
case ELEVATOR_BACK_MERGE:
|
|
if (!ll_merge_requests_fn(q, req, next))
|
|
return NULL;
|
|
break;
|
|
default:
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If failfast settings disagree or any of the two is already
|
|
* a mixed merge, mark both as mixed before proceeding. This
|
|
* makes sure that all involved bios have mixable attributes
|
|
* set properly.
|
|
*/
|
|
if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
|
|
(req->cmd_flags & REQ_FAILFAST_MASK) !=
|
|
(next->cmd_flags & REQ_FAILFAST_MASK)) {
|
|
blk_rq_set_mixed_merge(req);
|
|
blk_rq_set_mixed_merge(next);
|
|
}
|
|
|
|
/*
|
|
* At this point we have either done a back merge or front merge. We
|
|
* need the smaller start_time_ns of the merged requests to be the
|
|
* current request for accounting purposes.
|
|
*/
|
|
if (next->start_time_ns < req->start_time_ns)
|
|
req->start_time_ns = next->start_time_ns;
|
|
|
|
req->biotail->bi_next = next->bio;
|
|
req->biotail = next->biotail;
|
|
|
|
req->__data_len += blk_rq_bytes(next);
|
|
|
|
if (!blk_discard_mergable(req))
|
|
elv_merge_requests(q, req, next);
|
|
|
|
blk_crypto_rq_put_keyslot(next);
|
|
|
|
/*
|
|
* 'next' is going away, so update stats accordingly
|
|
*/
|
|
blk_account_io_merge_request(next);
|
|
|
|
trace_block_rq_merge(next);
|
|
|
|
/*
|
|
* ownership of bio passed from next to req, return 'next' for
|
|
* the caller to free
|
|
*/
|
|
next->bio = NULL;
|
|
return next;
|
|
}
|
|
|
|
static struct request *attempt_back_merge(struct request_queue *q,
|
|
struct request *rq)
|
|
{
|
|
struct request *next = elv_latter_request(q, rq);
|
|
|
|
if (next)
|
|
return attempt_merge(q, rq, next);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct request *attempt_front_merge(struct request_queue *q,
|
|
struct request *rq)
|
|
{
|
|
struct request *prev = elv_former_request(q, rq);
|
|
|
|
if (prev)
|
|
return attempt_merge(q, prev, rq);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Try to merge 'next' into 'rq'. Return true if the merge happened, false
|
|
* otherwise. The caller is responsible for freeing 'next' if the merge
|
|
* happened.
|
|
*/
|
|
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
|
|
struct request *next)
|
|
{
|
|
return attempt_merge(q, rq, next);
|
|
}
|
|
|
|
bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
|
|
{
|
|
if (!rq_mergeable(rq) || !bio_mergeable(bio))
|
|
return false;
|
|
|
|
if (req_op(rq) != bio_op(bio))
|
|
return false;
|
|
|
|
if (!blk_cgroup_mergeable(rq, bio))
|
|
return false;
|
|
if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
|
|
return false;
|
|
if (!bio_crypt_rq_ctx_compatible(rq, bio))
|
|
return false;
|
|
if (rq->bio->bi_write_hint != bio->bi_write_hint)
|
|
return false;
|
|
if (rq->bio->bi_ioprio != bio->bi_ioprio)
|
|
return false;
|
|
if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
|
|
{
|
|
if (blk_discard_mergable(rq))
|
|
return ELEVATOR_DISCARD_MERGE;
|
|
else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
|
|
return ELEVATOR_BACK_MERGE;
|
|
else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
|
|
return ELEVATOR_FRONT_MERGE;
|
|
return ELEVATOR_NO_MERGE;
|
|
}
|
|
|
|
static void blk_account_io_merge_bio(struct request *req)
|
|
{
|
|
if (req->rq_flags & RQF_IO_STAT) {
|
|
part_stat_lock();
|
|
part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
|
|
part_stat_unlock();
|
|
}
|
|
}
|
|
|
|
enum bio_merge_status bio_attempt_back_merge(struct request *req,
|
|
struct bio *bio, unsigned int nr_segs)
|
|
{
|
|
const blk_opf_t ff = bio_failfast(bio);
|
|
|
|
if (!ll_back_merge_fn(req, bio, nr_segs))
|
|
return BIO_MERGE_FAILED;
|
|
|
|
trace_block_bio_backmerge(bio);
|
|
rq_qos_merge(req->q, req, bio);
|
|
|
|
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
|
|
blk_rq_set_mixed_merge(req);
|
|
|
|
blk_update_mixed_merge(req, bio, false);
|
|
|
|
if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
|
|
blk_zone_write_plug_bio_merged(bio);
|
|
|
|
req->biotail->bi_next = bio;
|
|
req->biotail = bio;
|
|
req->__data_len += bio->bi_iter.bi_size;
|
|
|
|
bio_crypt_free_ctx(bio);
|
|
|
|
blk_account_io_merge_bio(req);
|
|
return BIO_MERGE_OK;
|
|
}
|
|
|
|
static enum bio_merge_status bio_attempt_front_merge(struct request *req,
|
|
struct bio *bio, unsigned int nr_segs)
|
|
{
|
|
const blk_opf_t ff = bio_failfast(bio);
|
|
|
|
/*
|
|
* A front merge for writes to sequential zones of a zoned block device
|
|
* can happen only if the user submitted writes out of order. Do not
|
|
* merge such write to let it fail.
|
|
*/
|
|
if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
|
|
return BIO_MERGE_FAILED;
|
|
|
|
if (!ll_front_merge_fn(req, bio, nr_segs))
|
|
return BIO_MERGE_FAILED;
|
|
|
|
trace_block_bio_frontmerge(bio);
|
|
rq_qos_merge(req->q, req, bio);
|
|
|
|
if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
|
|
blk_rq_set_mixed_merge(req);
|
|
|
|
blk_update_mixed_merge(req, bio, true);
|
|
|
|
bio->bi_next = req->bio;
|
|
req->bio = bio;
|
|
|
|
req->__sector = bio->bi_iter.bi_sector;
|
|
req->__data_len += bio->bi_iter.bi_size;
|
|
|
|
bio_crypt_do_front_merge(req, bio);
|
|
|
|
blk_account_io_merge_bio(req);
|
|
return BIO_MERGE_OK;
|
|
}
|
|
|
|
static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
|
|
struct request *req, struct bio *bio)
|
|
{
|
|
unsigned short segments = blk_rq_nr_discard_segments(req);
|
|
|
|
if (segments >= queue_max_discard_segments(q))
|
|
goto no_merge;
|
|
if (blk_rq_sectors(req) + bio_sectors(bio) >
|
|
blk_rq_get_max_sectors(req, blk_rq_pos(req)))
|
|
goto no_merge;
|
|
|
|
rq_qos_merge(q, req, bio);
|
|
|
|
req->biotail->bi_next = bio;
|
|
req->biotail = bio;
|
|
req->__data_len += bio->bi_iter.bi_size;
|
|
req->nr_phys_segments = segments + 1;
|
|
|
|
blk_account_io_merge_bio(req);
|
|
return BIO_MERGE_OK;
|
|
no_merge:
|
|
req_set_nomerge(q, req);
|
|
return BIO_MERGE_FAILED;
|
|
}
|
|
|
|
static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
|
|
struct request *rq,
|
|
struct bio *bio,
|
|
unsigned int nr_segs,
|
|
bool sched_allow_merge)
|
|
{
|
|
if (!blk_rq_merge_ok(rq, bio))
|
|
return BIO_MERGE_NONE;
|
|
|
|
switch (blk_try_merge(rq, bio)) {
|
|
case ELEVATOR_BACK_MERGE:
|
|
if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
|
|
return bio_attempt_back_merge(rq, bio, nr_segs);
|
|
break;
|
|
case ELEVATOR_FRONT_MERGE:
|
|
if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
|
|
return bio_attempt_front_merge(rq, bio, nr_segs);
|
|
break;
|
|
case ELEVATOR_DISCARD_MERGE:
|
|
return bio_attempt_discard_merge(q, rq, bio);
|
|
default:
|
|
return BIO_MERGE_NONE;
|
|
}
|
|
|
|
return BIO_MERGE_FAILED;
|
|
}
|
|
|
|
/**
|
|
* blk_attempt_plug_merge - try to merge with %current's plugged list
|
|
* @q: request_queue new bio is being queued at
|
|
* @bio: new bio being queued
|
|
* @nr_segs: number of segments in @bio
|
|
* from the passed in @q already in the plug list
|
|
*
|
|
* Determine whether @bio being queued on @q can be merged with the previous
|
|
* request on %current's plugged list. Returns %true if merge was successful,
|
|
* otherwise %false.
|
|
*
|
|
* Plugging coalesces IOs from the same issuer for the same purpose without
|
|
* going through @q->queue_lock. As such it's more of an issuing mechanism
|
|
* than scheduling, and the request, while may have elvpriv data, is not
|
|
* added on the elevator at this point. In addition, we don't have
|
|
* reliable access to the elevator outside queue lock. Only check basic
|
|
* merging parameters without querying the elevator.
|
|
*
|
|
* Caller must ensure !blk_queue_nomerges(q) beforehand.
|
|
*/
|
|
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs)
|
|
{
|
|
struct blk_plug *plug = current->plug;
|
|
struct request *rq;
|
|
|
|
if (!plug || rq_list_empty(&plug->mq_list))
|
|
return false;
|
|
|
|
rq_list_for_each(&plug->mq_list, rq) {
|
|
if (rq->q == q) {
|
|
if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
|
|
BIO_MERGE_OK)
|
|
return true;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Only keep iterating plug list for merges if we have multiple
|
|
* queues
|
|
*/
|
|
if (!plug->multiple_queues)
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Iterate list of requests and see if we can merge this bio with any
|
|
* of them.
|
|
*/
|
|
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
|
|
struct bio *bio, unsigned int nr_segs)
|
|
{
|
|
struct request *rq;
|
|
int checked = 8;
|
|
|
|
list_for_each_entry_reverse(rq, list, queuelist) {
|
|
if (!checked--)
|
|
break;
|
|
|
|
switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
|
|
case BIO_MERGE_NONE:
|
|
continue;
|
|
case BIO_MERGE_OK:
|
|
return true;
|
|
case BIO_MERGE_FAILED:
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_bio_list_merge);
|
|
|
|
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs, struct request **merged_request)
|
|
{
|
|
struct request *rq;
|
|
|
|
switch (elv_merge(q, &rq, bio)) {
|
|
case ELEVATOR_BACK_MERGE:
|
|
if (!blk_mq_sched_allow_merge(q, rq, bio))
|
|
return false;
|
|
if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
|
|
return false;
|
|
*merged_request = attempt_back_merge(q, rq);
|
|
if (!*merged_request)
|
|
elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
|
|
return true;
|
|
case ELEVATOR_FRONT_MERGE:
|
|
if (!blk_mq_sched_allow_merge(q, rq, bio))
|
|
return false;
|
|
if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
|
|
return false;
|
|
*merged_request = attempt_front_merge(q, rq);
|
|
if (!*merged_request)
|
|
elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
|
|
return true;
|
|
case ELEVATOR_DISCARD_MERGE:
|
|
return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
|