1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/fs/btrfs/check-integrity.c

3245 lines
98 KiB
C

/*
* Copyright (C) STRATO AG 2011. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
/*
* This module can be used to catch cases when the btrfs kernel
* code executes write requests to the disk that bring the file
* system in an inconsistent state. In such a state, a power-loss
* or kernel panic event would cause that the data on disk is
* lost or at least damaged.
*
* Code is added that examines all block write requests during
* runtime (including writes of the super block). Three rules
* are verified and an error is printed on violation of the
* rules:
* 1. It is not allowed to write a disk block which is
* currently referenced by the super block (either directly
* or indirectly).
* 2. When a super block is written, it is verified that all
* referenced (directly or indirectly) blocks fulfill the
* following requirements:
* 2a. All referenced blocks have either been present when
* the file system was mounted, (i.e., they have been
* referenced by the super block) or they have been
* written since then and the write completion callback
* was called and no write error was indicated and a
* FLUSH request to the device where these blocks are
* located was received and completed.
* 2b. All referenced blocks need to have a generation
* number which is equal to the parent's number.
*
* One issue that was found using this module was that the log
* tree on disk became temporarily corrupted because disk blocks
* that had been in use for the log tree had been freed and
* reused too early, while being referenced by the written super
* block.
*
* The search term in the kernel log that can be used to filter
* on the existence of detected integrity issues is
* "btrfs: attempt".
*
* The integrity check is enabled via mount options. These
* mount options are only supported if the integrity check
* tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
*
* Example #1, apply integrity checks to all metadata:
* mount /dev/sdb1 /mnt -o check_int
*
* Example #2, apply integrity checks to all metadata and
* to data extents:
* mount /dev/sdb1 /mnt -o check_int_data
*
* Example #3, apply integrity checks to all metadata and dump
* the tree that the super block references to kernel messages
* each time after a super block was written:
* mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
*
* If the integrity check tool is included and activated in
* the mount options, plenty of kernel memory is used, and
* plenty of additional CPU cycles are spent. Enabling this
* functionality is not intended for normal use. In most
* cases, unless you are a btrfs developer who needs to verify
* the integrity of (super)-block write requests, do not
* enable the config option BTRFS_FS_CHECK_INTEGRITY to
* include and compile the integrity check tool.
*
* Expect millions of lines of information in the kernel log with an
* enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
* kernel config to at least 26 (which is 64MB). Usually the value is
* limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
* changed like this before LOG_BUF_SHIFT can be set to a high value:
* config LOG_BUF_SHIFT
* int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
* range 12 30
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/buffer_head.h>
#include <linux/mutex.h>
#include <linux/genhd.h>
#include <linux/blkdev.h>
#include <linux/vmalloc.h>
#include "ctree.h"
#include "disk-io.h"
#include "hash.h"
#include "transaction.h"
#include "extent_io.h"
#include "volumes.h"
#include "print-tree.h"
#include "locking.h"
#include "check-integrity.h"
#include "rcu-string.h"
#define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
#define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
#define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
#define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
#define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
#define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
#define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
#define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
* excluding " [...]" */
#define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
/*
* The definition of the bitmask fields for the print_mask.
* They are specified with the mount option check_integrity_print_mask.
*/
#define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
#define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
#define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
#define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
#define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
#define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
#define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
#define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
#define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
#define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
#define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
#define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
#define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
struct btrfsic_dev_state;
struct btrfsic_state;
struct btrfsic_block {
u32 magic_num; /* only used for debug purposes */
unsigned int is_metadata:1; /* if it is meta-data, not data-data */
unsigned int is_superblock:1; /* if it is one of the superblocks */
unsigned int is_iodone:1; /* if is done by lower subsystem */
unsigned int iodone_w_error:1; /* error was indicated to endio */
unsigned int never_written:1; /* block was added because it was
* referenced, not because it was
* written */
unsigned int mirror_num; /* large enough to hold
* BTRFS_SUPER_MIRROR_MAX */
struct btrfsic_dev_state *dev_state;
u64 dev_bytenr; /* key, physical byte num on disk */
u64 logical_bytenr; /* logical byte num on disk */
u64 generation;
struct btrfs_disk_key disk_key; /* extra info to print in case of
* issues, will not always be correct */
struct list_head collision_resolving_node; /* list node */
struct list_head all_blocks_node; /* list node */
/* the following two lists contain block_link items */
struct list_head ref_to_list; /* list */
struct list_head ref_from_list; /* list */
struct btrfsic_block *next_in_same_bio;
void *orig_bio_bh_private;
union {
bio_end_io_t *bio;
bh_end_io_t *bh;
} orig_bio_bh_end_io;
int submit_bio_bh_rw;
u64 flush_gen; /* only valid if !never_written */
};
/*
* Elements of this type are allocated dynamically and required because
* each block object can refer to and can be ref from multiple blocks.
* The key to lookup them in the hashtable is the dev_bytenr of
* the block ref to plus the one from the block refered from.
* The fact that they are searchable via a hashtable and that a
* ref_cnt is maintained is not required for the btrfs integrity
* check algorithm itself, it is only used to make the output more
* beautiful in case that an error is detected (an error is defined
* as a write operation to a block while that block is still referenced).
*/
struct btrfsic_block_link {
u32 magic_num; /* only used for debug purposes */
u32 ref_cnt;
struct list_head node_ref_to; /* list node */
struct list_head node_ref_from; /* list node */
struct list_head collision_resolving_node; /* list node */
struct btrfsic_block *block_ref_to;
struct btrfsic_block *block_ref_from;
u64 parent_generation;
};
struct btrfsic_dev_state {
u32 magic_num; /* only used for debug purposes */
struct block_device *bdev;
struct btrfsic_state *state;
struct list_head collision_resolving_node; /* list node */
struct btrfsic_block dummy_block_for_bio_bh_flush;
u64 last_flush_gen;
char name[BDEVNAME_SIZE];
};
struct btrfsic_block_hashtable {
struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
};
struct btrfsic_block_link_hashtable {
struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
};
struct btrfsic_dev_state_hashtable {
struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
};
struct btrfsic_block_data_ctx {
u64 start; /* virtual bytenr */
u64 dev_bytenr; /* physical bytenr on device */
u32 len;
struct btrfsic_dev_state *dev;
char **datav;
struct page **pagev;
void *mem_to_free;
};
/* This structure is used to implement recursion without occupying
* any stack space, refer to btrfsic_process_metablock() */
struct btrfsic_stack_frame {
u32 magic;
u32 nr;
int error;
int i;
int limit_nesting;
int num_copies;
int mirror_num;
struct btrfsic_block *block;
struct btrfsic_block_data_ctx *block_ctx;
struct btrfsic_block *next_block;
struct btrfsic_block_data_ctx next_block_ctx;
struct btrfs_header *hdr;
struct btrfsic_stack_frame *prev;
};
/* Some state per mounted filesystem */
struct btrfsic_state {
u32 print_mask;
int include_extent_data;
int csum_size;
struct list_head all_blocks_list;
struct btrfsic_block_hashtable block_hashtable;
struct btrfsic_block_link_hashtable block_link_hashtable;
struct btrfs_root *root;
u64 max_superblock_generation;
struct btrfsic_block *latest_superblock;
u32 metablock_size;
u32 datablock_size;
};
static void btrfsic_block_init(struct btrfsic_block *b);
static struct btrfsic_block *btrfsic_block_alloc(void);
static void btrfsic_block_free(struct btrfsic_block *b);
static void btrfsic_block_link_init(struct btrfsic_block_link *n);
static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
static void btrfsic_block_link_free(struct btrfsic_block_link *n);
static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
struct btrfsic_block_hashtable *h);
static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
static struct btrfsic_block *btrfsic_block_hashtable_lookup(
struct block_device *bdev,
u64 dev_bytenr,
struct btrfsic_block_hashtable *h);
static void btrfsic_block_link_hashtable_init(
struct btrfsic_block_link_hashtable *h);
static void btrfsic_block_link_hashtable_add(
struct btrfsic_block_link *l,
struct btrfsic_block_link_hashtable *h);
static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
struct block_device *bdev_ref_to,
u64 dev_bytenr_ref_to,
struct block_device *bdev_ref_from,
u64 dev_bytenr_ref_from,
struct btrfsic_block_link_hashtable *h);
static void btrfsic_dev_state_hashtable_init(
struct btrfsic_dev_state_hashtable *h);
static void btrfsic_dev_state_hashtable_add(
struct btrfsic_dev_state *ds,
struct btrfsic_dev_state_hashtable *h);
static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
struct block_device *bdev,
struct btrfsic_dev_state_hashtable *h);
static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
static int btrfsic_process_superblock(struct btrfsic_state *state,
struct btrfs_fs_devices *fs_devices);
static int btrfsic_process_metablock(struct btrfsic_state *state,
struct btrfsic_block *block,
struct btrfsic_block_data_ctx *block_ctx,
int limit_nesting, int force_iodone_flag);
static void btrfsic_read_from_block_data(
struct btrfsic_block_data_ctx *block_ctx,
void *dst, u32 offset, size_t len);
static int btrfsic_create_link_to_next_block(
struct btrfsic_state *state,
struct btrfsic_block *block,
struct btrfsic_block_data_ctx
*block_ctx, u64 next_bytenr,
int limit_nesting,
struct btrfsic_block_data_ctx *next_block_ctx,
struct btrfsic_block **next_blockp,
int force_iodone_flag,
int *num_copiesp, int *mirror_nump,
struct btrfs_disk_key *disk_key,
u64 parent_generation);
static int btrfsic_handle_extent_data(struct btrfsic_state *state,
struct btrfsic_block *block,
struct btrfsic_block_data_ctx *block_ctx,
u32 item_offset, int force_iodone_flag);
static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
struct btrfsic_block_data_ctx *block_ctx_out,
int mirror_num);
static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
static int btrfsic_read_block(struct btrfsic_state *state,
struct btrfsic_block_data_ctx *block_ctx);
static void btrfsic_dump_database(struct btrfsic_state *state);
static int btrfsic_test_for_metadata(struct btrfsic_state *state,
char **datav, unsigned int num_pages);
static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
u64 dev_bytenr, char **mapped_datav,
unsigned int num_pages,
struct bio *bio, int *bio_is_patched,
struct buffer_head *bh,
int submit_bio_bh_rw);
static int btrfsic_process_written_superblock(
struct btrfsic_state *state,
struct btrfsic_block *const block,
struct btrfs_super_block *const super_hdr);
static void btrfsic_bio_end_io(struct bio *bp);
static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
const struct btrfsic_block *block,
int recursion_level);
static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
struct btrfsic_block *const block,
int recursion_level);
static void btrfsic_print_add_link(const struct btrfsic_state *state,
const struct btrfsic_block_link *l);
static void btrfsic_print_rem_link(const struct btrfsic_state *state,
const struct btrfsic_block_link *l);
static char btrfsic_get_block_type(const struct btrfsic_state *state,
const struct btrfsic_block *block);
static void btrfsic_dump_tree(const struct btrfsic_state *state);
static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
const struct btrfsic_block *block,
int indent_level);
static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
struct btrfsic_state *state,
struct btrfsic_block_data_ctx *next_block_ctx,
struct btrfsic_block *next_block,
struct btrfsic_block *from_block,
u64 parent_generation);
static struct btrfsic_block *btrfsic_block_lookup_or_add(
struct btrfsic_state *state,
struct btrfsic_block_data_ctx *block_ctx,
const char *additional_string,
int is_metadata,
int is_iodone,
int never_written,
int mirror_num,
int *was_created);
static int btrfsic_process_superblock_dev_mirror(
struct btrfsic_state *state,
struct btrfsic_dev_state *dev_state,
struct btrfs_device *device,
int superblock_mirror_num,
struct btrfsic_dev_state **selected_dev_state,
struct btrfs_super_block *selected_super);
static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
struct block_device *bdev);
static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
u64 bytenr,
struct btrfsic_dev_state *dev_state,
u64 dev_bytenr);
static struct mutex btrfsic_mutex;
static int btrfsic_is_initialized;
static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
static void btrfsic_block_init(struct btrfsic_block *b)
{
b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
b->dev_state = NULL;
b->dev_bytenr = 0;
b->logical_bytenr = 0;
b->generation = BTRFSIC_GENERATION_UNKNOWN;
b->disk_key.objectid = 0;
b->disk_key.type = 0;
b->disk_key.offset = 0;
b->is_metadata = 0;
b->is_superblock = 0;
b->is_iodone = 0;
b->iodone_w_error = 0;
b->never_written = 0;
b->mirror_num = 0;
b->next_in_same_bio = NULL;
b->orig_bio_bh_private = NULL;
b->orig_bio_bh_end_io.bio = NULL;
INIT_LIST_HEAD(&b->collision_resolving_node);
INIT_LIST_HEAD(&b->all_blocks_node);
INIT_LIST_HEAD(&b->ref_to_list);
INIT_LIST_HEAD(&b->ref_from_list);
b->submit_bio_bh_rw = 0;
b->flush_gen = 0;
}
static struct btrfsic_block *btrfsic_block_alloc(void)
{
struct btrfsic_block *b;
b = kzalloc(sizeof(*b), GFP_NOFS);
if (NULL != b)
btrfsic_block_init(b);
return b;
}
static void btrfsic_block_free(struct btrfsic_block *b)
{
BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
kfree(b);
}
static void btrfsic_block_link_init(struct btrfsic_block_link *l)
{
l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
l->ref_cnt = 1;
INIT_LIST_HEAD(&l->node_ref_to);
INIT_LIST_HEAD(&l->node_ref_from);
INIT_LIST_HEAD(&l->collision_resolving_node);
l->block_ref_to = NULL;
l->block_ref_from = NULL;
}
static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
{
struct btrfsic_block_link *l;
l = kzalloc(sizeof(*l), GFP_NOFS);
if (NULL != l)
btrfsic_block_link_init(l);
return l;
}
static void btrfsic_block_link_free(struct btrfsic_block_link *l)
{
BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
kfree(l);
}
static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
{
ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
ds->bdev = NULL;
ds->state = NULL;
ds->name[0] = '\0';
INIT_LIST_HEAD(&ds->collision_resolving_node);
ds->last_flush_gen = 0;
btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
ds->dummy_block_for_bio_bh_flush.dev_state = ds;
}
static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
{
struct btrfsic_dev_state *ds;
ds = kzalloc(sizeof(*ds), GFP_NOFS);
if (NULL != ds)
btrfsic_dev_state_init(ds);
return ds;
}
static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
{
BUG_ON(!(NULL == ds ||
BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
kfree(ds);
}
static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
{
int i;
for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
INIT_LIST_HEAD(h->table + i);
}
static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
struct btrfsic_block_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)(b->dev_bytenr >> 16)) ^
((unsigned int)((uintptr_t)b->dev_state->bdev))) &
(BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
list_add(&b->collision_resolving_node, h->table + hashval);
}
static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
{
list_del(&b->collision_resolving_node);
}
static struct btrfsic_block *btrfsic_block_hashtable_lookup(
struct block_device *bdev,
u64 dev_bytenr,
struct btrfsic_block_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)(dev_bytenr >> 16)) ^
((unsigned int)((uintptr_t)bdev))) &
(BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
struct list_head *elem;
list_for_each(elem, h->table + hashval) {
struct btrfsic_block *const b =
list_entry(elem, struct btrfsic_block,
collision_resolving_node);
if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
return b;
}
return NULL;
}
static void btrfsic_block_link_hashtable_init(
struct btrfsic_block_link_hashtable *h)
{
int i;
for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
INIT_LIST_HEAD(h->table + i);
}
static void btrfsic_block_link_hashtable_add(
struct btrfsic_block_link *l,
struct btrfsic_block_link_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
& (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
BUG_ON(NULL == l->block_ref_to);
BUG_ON(NULL == l->block_ref_from);
list_add(&l->collision_resolving_node, h->table + hashval);
}
static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
{
list_del(&l->collision_resolving_node);
}
static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
struct block_device *bdev_ref_to,
u64 dev_bytenr_ref_to,
struct block_device *bdev_ref_from,
u64 dev_bytenr_ref_from,
struct btrfsic_block_link_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)(dev_bytenr_ref_to >> 16)) ^
((unsigned int)(dev_bytenr_ref_from >> 16)) ^
((unsigned int)((uintptr_t)bdev_ref_to)) ^
((unsigned int)((uintptr_t)bdev_ref_from))) &
(BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
struct list_head *elem;
list_for_each(elem, h->table + hashval) {
struct btrfsic_block_link *const l =
list_entry(elem, struct btrfsic_block_link,
collision_resolving_node);
BUG_ON(NULL == l->block_ref_to);
BUG_ON(NULL == l->block_ref_from);
if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
l->block_ref_from->dev_state->bdev == bdev_ref_from &&
l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
return l;
}
return NULL;
}
static void btrfsic_dev_state_hashtable_init(
struct btrfsic_dev_state_hashtable *h)
{
int i;
for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
INIT_LIST_HEAD(h->table + i);
}
static void btrfsic_dev_state_hashtable_add(
struct btrfsic_dev_state *ds,
struct btrfsic_dev_state_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)((uintptr_t)ds->bdev)) &
(BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
list_add(&ds->collision_resolving_node, h->table + hashval);
}
static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
{
list_del(&ds->collision_resolving_node);
}
static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
struct block_device *bdev,
struct btrfsic_dev_state_hashtable *h)
{
const unsigned int hashval =
(((unsigned int)((uintptr_t)bdev)) &
(BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
struct list_head *elem;
list_for_each(elem, h->table + hashval) {
struct btrfsic_dev_state *const ds =
list_entry(elem, struct btrfsic_dev_state,
collision_resolving_node);
if (ds->bdev == bdev)
return ds;
}
return NULL;
}
static int btrfsic_process_superblock(struct btrfsic_state *state,
struct btrfs_fs_devices *fs_devices)
{
int ret = 0;
struct btrfs_super_block *selected_super;
struct list_head *dev_head = &fs_devices->devices;
struct btrfs_device *device;
struct btrfsic_dev_state *selected_dev_state = NULL;
int pass;
BUG_ON(NULL == state);
selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
if (NULL == selected_super) {
printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
return -ENOMEM;
}
list_for_each_entry(device, dev_head, dev_list) {
int i;
struct btrfsic_dev_state *dev_state;
if (!device->bdev || !device->name)
continue;
dev_state = btrfsic_dev_state_lookup(device->bdev);
BUG_ON(NULL == dev_state);
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
ret = btrfsic_process_superblock_dev_mirror(
state, dev_state, device, i,
&selected_dev_state, selected_super);
if (0 != ret && 0 == i) {
kfree(selected_super);
return ret;
}
}
}
if (NULL == state->latest_superblock) {
printk(KERN_INFO "btrfsic: no superblock found!\n");
kfree(selected_super);
return -1;
}
state->csum_size = btrfs_super_csum_size(selected_super);
for (pass = 0; pass < 3; pass++) {
int num_copies;
int mirror_num;
u64 next_bytenr;
switch (pass) {
case 0:
next_bytenr = btrfs_super_root(selected_super);
if (state->print_mask &
BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
printk(KERN_INFO "root@%llu\n", next_bytenr);
break;
case 1:
next_bytenr = btrfs_super_chunk_root(selected_super);
if (state->print_mask &
BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
printk(KERN_INFO "chunk@%llu\n", next_bytenr);
break;
case 2:
next_bytenr = btrfs_super_log_root(selected_super);
if (0 == next_bytenr)
continue;
if (state->print_mask &
BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
printk(KERN_INFO "log@%llu\n", next_bytenr);
break;
}
num_copies =
btrfs_num_copies(state->root->fs_info,
next_bytenr, state->metablock_size);
if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
next_bytenr, num_copies);
for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
struct btrfsic_block *next_block;
struct btrfsic_block_data_ctx tmp_next_block_ctx;
struct btrfsic_block_link *l;
ret = btrfsic_map_block(state, next_bytenr,
state->metablock_size,
&tmp_next_block_ctx,
mirror_num);
if (ret) {
printk(KERN_INFO "btrfsic:"
" btrfsic_map_block(root @%llu,"
" mirror %d) failed!\n",
next_bytenr, mirror_num);
kfree(selected_super);
return -1;
}
next_block = btrfsic_block_hashtable_lookup(
tmp_next_block_ctx.dev->bdev,
tmp_next_block_ctx.dev_bytenr,
&state->block_hashtable);
BUG_ON(NULL == next_block);
l = btrfsic_block_link_hashtable_lookup(
tmp_next_block_ctx.dev->bdev,
tmp_next_block_ctx.dev_bytenr,
state->latest_superblock->dev_state->
bdev,
state->latest_superblock->dev_bytenr,
&state->block_link_hashtable);
BUG_ON(NULL == l);
ret = btrfsic_read_block(state, &tmp_next_block_ctx);
if (ret < (int)PAGE_CACHE_SIZE) {
printk(KERN_INFO
"btrfsic: read @logical %llu failed!\n",
tmp_next_block_ctx.start);
btrfsic_release_block_ctx(&tmp_next_block_ctx);
kfree(selected_super);
return -1;
}
ret = btrfsic_process_metablock(state,
next_block,
&tmp_next_block_ctx,
BTRFS_MAX_LEVEL + 3, 1);
btrfsic_release_block_ctx(&tmp_next_block_ctx);
}
}
kfree(selected_super);
return ret;
}
static int btrfsic_process_superblock_dev_mirror(
struct btrfsic_state *state,
struct btrfsic_dev_state *dev_state,
struct btrfs_device *device,
int superblock_mirror_num,
struct btrfsic_dev_state **selected_dev_state,
struct btrfs_super_block *selected_super)
{
struct btrfs_super_block *super_tmp;
u64 dev_bytenr;
struct buffer_head *bh;
struct btrfsic_block *superblock_tmp;
int pass;
struct block_device *const superblock_bdev = device->bdev;
/* super block bytenr is always the unmapped device bytenr */
dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
return -1;
bh = __bread(superblock_bdev, dev_bytenr / 4096,
BTRFS_SUPER_INFO_SIZE);
if (NULL == bh)
return -1;
super_tmp = (struct btrfs_super_block *)
(bh->b_data + (dev_bytenr & 4095));
if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
btrfs_super_nodesize(super_tmp) != state->metablock_size ||
btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
brelse(bh);
return 0;
}
superblock_tmp =
btrfsic_block_hashtable_lookup(superblock_bdev,
dev_bytenr,
&state->block_hashtable);
if (NULL == superblock_tmp) {
superblock_tmp = btrfsic_block_alloc();
if (NULL == superblock_tmp) {
printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
brelse(bh);
return -1;
}
/* for superblock, only the dev_bytenr makes sense */
superblock_tmp->dev_bytenr = dev_bytenr;
superblock_tmp->dev_state = dev_state;
superblock_tmp->logical_bytenr = dev_bytenr;
superblock_tmp->generation = btrfs_super_generation(super_tmp);
superblock_tmp->is_metadata = 1;
superblock_tmp->is_superblock = 1;
superblock_tmp->is_iodone = 1;
superblock_tmp->never_written = 0;
superblock_tmp->mirror_num = 1 + superblock_mirror_num;
if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
btrfs_info_in_rcu(device->dev_root->fs_info,
"new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
superblock_bdev,
rcu_str_deref(device->name), dev_bytenr,
dev_state->name, dev_bytenr,
superblock_mirror_num);
list_add(&superblock_tmp->all_blocks_node,
&state->all_blocks_list);
btrfsic_block_hashtable_add(superblock_tmp,
&state->block_hashtable);
}
/* select the one with the highest generation field */
if (btrfs_super_generation(super_tmp) >
state->max_superblock_generation ||
0 == state->max_superblock_generation) {
memcpy(selected_super, super_tmp, sizeof(*selected_super));
*selected_dev_state = dev_state;
state->max_superblock_generation =
btrfs_super_generation(super_tmp);
state->latest_superblock = superblock_tmp;
}
for (pass = 0; pass < 3; pass++) {
u64 next_bytenr;
int num_copies;
int mirror_num;
const char *additional_string = NULL;
struct btrfs_disk_key tmp_disk_key;
tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
tmp_disk_key.offset = 0;
switch (pass) {
case 0:
btrfs_set_disk_key_objectid(&tmp_disk_key,
BTRFS_ROOT_TREE_OBJECTID);
additional_string = "initial root ";
next_bytenr = btrfs_super_root(super_tmp);
break;
case 1:
btrfs_set_disk_key_objectid(&tmp_disk_key,
BTRFS_CHUNK_TREE_OBJECTID);
additional_string = "initial chunk ";
next_bytenr = btrfs_super_chunk_root(super_tmp);
break;
case 2:
btrfs_set_disk_key_objectid(&tmp_disk_key,
BTRFS_TREE_LOG_OBJECTID);
additional_string = "initial log ";
next_bytenr = btrfs_super_log_root(super_tmp);
if (0 == next_bytenr)
continue;
break;
}
num_copies =
btrfs_num_copies(state->root->fs_info,
next_bytenr, state->metablock_size);
if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
next_bytenr, num_copies);
for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
struct btrfsic_block *next_block;
struct btrfsic_block_data_ctx tmp_next_block_ctx;
struct btrfsic_block_link *l;
if (btrfsic_map_block(state, next_bytenr,
state->metablock_size,
&tmp_next_block_ctx,
mirror_num)) {
printk(KERN_INFO "btrfsic: btrfsic_map_block("
"bytenr @%llu, mirror %d) failed!\n",
next_bytenr, mirror_num);
brelse(bh);
return -1;
}
next_block = btrfsic_block_lookup_or_add(
state, &tmp_next_block_ctx,
additional_string, 1, 1, 0,
mirror_num, NULL);
if (NULL == next_block) {
btrfsic_release_block_ctx(&tmp_next_block_ctx);
brelse(bh);
return -1;
}
next_block->disk_key = tmp_disk_key;
next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
l = btrfsic_block_link_lookup_or_add(
state, &tmp_next_block_ctx,
next_block, superblock_tmp,
BTRFSIC_GENERATION_UNKNOWN);
btrfsic_release_block_ctx(&tmp_next_block_ctx);
if (NULL == l) {
brelse(bh);
return -1;
}
}
}
if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
btrfsic_dump_tree_sub(state, superblock_tmp, 0);
brelse(bh);
return 0;
}
static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
{
struct btrfsic_stack_frame *sf;
sf = kzalloc(sizeof(*sf), GFP_NOFS);
if (NULL == sf)
printk(KERN_INFO "btrfsic: alloc memory failed!\n");
else
sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
return sf;
}
static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
{
BUG_ON(!(NULL == sf ||
BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
kfree(sf);
}
static int btrfsic_process_metablock(
struct btrfsic_state *state,
struct btrfsic_block *const first_block,
struct btrfsic_block_data_ctx *const first_block_ctx,
int first_limit_nesting, int force_iodone_flag)
{
struct btrfsic_stack_frame initial_stack_frame = { 0 };
struct btrfsic_stack_frame *sf;
struct btrfsic_stack_frame *next_stack;
struct btrfs_header *const first_hdr =
(struct btrfs_header *)first_block_ctx->datav[0];
BUG_ON(!first_hdr);
sf = &initial_stack_frame;
sf->error = 0;
sf->i = -1;
sf->limit_nesting = first_limit_nesting;
sf->block = first_block;
sf->block_ctx = first_block_ctx;
sf->next_block = NULL;
sf->hdr = first_hdr;
sf->prev = NULL;
continue_with_new_stack_frame:
sf->block->generation = le64_to_cpu(sf->hdr->generation);
if (0 == sf->hdr->level) {
struct btrfs_leaf *const leafhdr =
(struct btrfs_leaf *)sf->hdr;
if (-1 == sf->i) {
sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"leaf %llu items %d generation %llu"
" owner %llu\n",
sf->block_ctx->start, sf->nr,
btrfs_stack_header_generation(
&leafhdr->header),
btrfs_stack_header_owner(
&leafhdr->header));
}
continue_with_current_leaf_stack_frame:
if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
sf->i++;
sf->num_copies = 0;
}
if (sf->i < sf->nr) {
struct btrfs_item disk_item;
u32 disk_item_offset =
(uintptr_t)(leafhdr->items + sf->i) -
(uintptr_t)leafhdr;
struct btrfs_disk_key *disk_key;
u8 type;
u32 item_offset;
u32 item_size;
if (disk_item_offset + sizeof(struct btrfs_item) >
sf->block_ctx->len) {
leaf_item_out_of_bounce_error:
printk(KERN_INFO
"btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
sf->block_ctx->start,
sf->block_ctx->dev->name);
goto one_stack_frame_backwards;
}
btrfsic_read_from_block_data(sf->block_ctx,
&disk_item,
disk_item_offset,
sizeof(struct btrfs_item));
item_offset = btrfs_stack_item_offset(&disk_item);
item_size = btrfs_stack_item_size(&disk_item);
disk_key = &disk_item.key;
type = btrfs_disk_key_type(disk_key);
if (BTRFS_ROOT_ITEM_KEY == type) {
struct btrfs_root_item root_item;
u32 root_item_offset;
u64 next_bytenr;
root_item_offset = item_offset +
offsetof(struct btrfs_leaf, items);
if (root_item_offset + item_size >
sf->block_ctx->len)
goto leaf_item_out_of_bounce_error;
btrfsic_read_from_block_data(
sf->block_ctx, &root_item,
root_item_offset,
item_size);
next_bytenr = btrfs_root_bytenr(&root_item);
sf->error =
btrfsic_create_link_to_next_block(
state,
sf->block,
sf->block_ctx,
next_bytenr,
sf->limit_nesting,
&sf->next_block_ctx,
&sf->next_block,
force_iodone_flag,
&sf->num_copies,
&sf->mirror_num,
disk_key,
btrfs_root_generation(
&root_item));
if (sf->error)
goto one_stack_frame_backwards;
if (NULL != sf->next_block) {
struct btrfs_header *const next_hdr =
(struct btrfs_header *)
sf->next_block_ctx.datav[0];
next_stack =
btrfsic_stack_frame_alloc();
if (NULL == next_stack) {
sf->error = -1;
btrfsic_release_block_ctx(
&sf->
next_block_ctx);
goto one_stack_frame_backwards;
}
next_stack->i = -1;
next_stack->block = sf->next_block;
next_stack->block_ctx =
&sf->next_block_ctx;
next_stack->next_block = NULL;
next_stack->hdr = next_hdr;
next_stack->limit_nesting =
sf->limit_nesting - 1;
next_stack->prev = sf;
sf = next_stack;
goto continue_with_new_stack_frame;
}
} else if (BTRFS_EXTENT_DATA_KEY == type &&
state->include_extent_data) {
sf->error = btrfsic_handle_extent_data(
state,
sf->block,
sf->block_ctx,
item_offset,
force_iodone_flag);
if (sf->error)
goto one_stack_frame_backwards;
}
goto continue_with_current_leaf_stack_frame;
}
} else {
struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
if (-1 == sf->i) {
sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO "node %llu level %d items %d"
" generation %llu owner %llu\n",
sf->block_ctx->start,
nodehdr->header.level, sf->nr,
btrfs_stack_header_generation(
&nodehdr->header),
btrfs_stack_header_owner(
&nodehdr->header));
}
continue_with_current_node_stack_frame:
if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
sf->i++;
sf->num_copies = 0;
}
if (sf->i < sf->nr) {
struct btrfs_key_ptr key_ptr;
u32 key_ptr_offset;
u64 next_bytenr;
key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
(uintptr_t)nodehdr;
if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
sf->block_ctx->len) {
printk(KERN_INFO
"btrfsic: node item out of bounce at logical %llu, dev %s\n",
sf->block_ctx->start,
sf->block_ctx->dev->name);
goto one_stack_frame_backwards;
}
btrfsic_read_from_block_data(
sf->block_ctx, &key_ptr, key_ptr_offset,
sizeof(struct btrfs_key_ptr));
next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
sf->error = btrfsic_create_link_to_next_block(
state,
sf->block,
sf->block_ctx,
next_bytenr,
sf->limit_nesting,
&sf->next_block_ctx,
&sf->next_block,
force_iodone_flag,
&sf->num_copies,
&sf->mirror_num,
&key_ptr.key,
btrfs_stack_key_generation(&key_ptr));
if (sf->error)
goto one_stack_frame_backwards;
if (NULL != sf->next_block) {
struct btrfs_header *const next_hdr =
(struct btrfs_header *)
sf->next_block_ctx.datav[0];
next_stack = btrfsic_stack_frame_alloc();
if (NULL == next_stack) {
sf->error = -1;
goto one_stack_frame_backwards;
}
next_stack->i = -1;
next_stack->block = sf->next_block;
next_stack->block_ctx = &sf->next_block_ctx;
next_stack->next_block = NULL;
next_stack->hdr = next_hdr;
next_stack->limit_nesting =
sf->limit_nesting - 1;
next_stack->prev = sf;
sf = next_stack;
goto continue_with_new_stack_frame;
}
goto continue_with_current_node_stack_frame;
}
}
one_stack_frame_backwards:
if (NULL != sf->prev) {
struct btrfsic_stack_frame *const prev = sf->prev;
/* the one for the initial block is freed in the caller */
btrfsic_release_block_ctx(sf->block_ctx);
if (sf->error) {
prev->error = sf->error;
btrfsic_stack_frame_free(sf);
sf = prev;
goto one_stack_frame_backwards;
}
btrfsic_stack_frame_free(sf);
sf = prev;
goto continue_with_new_stack_frame;
} else {
BUG_ON(&initial_stack_frame != sf);
}
return sf->error;
}
static void btrfsic_read_from_block_data(
struct btrfsic_block_data_ctx *block_ctx,
void *dstv, u32 offset, size_t len)
{
size_t cur;
size_t offset_in_page;
char *kaddr;
char *dst = (char *)dstv;
size_t start_offset = block_ctx->start & ((u64)PAGE_CACHE_SIZE - 1);
unsigned long i = (start_offset + offset) >> PAGE_CACHE_SHIFT;
WARN_ON(offset + len > block_ctx->len);
offset_in_page = (start_offset + offset) & (PAGE_CACHE_SIZE - 1);
while (len > 0) {
cur = min(len, ((size_t)PAGE_CACHE_SIZE - offset_in_page));
BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_CACHE_SIZE));
kaddr = block_ctx->datav[i];
memcpy(dst, kaddr + offset_in_page, cur);
dst += cur;
len -= cur;
offset_in_page = 0;
i++;
}
}
static int btrfsic_create_link_to_next_block(
struct btrfsic_state *state,
struct btrfsic_block *block,
struct btrfsic_block_data_ctx *block_ctx,
u64 next_bytenr,
int limit_nesting,
struct btrfsic_block_data_ctx *next_block_ctx,
struct btrfsic_block **next_blockp,
int force_iodone_flag,
int *num_copiesp, int *mirror_nump,
struct btrfs_disk_key *disk_key,
u64 parent_generation)
{
struct btrfsic_block *next_block = NULL;
int ret;
struct btrfsic_block_link *l;
int did_alloc_block_link;
int block_was_created;
*next_blockp = NULL;
if (0 == *num_copiesp) {
*num_copiesp =
btrfs_num_copies(state->root->fs_info,
next_bytenr, state->metablock_size);
if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
next_bytenr, *num_copiesp);
*mirror_nump = 1;
}
if (*mirror_nump > *num_copiesp)
return 0;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"btrfsic_create_link_to_next_block(mirror_num=%d)\n",
*mirror_nump);
ret = btrfsic_map_block(state, next_bytenr,
state->metablock_size,
next_block_ctx, *mirror_nump);
if (ret) {
printk(KERN_INFO
"btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
next_bytenr, *mirror_nump);
btrfsic_release_block_ctx(next_block_ctx);
*next_blockp = NULL;
return -1;
}
next_block = btrfsic_block_lookup_or_add(state,
next_block_ctx, "referenced ",
1, force_iodone_flag,
!force_iodone_flag,
*mirror_nump,
&block_was_created);
if (NULL == next_block) {
btrfsic_release_block_ctx(next_block_ctx);
*next_blockp = NULL;
return -1;
}
if (block_was_created) {
l = NULL;
next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
} else {
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
if (next_block->logical_bytenr != next_bytenr &&
!(!next_block->is_metadata &&
0 == next_block->logical_bytenr))
printk(KERN_INFO
"Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
next_bytenr, next_block_ctx->dev->name,
next_block_ctx->dev_bytenr, *mirror_nump,
btrfsic_get_block_type(state,
next_block),
next_block->logical_bytenr);
else
printk(KERN_INFO
"Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
next_bytenr, next_block_ctx->dev->name,
next_block_ctx->dev_bytenr, *mirror_nump,
btrfsic_get_block_type(state,
next_block));
}
next_block->logical_bytenr = next_bytenr;
next_block->mirror_num = *mirror_nump;
l = btrfsic_block_link_hashtable_lookup(
next_block_ctx->dev->bdev,
next_block_ctx->dev_bytenr,
block_ctx->dev->bdev,
block_ctx->dev_bytenr,
&state->block_link_hashtable);
}
next_block->disk_key = *disk_key;
if (NULL == l) {
l = btrfsic_block_link_alloc();
if (NULL == l) {
printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
btrfsic_release_block_ctx(next_block_ctx);
*next_blockp = NULL;
return -1;
}
did_alloc_block_link = 1;
l->block_ref_to = next_block;
l->block_ref_from = block;
l->ref_cnt = 1;
l->parent_generation = parent_generation;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
btrfsic_print_add_link(state, l);
list_add(&l->node_ref_to, &block->ref_to_list);
list_add(&l->node_ref_from, &next_block->ref_from_list);
btrfsic_block_link_hashtable_add(l,
&state->block_link_hashtable);
} else {
did_alloc_block_link = 0;
if (0 == limit_nesting) {
l->ref_cnt++;
l->parent_generation = parent_generation;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
btrfsic_print_add_link(state, l);
}
}
if (limit_nesting > 0 && did_alloc_block_link) {
ret = btrfsic_read_block(state, next_block_ctx);
if (ret < (int)next_block_ctx->len) {
printk(KERN_INFO
"btrfsic: read block @logical %llu failed!\n",
next_bytenr);
btrfsic_release_block_ctx(next_block_ctx);
*next_blockp = NULL;
return -1;
}
*next_blockp = next_block;
} else {
*next_blockp = NULL;
}
(*mirror_nump)++;
return 0;
}
static int btrfsic_handle_extent_data(
struct btrfsic_state *state,
struct btrfsic_block *block,
struct btrfsic_block_data_ctx *block_ctx,
u32 item_offset, int force_iodone_flag)
{
int ret;
struct btrfs_file_extent_item file_extent_item;
u64 file_extent_item_offset;
u64 next_bytenr;
u64 num_bytes;
u64 generation;
struct btrfsic_block_link *l;
file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
item_offset;
if (file_extent_item_offset +
offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
block_ctx->len) {
printk(KERN_INFO
"btrfsic: file item out of bounce at logical %llu, dev %s\n",
block_ctx->start, block_ctx->dev->name);
return -1;
}
btrfsic_read_from_block_data(block_ctx, &file_extent_item,
file_extent_item_offset,
offsetof(struct btrfs_file_extent_item, disk_num_bytes));
if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
file_extent_item.type,
btrfs_stack_file_extent_disk_bytenr(
&file_extent_item));
return 0;
}
if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
block_ctx->len) {
printk(KERN_INFO
"btrfsic: file item out of bounce at logical %llu, dev %s\n",
block_ctx->start, block_ctx->dev->name);
return -1;
}
btrfsic_read_from_block_data(block_ctx, &file_extent_item,
file_extent_item_offset,
sizeof(struct btrfs_file_extent_item));
next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
if (btrfs_stack_file_extent_compression(&file_extent_item) ==
BTRFS_COMPRESS_NONE) {
next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
} else {
num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
}
generation = btrfs_stack_file_extent_generation(&file_extent_item);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
" offset = %llu, num_bytes = %llu\n",
file_extent_item.type,
btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
btrfs_stack_file_extent_offset(&file_extent_item),
num_bytes);
while (num_bytes > 0) {
u32 chunk_len;
int num_copies;
int mirror_num;
if (num_bytes > state->datablock_size)
chunk_len = state->datablock_size;
else
chunk_len = num_bytes;
num_copies =
btrfs_num_copies(state->root->fs_info,
next_bytenr, state->datablock_size);
if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
next_bytenr, num_copies);
for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
struct btrfsic_block_data_ctx next_block_ctx;
struct btrfsic_block *next_block;
int block_was_created;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO "btrfsic_handle_extent_data("
"mirror_num=%d)\n", mirror_num);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
printk(KERN_INFO
"\tdisk_bytenr = %llu, num_bytes %u\n",
next_bytenr, chunk_len);
ret = btrfsic_map_block(state, next_bytenr,
chunk_len, &next_block_ctx,
mirror_num);
if (ret) {
printk(KERN_INFO
"btrfsic: btrfsic_map_block(@%llu,"
" mirror=%d) failed!\n",
next_bytenr, mirror_num);
return -1;
}
next_block = btrfsic_block_lookup_or_add(
state,
&next_block_ctx,
"referenced ",
0,
force_iodone_flag,
!force_iodone_flag,
mirror_num,
&block_was_created);
if (NULL == next_block) {
printk(KERN_INFO
"btrfsic: error, kmalloc failed!\n");
btrfsic_release_block_ctx(&next_block_ctx);
return -1;
}
if (!block_was_created) {
if ((state->print_mask &
BTRFSIC_PRINT_MASK_VERBOSE) &&
next_block->logical_bytenr != next_bytenr &&
!(!next_block->is_metadata &&
0 == next_block->logical_bytenr)) {
printk(KERN_INFO
"Referenced block"
" @%llu (%s/%llu/%d)"
" found in hash table, D,"
" bytenr mismatch"
" (!= stored %llu).\n",
next_bytenr,
next_block_ctx.dev->name,
next_block_ctx.dev_bytenr,
mirror_num,
next_block->logical_bytenr);
}
next_block->logical_bytenr = next_bytenr;
next_block->mirror_num = mirror_num;
}
l = btrfsic_block_link_lookup_or_add(state,
&next_block_ctx,
next_block, block,
generation);
btrfsic_release_block_ctx(&next_block_ctx);
if (NULL == l)
return -1;
}
next_bytenr += chunk_len;
num_bytes -= chunk_len;
}
return 0;
}
static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
struct btrfsic_block_data_ctx *block_ctx_out,
int mirror_num)
{
int ret;
u64 length;
struct btrfs_bio *multi = NULL;
struct btrfs_device *device;
length = len;
ret = btrfs_map_block(state->root->fs_info, READ,
bytenr, &length, &multi, mirror_num);
if (ret) {
block_ctx_out->start = 0;
block_ctx_out->dev_bytenr = 0;
block_ctx_out->len = 0;
block_ctx_out->dev = NULL;
block_ctx_out->datav = NULL;
block_ctx_out->pagev = NULL;
block_ctx_out->mem_to_free = NULL;
return ret;
}
device = multi->stripes[0].dev;
block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
block_ctx_out->dev_bytenr = multi->stripes[0].physical;
block_ctx_out->start = bytenr;
block_ctx_out->len = len;
block_ctx_out->datav = NULL;
block_ctx_out->pagev = NULL;
block_ctx_out->mem_to_free = NULL;
kfree(multi);
if (NULL == block_ctx_out->dev) {
ret = -ENXIO;
printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
}
return ret;
}
static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
{
if (block_ctx->mem_to_free) {
unsigned int num_pages;
BUG_ON(!block_ctx->datav);
BUG_ON(!block_ctx->pagev);
num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
while (num_pages > 0) {
num_pages--;
if (block_ctx->datav[num_pages]) {
kunmap(block_ctx->pagev[num_pages]);
block_ctx->datav[num_pages] = NULL;
}
if (block_ctx->pagev[num_pages]) {
__free_page(block_ctx->pagev[num_pages]);
block_ctx->pagev[num_pages] = NULL;
}
}
kfree(block_ctx->mem_to_free);
block_ctx->mem_to_free = NULL;
block_ctx->pagev = NULL;
block_ctx->datav = NULL;
}
}
static int btrfsic_read_block(struct btrfsic_state *state,
struct btrfsic_block_data_ctx *block_ctx)
{
unsigned int num_pages;
unsigned int i;
u64 dev_bytenr;
int ret;
BUG_ON(block_ctx->datav);
BUG_ON(block_ctx->pagev);
BUG_ON(block_ctx->mem_to_free);
if (block_ctx->dev_bytenr & ((u64)PAGE_CACHE_SIZE - 1)) {
printk(KERN_INFO
"btrfsic: read_block() with unaligned bytenr %llu\n",
block_ctx->dev_bytenr);
return -1;
}
num_pages = (block_ctx->len + (u64)PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
sizeof(*block_ctx->pagev)) *
num_pages, GFP_NOFS);
if (!block_ctx->mem_to_free)
return -ENOMEM;
block_ctx->datav = block_ctx->mem_to_free;
block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
for (i = 0; i < num_pages; i++) {
block_ctx->pagev[i] = alloc_page(GFP_NOFS);
if (!block_ctx->pagev[i])
return -1;
}
dev_bytenr = block_ctx->dev_bytenr;
for (i = 0; i < num_pages;) {
struct bio *bio;
unsigned int j;
bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
if (!bio) {
printk(KERN_INFO
"btrfsic: bio_alloc() for %u pages failed!\n",
num_pages - i);
return -1;
}
bio->bi_bdev = block_ctx->dev->bdev;
bio->bi_iter.bi_sector = dev_bytenr >> 9;
for (j = i; j < num_pages; j++) {
ret = bio_add_page(bio, block_ctx->pagev[j],
PAGE_CACHE_SIZE, 0);
if (PAGE_CACHE_SIZE != ret)
break;
}
if (j == i) {
printk(KERN_INFO
"btrfsic: error, failed to add a single page!\n");
return -1;
}
if (submit_bio_wait(READ, bio)) {
printk(KERN_INFO
"btrfsic: read error at logical %llu dev %s!\n",
block_ctx->start, block_ctx->dev->name);
bio_put(bio);
return -1;
}
bio_put(bio);
dev_bytenr += (j - i) * PAGE_CACHE_SIZE;
i = j;
}
for (i = 0; i < num_pages; i++) {
block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
if (!block_ctx->datav[i]) {
printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
block_ctx->dev->name);
return -1;
}
}
return block_ctx->len;
}
static void btrfsic_dump_database(struct btrfsic_state *state)
{
struct list_head *elem_all;
BUG_ON(NULL == state);
printk(KERN_INFO "all_blocks_list:\n");
list_for_each(elem_all, &state->all_blocks_list) {
const struct btrfsic_block *const b_all =
list_entry(elem_all, struct btrfsic_block,
all_blocks_node);
struct list_head *elem_ref_to;
struct list_head *elem_ref_from;
printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
btrfsic_get_block_type(state, b_all),
b_all->logical_bytenr, b_all->dev_state->name,
b_all->dev_bytenr, b_all->mirror_num);
list_for_each(elem_ref_to, &b_all->ref_to_list) {
const struct btrfsic_block_link *const l =
list_entry(elem_ref_to,
struct btrfsic_block_link,
node_ref_to);
printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
" refers %u* to"
" %c @%llu (%s/%llu/%d)\n",
btrfsic_get_block_type(state, b_all),
b_all->logical_bytenr, b_all->dev_state->name,
b_all->dev_bytenr, b_all->mirror_num,
l->ref_cnt,
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name,
l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num);
}
list_for_each(elem_ref_from, &b_all->ref_from_list) {
const struct btrfsic_block_link *const l =
list_entry(elem_ref_from,
struct btrfsic_block_link,
node_ref_from);
printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
" is ref %u* from"
" %c @%llu (%s/%llu/%d)\n",
btrfsic_get_block_type(state, b_all),
b_all->logical_bytenr, b_all->dev_state->name,
b_all->dev_bytenr, b_all->mirror_num,
l->ref_cnt,
btrfsic_get_block_type(state, l->block_ref_from),
l->block_ref_from->logical_bytenr,
l->block_ref_from->dev_state->name,
l->block_ref_from->dev_bytenr,
l->block_ref_from->mirror_num);
}
printk(KERN_INFO "\n");
}
}
/*
* Test whether the disk block contains a tree block (leaf or node)
* (note that this test fails for the super block)
*/
static int btrfsic_test_for_metadata(struct btrfsic_state *state,
char **datav, unsigned int num_pages)
{
struct btrfs_header *h;
u8 csum[BTRFS_CSUM_SIZE];
u32 crc = ~(u32)0;
unsigned int i;
if (num_pages * PAGE_CACHE_SIZE < state->metablock_size)
return 1; /* not metadata */
num_pages = state->metablock_size >> PAGE_CACHE_SHIFT;
h = (struct btrfs_header *)datav[0];
if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
return 1;
for (i = 0; i < num_pages; i++) {
u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
size_t sublen = i ? PAGE_CACHE_SIZE :
(PAGE_CACHE_SIZE - BTRFS_CSUM_SIZE);
crc = btrfs_crc32c(crc, data, sublen);
}
btrfs_csum_final(crc, csum);
if (memcmp(csum, h->csum, state->csum_size))
return 1;
return 0; /* is metadata */
}
static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
u64 dev_bytenr, char **mapped_datav,
unsigned int num_pages,
struct bio *bio, int *bio_is_patched,
struct buffer_head *bh,
int submit_bio_bh_rw)
{
int is_metadata;
struct btrfsic_block *block;
struct btrfsic_block_data_ctx block_ctx;
int ret;
struct btrfsic_state *state = dev_state->state;
struct block_device *bdev = dev_state->bdev;
unsigned int processed_len;
if (NULL != bio_is_patched)
*bio_is_patched = 0;
again:
if (num_pages == 0)
return;
processed_len = 0;
is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
num_pages));
block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
&state->block_hashtable);
if (NULL != block) {
u64 bytenr = 0;
struct list_head *elem_ref_to;
struct list_head *tmp_ref_to;
if (block->is_superblock) {
bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
mapped_datav[0]);
if (num_pages * PAGE_CACHE_SIZE <
BTRFS_SUPER_INFO_SIZE) {
printk(KERN_INFO
"btrfsic: cannot work with too short bios!\n");
return;
}
is_metadata = 1;
BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_CACHE_SIZE - 1));
processed_len = BTRFS_SUPER_INFO_SIZE;
if (state->print_mask &
BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
printk(KERN_INFO
"[before new superblock is written]:\n");
btrfsic_dump_tree_sub(state, block, 0);
}
}
if (is_metadata) {
if (!block->is_superblock) {
if (num_pages * PAGE_CACHE_SIZE <
state->metablock_size) {
printk(KERN_INFO
"btrfsic: cannot work with too short bios!\n");
return;
}
processed_len = state->metablock_size;
bytenr = btrfs_stack_header_bytenr(
(struct btrfs_header *)
mapped_datav[0]);
btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
dev_state,
dev_bytenr);
}
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
if (block->logical_bytenr != bytenr &&
!(!block->is_metadata &&
block->logical_bytenr == 0))
printk(KERN_INFO
"Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
bytenr, dev_state->name,
dev_bytenr,
block->mirror_num,
btrfsic_get_block_type(state,
block),
block->logical_bytenr);
else
printk(KERN_INFO
"Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
bytenr, dev_state->name,
dev_bytenr, block->mirror_num,
btrfsic_get_block_type(state,
block));
}
block->logical_bytenr = bytenr;
} else {
if (num_pages * PAGE_CACHE_SIZE <
state->datablock_size) {
printk(KERN_INFO
"btrfsic: cannot work with too short bios!\n");
return;
}
processed_len = state->datablock_size;
bytenr = block->logical_bytenr;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"Written block @%llu (%s/%llu/%d)"
" found in hash table, %c.\n",
bytenr, dev_state->name, dev_bytenr,
block->mirror_num,
btrfsic_get_block_type(state, block));
}
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"ref_to_list: %cE, ref_from_list: %cE\n",
list_empty(&block->ref_to_list) ? ' ' : '!',
list_empty(&block->ref_from_list) ? ' ' : '!');
if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
" @%llu (%s/%llu/%d), old(gen=%llu,"
" objectid=%llu, type=%d, offset=%llu),"
" new(gen=%llu),"
" which is referenced by most recent superblock"
" (superblockgen=%llu)!\n",
btrfsic_get_block_type(state, block), bytenr,
dev_state->name, dev_bytenr, block->mirror_num,
block->generation,
btrfs_disk_key_objectid(&block->disk_key),
block->disk_key.type,
btrfs_disk_key_offset(&block->disk_key),
btrfs_stack_header_generation(
(struct btrfs_header *) mapped_datav[0]),
state->max_superblock_generation);
btrfsic_dump_tree(state);
}
if (!block->is_iodone && !block->never_written) {
printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
" @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
" which is not yet iodone!\n",
btrfsic_get_block_type(state, block), bytenr,
dev_state->name, dev_bytenr, block->mirror_num,
block->generation,
btrfs_stack_header_generation(
(struct btrfs_header *)
mapped_datav[0]));
/* it would not be safe to go on */
btrfsic_dump_tree(state);
goto continue_loop;
}
/*
* Clear all references of this block. Do not free
* the block itself even if is not referenced anymore
* because it still carries valueable information
* like whether it was ever written and IO completed.
*/
list_for_each_safe(elem_ref_to, tmp_ref_to,
&block->ref_to_list) {
struct btrfsic_block_link *const l =
list_entry(elem_ref_to,
struct btrfsic_block_link,
node_ref_to);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
btrfsic_print_rem_link(state, l);
l->ref_cnt--;
if (0 == l->ref_cnt) {
list_del(&l->node_ref_to);
list_del(&l->node_ref_from);
btrfsic_block_link_hashtable_remove(l);
btrfsic_block_link_free(l);
}
}
block_ctx.dev = dev_state;
block_ctx.dev_bytenr = dev_bytenr;
block_ctx.start = bytenr;
block_ctx.len = processed_len;
block_ctx.pagev = NULL;
block_ctx.mem_to_free = NULL;
block_ctx.datav = mapped_datav;
if (is_metadata || state->include_extent_data) {
block->never_written = 0;
block->iodone_w_error = 0;
if (NULL != bio) {
block->is_iodone = 0;
BUG_ON(NULL == bio_is_patched);
if (!*bio_is_patched) {
block->orig_bio_bh_private =
bio->bi_private;
block->orig_bio_bh_end_io.bio =
bio->bi_end_io;
block->next_in_same_bio = NULL;
bio->bi_private = block;
bio->bi_end_io = btrfsic_bio_end_io;
*bio_is_patched = 1;
} else {
struct btrfsic_block *chained_block =
(struct btrfsic_block *)
bio->bi_private;
BUG_ON(NULL == chained_block);
block->orig_bio_bh_private =
chained_block->orig_bio_bh_private;
block->orig_bio_bh_end_io.bio =
chained_block->orig_bio_bh_end_io.
bio;
block->next_in_same_bio = chained_block;
bio->bi_private = block;
}
} else if (NULL != bh) {
block->is_iodone = 0;
block->orig_bio_bh_private = bh->b_private;
block->orig_bio_bh_end_io.bh = bh->b_end_io;
block->next_in_same_bio = NULL;
bh->b_private = block;
bh->b_end_io = btrfsic_bh_end_io;
} else {
block->is_iodone = 1;
block->orig_bio_bh_private = NULL;
block->orig_bio_bh_end_io.bio = NULL;
block->next_in_same_bio = NULL;
}
}
block->flush_gen = dev_state->last_flush_gen + 1;
block->submit_bio_bh_rw = submit_bio_bh_rw;
if (is_metadata) {
block->logical_bytenr = bytenr;
block->is_metadata = 1;
if (block->is_superblock) {
BUG_ON(PAGE_CACHE_SIZE !=
BTRFS_SUPER_INFO_SIZE);
ret = btrfsic_process_written_superblock(
state,
block,
(struct btrfs_super_block *)
mapped_datav[0]);
if (state->print_mask &
BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
printk(KERN_INFO
"[after new superblock is written]:\n");
btrfsic_dump_tree_sub(state, block, 0);
}
} else {
block->mirror_num = 0; /* unknown */
ret = btrfsic_process_metablock(
state,
block,
&block_ctx,
0, 0);
}
if (ret)
printk(KERN_INFO
"btrfsic: btrfsic_process_metablock"
"(root @%llu) failed!\n",
dev_bytenr);
} else {
block->is_metadata = 0;
block->mirror_num = 0; /* unknown */
block->generation = BTRFSIC_GENERATION_UNKNOWN;
if (!state->include_extent_data
&& list_empty(&block->ref_from_list)) {
/*
* disk block is overwritten with extent
* data (not meta data) and we are configured
* to not include extent data: take the
* chance and free the block's memory
*/
btrfsic_block_hashtable_remove(block);
list_del(&block->all_blocks_node);
btrfsic_block_free(block);
}
}
btrfsic_release_block_ctx(&block_ctx);
} else {
/* block has not been found in hash table */
u64 bytenr;
if (!is_metadata) {
processed_len = state->datablock_size;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO "Written block (%s/%llu/?)"
" !found in hash table, D.\n",
dev_state->name, dev_bytenr);
if (!state->include_extent_data) {
/* ignore that written D block */
goto continue_loop;
}
/* this is getting ugly for the
* include_extent_data case... */
bytenr = 0; /* unknown */
} else {
processed_len = state->metablock_size;
bytenr = btrfs_stack_header_bytenr(
(struct btrfs_header *)
mapped_datav[0]);
btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
dev_bytenr);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"Written block @%llu (%s/%llu/?)"
" !found in hash table, M.\n",
bytenr, dev_state->name, dev_bytenr);
}
block_ctx.dev = dev_state;
block_ctx.dev_bytenr = dev_bytenr;
block_ctx.start = bytenr;
block_ctx.len = processed_len;
block_ctx.pagev = NULL;
block_ctx.mem_to_free = NULL;
block_ctx.datav = mapped_datav;
block = btrfsic_block_alloc();
if (NULL == block) {
printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
btrfsic_release_block_ctx(&block_ctx);
goto continue_loop;
}
block->dev_state = dev_state;
block->dev_bytenr = dev_bytenr;
block->logical_bytenr = bytenr;
block->is_metadata = is_metadata;
block->never_written = 0;
block->iodone_w_error = 0;
block->mirror_num = 0; /* unknown */
block->flush_gen = dev_state->last_flush_gen + 1;
block->submit_bio_bh_rw = submit_bio_bh_rw;
if (NULL != bio) {
block->is_iodone = 0;
BUG_ON(NULL == bio_is_patched);
if (!*bio_is_patched) {
block->orig_bio_bh_private = bio->bi_private;
block->orig_bio_bh_end_io.bio = bio->bi_end_io;
block->next_in_same_bio = NULL;
bio->bi_private = block;
bio->bi_end_io = btrfsic_bio_end_io;
*bio_is_patched = 1;
} else {
struct btrfsic_block *chained_block =
(struct btrfsic_block *)
bio->bi_private;
BUG_ON(NULL == chained_block);
block->orig_bio_bh_private =
chained_block->orig_bio_bh_private;
block->orig_bio_bh_end_io.bio =
chained_block->orig_bio_bh_end_io.bio;
block->next_in_same_bio = chained_block;
bio->bi_private = block;
}
} else if (NULL != bh) {
block->is_iodone = 0;
block->orig_bio_bh_private = bh->b_private;
block->orig_bio_bh_end_io.bh = bh->b_end_io;
block->next_in_same_bio = NULL;
bh->b_private = block;
bh->b_end_io = btrfsic_bh_end_io;
} else {
block->is_iodone = 1;
block->orig_bio_bh_private = NULL;
block->orig_bio_bh_end_io.bio = NULL;
block->next_in_same_bio = NULL;
}
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"New written %c-block @%llu (%s/%llu/%d)\n",
is_metadata ? 'M' : 'D',
block->logical_bytenr, block->dev_state->name,
block->dev_bytenr, block->mirror_num);
list_add(&block->all_blocks_node, &state->all_blocks_list);
btrfsic_block_hashtable_add(block, &state->block_hashtable);
if (is_metadata) {
ret = btrfsic_process_metablock(state, block,
&block_ctx, 0, 0);
if (ret)
printk(KERN_INFO
"btrfsic: process_metablock(root @%llu)"
" failed!\n",
dev_bytenr);
}
btrfsic_release_block_ctx(&block_ctx);
}
continue_loop:
BUG_ON(!processed_len);
dev_bytenr += processed_len;
mapped_datav += processed_len >> PAGE_CACHE_SHIFT;
num_pages -= processed_len >> PAGE_CACHE_SHIFT;
goto again;
}
static void btrfsic_bio_end_io(struct bio *bp)
{
struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
int iodone_w_error;
/* mutex is not held! This is not save if IO is not yet completed
* on umount */
iodone_w_error = 0;
if (bp->bi_error)
iodone_w_error = 1;
BUG_ON(NULL == block);
bp->bi_private = block->orig_bio_bh_private;
bp->bi_end_io = block->orig_bio_bh_end_io.bio;
do {
struct btrfsic_block *next_block;
struct btrfsic_dev_state *const dev_state = block->dev_state;
if ((dev_state->state->print_mask &
BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
printk(KERN_INFO
"bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
bp->bi_error,
btrfsic_get_block_type(dev_state->state, block),
block->logical_bytenr, dev_state->name,
block->dev_bytenr, block->mirror_num);
next_block = block->next_in_same_bio;
block->iodone_w_error = iodone_w_error;
if (block->submit_bio_bh_rw & REQ_FLUSH) {
dev_state->last_flush_gen++;
if ((dev_state->state->print_mask &
BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
printk(KERN_INFO
"bio_end_io() new %s flush_gen=%llu\n",
dev_state->name,
dev_state->last_flush_gen);
}
if (block->submit_bio_bh_rw & REQ_FUA)
block->flush_gen = 0; /* FUA completed means block is
* on disk */
block->is_iodone = 1; /* for FLUSH, this releases the block */
block = next_block;
} while (NULL != block);
bp->bi_end_io(bp);
}
static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
{
struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
int iodone_w_error = !uptodate;
struct btrfsic_dev_state *dev_state;
BUG_ON(NULL == block);
dev_state = block->dev_state;
if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
printk(KERN_INFO
"bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
iodone_w_error,
btrfsic_get_block_type(dev_state->state, block),
block->logical_bytenr, block->dev_state->name,
block->dev_bytenr, block->mirror_num);
block->iodone_w_error = iodone_w_error;
if (block->submit_bio_bh_rw & REQ_FLUSH) {
dev_state->last_flush_gen++;
if ((dev_state->state->print_mask &
BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
printk(KERN_INFO
"bh_end_io() new %s flush_gen=%llu\n",
dev_state->name, dev_state->last_flush_gen);
}
if (block->submit_bio_bh_rw & REQ_FUA)
block->flush_gen = 0; /* FUA completed means block is on disk */
bh->b_private = block->orig_bio_bh_private;
bh->b_end_io = block->orig_bio_bh_end_io.bh;
block->is_iodone = 1; /* for FLUSH, this releases the block */
bh->b_end_io(bh, uptodate);
}
static int btrfsic_process_written_superblock(
struct btrfsic_state *state,
struct btrfsic_block *const superblock,
struct btrfs_super_block *const super_hdr)
{
int pass;
superblock->generation = btrfs_super_generation(super_hdr);
if (!(superblock->generation > state->max_superblock_generation ||
0 == state->max_superblock_generation)) {
if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
printk(KERN_INFO
"btrfsic: superblock @%llu (%s/%llu/%d)"
" with old gen %llu <= %llu\n",
superblock->logical_bytenr,
superblock->dev_state->name,
superblock->dev_bytenr, superblock->mirror_num,
btrfs_super_generation(super_hdr),
state->max_superblock_generation);
} else {
if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
printk(KERN_INFO
"btrfsic: got new superblock @%llu (%s/%llu/%d)"
" with new gen %llu > %llu\n",
superblock->logical_bytenr,
superblock->dev_state->name,
superblock->dev_bytenr, superblock->mirror_num,
btrfs_super_generation(super_hdr),
state->max_superblock_generation);
state->max_superblock_generation =
btrfs_super_generation(super_hdr);
state->latest_superblock = superblock;
}
for (pass = 0; pass < 3; pass++) {
int ret;
u64 next_bytenr;
struct btrfsic_block *next_block;
struct btrfsic_block_data_ctx tmp_next_block_ctx;
struct btrfsic_block_link *l;
int num_copies;
int mirror_num;
const char *additional_string = NULL;
struct btrfs_disk_key tmp_disk_key = {0};
btrfs_set_disk_key_objectid(&tmp_disk_key,
BTRFS_ROOT_ITEM_KEY);
btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
switch (pass) {
case 0:
btrfs_set_disk_key_objectid(&tmp_disk_key,
BTRFS_ROOT_TREE_OBJECTID);
additional_string = "root ";
next_bytenr = btrfs_super_root(super_hdr);
if (state->print_mask &
BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
printk(KERN_INFO "root@%llu\n", next_bytenr);
break;
case 1:
btrfs_set_disk_key_objectid(&tmp_disk_key,
BTRFS_CHUNK_TREE_OBJECTID);
additional_string = "chunk ";
next_bytenr = btrfs_super_chunk_root(super_hdr);
if (state->print_mask &
BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
printk(KERN_INFO "chunk@%llu\n", next_bytenr);
break;
case 2:
btrfs_set_disk_key_objectid(&tmp_disk_key,
BTRFS_TREE_LOG_OBJECTID);
additional_string = "log ";
next_bytenr = btrfs_super_log_root(super_hdr);
if (0 == next_bytenr)
continue;
if (state->print_mask &
BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
printk(KERN_INFO "log@%llu\n", next_bytenr);
break;
}
num_copies =
btrfs_num_copies(state->root->fs_info,
next_bytenr, BTRFS_SUPER_INFO_SIZE);
if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
next_bytenr, num_copies);
for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
int was_created;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"btrfsic_process_written_superblock("
"mirror_num=%d)\n", mirror_num);
ret = btrfsic_map_block(state, next_bytenr,
BTRFS_SUPER_INFO_SIZE,
&tmp_next_block_ctx,
mirror_num);
if (ret) {
printk(KERN_INFO
"btrfsic: btrfsic_map_block(@%llu,"
" mirror=%d) failed!\n",
next_bytenr, mirror_num);
return -1;
}
next_block = btrfsic_block_lookup_or_add(
state,
&tmp_next_block_ctx,
additional_string,
1, 0, 1,
mirror_num,
&was_created);
if (NULL == next_block) {
printk(KERN_INFO
"btrfsic: error, kmalloc failed!\n");
btrfsic_release_block_ctx(&tmp_next_block_ctx);
return -1;
}
next_block->disk_key = tmp_disk_key;
if (was_created)
next_block->generation =
BTRFSIC_GENERATION_UNKNOWN;
l = btrfsic_block_link_lookup_or_add(
state,
&tmp_next_block_ctx,
next_block,
superblock,
BTRFSIC_GENERATION_UNKNOWN);
btrfsic_release_block_ctx(&tmp_next_block_ctx);
if (NULL == l)
return -1;
}
}
if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
btrfsic_dump_tree(state);
return 0;
}
static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
struct btrfsic_block *const block,
int recursion_level)
{
struct list_head *elem_ref_to;
int ret = 0;
if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
/*
* Note that this situation can happen and does not
* indicate an error in regular cases. It happens
* when disk blocks are freed and later reused.
* The check-integrity module is not aware of any
* block free operations, it just recognizes block
* write operations. Therefore it keeps the linkage
* information for a block until a block is
* rewritten. This can temporarily cause incorrect
* and even circular linkage informations. This
* causes no harm unless such blocks are referenced
* by the most recent super block.
*/
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"btrfsic: abort cyclic linkage (case 1).\n");
return ret;
}
/*
* This algorithm is recursive because the amount of used stack
* space is very small and the max recursion depth is limited.
*/
list_for_each(elem_ref_to, &block->ref_to_list) {
const struct btrfsic_block_link *const l =
list_entry(elem_ref_to, struct btrfsic_block_link,
node_ref_to);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"rl=%d, %c @%llu (%s/%llu/%d)"
" %u* refers to %c @%llu (%s/%llu/%d)\n",
recursion_level,
btrfsic_get_block_type(state, block),
block->logical_bytenr, block->dev_state->name,
block->dev_bytenr, block->mirror_num,
l->ref_cnt,
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name,
l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num);
if (l->block_ref_to->never_written) {
printk(KERN_INFO "btrfs: attempt to write superblock"
" which references block %c @%llu (%s/%llu/%d)"
" which is never written!\n",
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name,
l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num);
ret = -1;
} else if (!l->block_ref_to->is_iodone) {
printk(KERN_INFO "btrfs: attempt to write superblock"
" which references block %c @%llu (%s/%llu/%d)"
" which is not yet iodone!\n",
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name,
l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num);
ret = -1;
} else if (l->block_ref_to->iodone_w_error) {
printk(KERN_INFO "btrfs: attempt to write superblock"
" which references block %c @%llu (%s/%llu/%d)"
" which has write error!\n",
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name,
l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num);
ret = -1;
} else if (l->parent_generation !=
l->block_ref_to->generation &&
BTRFSIC_GENERATION_UNKNOWN !=
l->parent_generation &&
BTRFSIC_GENERATION_UNKNOWN !=
l->block_ref_to->generation) {
printk(KERN_INFO "btrfs: attempt to write superblock"
" which references block %c @%llu (%s/%llu/%d)"
" with generation %llu !="
" parent generation %llu!\n",
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name,
l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num,
l->block_ref_to->generation,
l->parent_generation);
ret = -1;
} else if (l->block_ref_to->flush_gen >
l->block_ref_to->dev_state->last_flush_gen) {
printk(KERN_INFO "btrfs: attempt to write superblock"
" which references block %c @%llu (%s/%llu/%d)"
" which is not flushed out of disk's write cache"
" (block flush_gen=%llu,"
" dev->flush_gen=%llu)!\n",
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name,
l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num, block->flush_gen,
l->block_ref_to->dev_state->last_flush_gen);
ret = -1;
} else if (-1 == btrfsic_check_all_ref_blocks(state,
l->block_ref_to,
recursion_level +
1)) {
ret = -1;
}
}
return ret;
}
static int btrfsic_is_block_ref_by_superblock(
const struct btrfsic_state *state,
const struct btrfsic_block *block,
int recursion_level)
{
struct list_head *elem_ref_from;
if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
/* refer to comment at "abort cyclic linkage (case 1)" */
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"btrfsic: abort cyclic linkage (case 2).\n");
return 0;
}
/*
* This algorithm is recursive because the amount of used stack space
* is very small and the max recursion depth is limited.
*/
list_for_each(elem_ref_from, &block->ref_from_list) {
const struct btrfsic_block_link *const l =
list_entry(elem_ref_from, struct btrfsic_block_link,
node_ref_from);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"rl=%d, %c @%llu (%s/%llu/%d)"
" is ref %u* from %c @%llu (%s/%llu/%d)\n",
recursion_level,
btrfsic_get_block_type(state, block),
block->logical_bytenr, block->dev_state->name,
block->dev_bytenr, block->mirror_num,
l->ref_cnt,
btrfsic_get_block_type(state, l->block_ref_from),
l->block_ref_from->logical_bytenr,
l->block_ref_from->dev_state->name,
l->block_ref_from->dev_bytenr,
l->block_ref_from->mirror_num);
if (l->block_ref_from->is_superblock &&
state->latest_superblock->dev_bytenr ==
l->block_ref_from->dev_bytenr &&
state->latest_superblock->dev_state->bdev ==
l->block_ref_from->dev_state->bdev)
return 1;
else if (btrfsic_is_block_ref_by_superblock(state,
l->block_ref_from,
recursion_level +
1))
return 1;
}
return 0;
}
static void btrfsic_print_add_link(const struct btrfsic_state *state,
const struct btrfsic_block_link *l)
{
printk(KERN_INFO
"Add %u* link from %c @%llu (%s/%llu/%d)"
" to %c @%llu (%s/%llu/%d).\n",
l->ref_cnt,
btrfsic_get_block_type(state, l->block_ref_from),
l->block_ref_from->logical_bytenr,
l->block_ref_from->dev_state->name,
l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num);
}
static void btrfsic_print_rem_link(const struct btrfsic_state *state,
const struct btrfsic_block_link *l)
{
printk(KERN_INFO
"Rem %u* link from %c @%llu (%s/%llu/%d)"
" to %c @%llu (%s/%llu/%d).\n",
l->ref_cnt,
btrfsic_get_block_type(state, l->block_ref_from),
l->block_ref_from->logical_bytenr,
l->block_ref_from->dev_state->name,
l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
btrfsic_get_block_type(state, l->block_ref_to),
l->block_ref_to->logical_bytenr,
l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
l->block_ref_to->mirror_num);
}
static char btrfsic_get_block_type(const struct btrfsic_state *state,
const struct btrfsic_block *block)
{
if (block->is_superblock &&
state->latest_superblock->dev_bytenr == block->dev_bytenr &&
state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
return 'S';
else if (block->is_superblock)
return 's';
else if (block->is_metadata)
return 'M';
else
return 'D';
}
static void btrfsic_dump_tree(const struct btrfsic_state *state)
{
btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
}
static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
const struct btrfsic_block *block,
int indent_level)
{
struct list_head *elem_ref_to;
int indent_add;
static char buf[80];
int cursor_position;
/*
* Should better fill an on-stack buffer with a complete line and
* dump it at once when it is time to print a newline character.
*/
/*
* This algorithm is recursive because the amount of used stack space
* is very small and the max recursion depth is limited.
*/
indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
btrfsic_get_block_type(state, block),
block->logical_bytenr, block->dev_state->name,
block->dev_bytenr, block->mirror_num);
if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
printk("[...]\n");
return;
}
printk(buf);
indent_level += indent_add;
if (list_empty(&block->ref_to_list)) {
printk("\n");
return;
}
if (block->mirror_num > 1 &&
!(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
printk(" [...]\n");
return;
}
cursor_position = indent_level;
list_for_each(elem_ref_to, &block->ref_to_list) {
const struct btrfsic_block_link *const l =
list_entry(elem_ref_to, struct btrfsic_block_link,
node_ref_to);
while (cursor_position < indent_level) {
printk(" ");
cursor_position++;
}
if (l->ref_cnt > 1)
indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
else
indent_add = sprintf(buf, " --> ");
if (indent_level + indent_add >
BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
printk("[...]\n");
cursor_position = 0;
continue;
}
printk(buf);
btrfsic_dump_tree_sub(state, l->block_ref_to,
indent_level + indent_add);
cursor_position = 0;
}
}
static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
struct btrfsic_state *state,
struct btrfsic_block_data_ctx *next_block_ctx,
struct btrfsic_block *next_block,
struct btrfsic_block *from_block,
u64 parent_generation)
{
struct btrfsic_block_link *l;
l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
next_block_ctx->dev_bytenr,
from_block->dev_state->bdev,
from_block->dev_bytenr,
&state->block_link_hashtable);
if (NULL == l) {
l = btrfsic_block_link_alloc();
if (NULL == l) {
printk(KERN_INFO
"btrfsic: error, kmalloc" " failed!\n");
return NULL;
}
l->block_ref_to = next_block;
l->block_ref_from = from_block;
l->ref_cnt = 1;
l->parent_generation = parent_generation;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
btrfsic_print_add_link(state, l);
list_add(&l->node_ref_to, &from_block->ref_to_list);
list_add(&l->node_ref_from, &next_block->ref_from_list);
btrfsic_block_link_hashtable_add(l,
&state->block_link_hashtable);
} else {
l->ref_cnt++;
l->parent_generation = parent_generation;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
btrfsic_print_add_link(state, l);
}
return l;
}
static struct btrfsic_block *btrfsic_block_lookup_or_add(
struct btrfsic_state *state,
struct btrfsic_block_data_ctx *block_ctx,
const char *additional_string,
int is_metadata,
int is_iodone,
int never_written,
int mirror_num,
int *was_created)
{
struct btrfsic_block *block;
block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
block_ctx->dev_bytenr,
&state->block_hashtable);
if (NULL == block) {
struct btrfsic_dev_state *dev_state;
block = btrfsic_block_alloc();
if (NULL == block) {
printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
return NULL;
}
dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
if (NULL == dev_state) {
printk(KERN_INFO
"btrfsic: error, lookup dev_state failed!\n");
btrfsic_block_free(block);
return NULL;
}
block->dev_state = dev_state;
block->dev_bytenr = block_ctx->dev_bytenr;
block->logical_bytenr = block_ctx->start;
block->is_metadata = is_metadata;
block->is_iodone = is_iodone;
block->never_written = never_written;
block->mirror_num = mirror_num;
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
printk(KERN_INFO
"New %s%c-block @%llu (%s/%llu/%d)\n",
additional_string,
btrfsic_get_block_type(state, block),
block->logical_bytenr, dev_state->name,
block->dev_bytenr, mirror_num);
list_add(&block->all_blocks_node, &state->all_blocks_list);
btrfsic_block_hashtable_add(block, &state->block_hashtable);
if (NULL != was_created)
*was_created = 1;
} else {
if (NULL != was_created)
*was_created = 0;
}
return block;
}
static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
u64 bytenr,
struct btrfsic_dev_state *dev_state,
u64 dev_bytenr)
{
int num_copies;
int mirror_num;
int ret;
struct btrfsic_block_data_ctx block_ctx;
int match = 0;
num_copies = btrfs_num_copies(state->root->fs_info,
bytenr, state->metablock_size);
for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
ret = btrfsic_map_block(state, bytenr, state->metablock_size,
&block_ctx, mirror_num);
if (ret) {
printk(KERN_INFO "btrfsic:"
" btrfsic_map_block(logical @%llu,"
" mirror %d) failed!\n",
bytenr, mirror_num);
continue;
}
if (dev_state->bdev == block_ctx.dev->bdev &&
dev_bytenr == block_ctx.dev_bytenr) {
match++;
btrfsic_release_block_ctx(&block_ctx);
break;
}
btrfsic_release_block_ctx(&block_ctx);
}
if (WARN_ON(!match)) {
printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
" buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
" phys_bytenr=%llu)!\n",
bytenr, dev_state->name, dev_bytenr);
for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
ret = btrfsic_map_block(state, bytenr,
state->metablock_size,
&block_ctx, mirror_num);
if (ret)
continue;
printk(KERN_INFO "Read logical bytenr @%llu maps to"
" (%s/%llu/%d)\n",
bytenr, block_ctx.dev->name,
block_ctx.dev_bytenr, mirror_num);
}
}
}
static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
struct block_device *bdev)
{
struct btrfsic_dev_state *ds;
ds = btrfsic_dev_state_hashtable_lookup(bdev,
&btrfsic_dev_state_hashtable);
return ds;
}
int btrfsic_submit_bh(int rw, struct buffer_head *bh)
{
struct btrfsic_dev_state *dev_state;
if (!btrfsic_is_initialized)
return submit_bh(rw, bh);
mutex_lock(&btrfsic_mutex);
/* since btrfsic_submit_bh() might also be called before
* btrfsic_mount(), this might return NULL */
dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
/* Only called to write the superblock (incl. FLUSH/FUA) */
if (NULL != dev_state &&
(rw & WRITE) && bh->b_size > 0) {
u64 dev_bytenr;
dev_bytenr = 4096 * bh->b_blocknr;
if (dev_state->state->print_mask &
BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
printk(KERN_INFO
"submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
" size=%zu, data=%p, bdev=%p)\n",
rw, (unsigned long long)bh->b_blocknr,
dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
btrfsic_process_written_block(dev_state, dev_bytenr,
&bh->b_data, 1, NULL,
NULL, bh, rw);
} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
if (dev_state->state->print_mask &
BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
printk(KERN_INFO
"submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
rw, bh->b_bdev);
if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
if ((dev_state->state->print_mask &
(BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
BTRFSIC_PRINT_MASK_VERBOSE)))
printk(KERN_INFO
"btrfsic_submit_bh(%s) with FLUSH"
" but dummy block already in use"
" (ignored)!\n",
dev_state->name);
} else {
struct btrfsic_block *const block =
&dev_state->dummy_block_for_bio_bh_flush;
block->is_iodone = 0;
block->never_written = 0;
block->iodone_w_error = 0;
block->flush_gen = dev_state->last_flush_gen + 1;
block->submit_bio_bh_rw = rw;
block->orig_bio_bh_private = bh->b_private;
block->orig_bio_bh_end_io.bh = bh->b_end_io;
block->next_in_same_bio = NULL;
bh->b_private = block;
bh->b_end_io = btrfsic_bh_end_io;
}
}
mutex_unlock(&btrfsic_mutex);
return submit_bh(rw, bh);
}
static void __btrfsic_submit_bio(int rw, struct bio *bio)
{
struct btrfsic_dev_state *dev_state;
if (!btrfsic_is_initialized)
return;
mutex_lock(&btrfsic_mutex);
/* since btrfsic_submit_bio() is also called before
* btrfsic_mount(), this might return NULL */
dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
if (NULL != dev_state &&
(rw & WRITE) && NULL != bio->bi_io_vec) {
unsigned int i;
u64 dev_bytenr;
u64 cur_bytenr;
int bio_is_patched;
char **mapped_datav;
dev_bytenr = 512 * bio->bi_iter.bi_sector;
bio_is_patched = 0;
if (dev_state->state->print_mask &
BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
printk(KERN_INFO
"submit_bio(rw=0x%x, bi_vcnt=%u,"
" bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
rw, bio->bi_vcnt,
(unsigned long long)bio->bi_iter.bi_sector,
dev_bytenr, bio->bi_bdev);
mapped_datav = kmalloc_array(bio->bi_vcnt,
sizeof(*mapped_datav), GFP_NOFS);
if (!mapped_datav)
goto leave;
cur_bytenr = dev_bytenr;
for (i = 0; i < bio->bi_vcnt; i++) {
BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_CACHE_SIZE);
mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
if (!mapped_datav[i]) {
while (i > 0) {
i--;
kunmap(bio->bi_io_vec[i].bv_page);
}
kfree(mapped_datav);
goto leave;
}
if (dev_state->state->print_mask &
BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
printk(KERN_INFO
"#%u: bytenr=%llu, len=%u, offset=%u\n",
i, cur_bytenr, bio->bi_io_vec[i].bv_len,
bio->bi_io_vec[i].bv_offset);
cur_bytenr += bio->bi_io_vec[i].bv_len;
}
btrfsic_process_written_block(dev_state, dev_bytenr,
mapped_datav, bio->bi_vcnt,
bio, &bio_is_patched,
NULL, rw);
while (i > 0) {
i--;
kunmap(bio->bi_io_vec[i].bv_page);
}
kfree(mapped_datav);
} else if (NULL != dev_state && (rw & REQ_FLUSH)) {
if (dev_state->state->print_mask &
BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
printk(KERN_INFO
"submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
rw, bio->bi_bdev);
if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
if ((dev_state->state->print_mask &
(BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
BTRFSIC_PRINT_MASK_VERBOSE)))
printk(KERN_INFO
"btrfsic_submit_bio(%s) with FLUSH"
" but dummy block already in use"
" (ignored)!\n",
dev_state->name);
} else {
struct btrfsic_block *const block =
&dev_state->dummy_block_for_bio_bh_flush;
block->is_iodone = 0;
block->never_written = 0;
block->iodone_w_error = 0;
block->flush_gen = dev_state->last_flush_gen + 1;
block->submit_bio_bh_rw = rw;
block->orig_bio_bh_private = bio->bi_private;
block->orig_bio_bh_end_io.bio = bio->bi_end_io;
block->next_in_same_bio = NULL;
bio->bi_private = block;
bio->bi_end_io = btrfsic_bio_end_io;
}
}
leave:
mutex_unlock(&btrfsic_mutex);
}
void btrfsic_submit_bio(int rw, struct bio *bio)
{
__btrfsic_submit_bio(rw, bio);
submit_bio(rw, bio);
}
int btrfsic_submit_bio_wait(int rw, struct bio *bio)
{
__btrfsic_submit_bio(rw, bio);
return submit_bio_wait(rw, bio);
}
int btrfsic_mount(struct btrfs_root *root,
struct btrfs_fs_devices *fs_devices,
int including_extent_data, u32 print_mask)
{
int ret;
struct btrfsic_state *state;
struct list_head *dev_head = &fs_devices->devices;
struct btrfs_device *device;
if (root->nodesize & ((u64)PAGE_CACHE_SIZE - 1)) {
printk(KERN_INFO
"btrfsic: cannot handle nodesize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
root->nodesize, PAGE_CACHE_SIZE);
return -1;
}
if (root->sectorsize & ((u64)PAGE_CACHE_SIZE - 1)) {
printk(KERN_INFO
"btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_CACHE_SIZE %ld!\n",
root->sectorsize, PAGE_CACHE_SIZE);
return -1;
}
state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
if (!state) {
state = vzalloc(sizeof(*state));
if (!state) {
printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n");
return -1;
}
}
if (!btrfsic_is_initialized) {
mutex_init(&btrfsic_mutex);
btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
btrfsic_is_initialized = 1;
}
mutex_lock(&btrfsic_mutex);
state->root = root;
state->print_mask = print_mask;
state->include_extent_data = including_extent_data;
state->csum_size = 0;
state->metablock_size = root->nodesize;
state->datablock_size = root->sectorsize;
INIT_LIST_HEAD(&state->all_blocks_list);
btrfsic_block_hashtable_init(&state->block_hashtable);
btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
state->max_superblock_generation = 0;
state->latest_superblock = NULL;
list_for_each_entry(device, dev_head, dev_list) {
struct btrfsic_dev_state *ds;
char *p;
if (!device->bdev || !device->name)
continue;
ds = btrfsic_dev_state_alloc();
if (NULL == ds) {
printk(KERN_INFO
"btrfs check-integrity: kmalloc() failed!\n");
mutex_unlock(&btrfsic_mutex);
return -1;
}
ds->bdev = device->bdev;
ds->state = state;
bdevname(ds->bdev, ds->name);
ds->name[BDEVNAME_SIZE - 1] = '\0';
for (p = ds->name; *p != '\0'; p++);
while (p > ds->name && *p != '/')
p--;
if (*p == '/')
p++;
strlcpy(ds->name, p, sizeof(ds->name));
btrfsic_dev_state_hashtable_add(ds,
&btrfsic_dev_state_hashtable);
}
ret = btrfsic_process_superblock(state, fs_devices);
if (0 != ret) {
mutex_unlock(&btrfsic_mutex);
btrfsic_unmount(root, fs_devices);
return ret;
}
if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
btrfsic_dump_database(state);
if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
btrfsic_dump_tree(state);
mutex_unlock(&btrfsic_mutex);
return 0;
}
void btrfsic_unmount(struct btrfs_root *root,
struct btrfs_fs_devices *fs_devices)
{
struct list_head *elem_all;
struct list_head *tmp_all;
struct btrfsic_state *state;
struct list_head *dev_head = &fs_devices->devices;
struct btrfs_device *device;
if (!btrfsic_is_initialized)
return;
mutex_lock(&btrfsic_mutex);
state = NULL;
list_for_each_entry(device, dev_head, dev_list) {
struct btrfsic_dev_state *ds;
if (!device->bdev || !device->name)
continue;
ds = btrfsic_dev_state_hashtable_lookup(
device->bdev,
&btrfsic_dev_state_hashtable);
if (NULL != ds) {
state = ds->state;
btrfsic_dev_state_hashtable_remove(ds);
btrfsic_dev_state_free(ds);
}
}
if (NULL == state) {
printk(KERN_INFO
"btrfsic: error, cannot find state information"
" on umount!\n");
mutex_unlock(&btrfsic_mutex);
return;
}
/*
* Don't care about keeping the lists' state up to date,
* just free all memory that was allocated dynamically.
* Free the blocks and the block_links.
*/
list_for_each_safe(elem_all, tmp_all, &state->all_blocks_list) {
struct btrfsic_block *const b_all =
list_entry(elem_all, struct btrfsic_block,
all_blocks_node);
struct list_head *elem_ref_to;
struct list_head *tmp_ref_to;
list_for_each_safe(elem_ref_to, tmp_ref_to,
&b_all->ref_to_list) {
struct btrfsic_block_link *const l =
list_entry(elem_ref_to,
struct btrfsic_block_link,
node_ref_to);
if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
btrfsic_print_rem_link(state, l);
l->ref_cnt--;
if (0 == l->ref_cnt)
btrfsic_block_link_free(l);
}
if (b_all->is_iodone || b_all->never_written)
btrfsic_block_free(b_all);
else
printk(KERN_INFO "btrfs: attempt to free %c-block"
" @%llu (%s/%llu/%d) on umount which is"
" not yet iodone!\n",
btrfsic_get_block_type(state, b_all),
b_all->logical_bytenr, b_all->dev_state->name,
b_all->dev_bytenr, b_all->mirror_num);
}
mutex_unlock(&btrfsic_mutex);
kvfree(state);
}