1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-22 16:06:04 -05:00
linux/drivers/scsi/ses.c
Al Viro 5f60d5f6bb move asm/unaligned.h to linux/unaligned.h
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.

auto-generated by the following:

for i in `git grep -l -w asm/unaligned.h`; do
	sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
	sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
2024-10-02 17:23:23 -04:00

948 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* SCSI Enclosure Services
*
* Copyright (C) 2008 James Bottomley <James.Bottomley@HansenPartnership.com>
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/enclosure.h>
#include <linux/unaligned.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport_sas.h>
struct ses_device {
unsigned char *page1;
unsigned char *page1_types;
unsigned char *page2;
unsigned char *page10;
short page1_len;
short page1_num_types;
short page2_len;
short page10_len;
};
struct ses_component {
u64 addr;
};
static bool ses_page2_supported(struct enclosure_device *edev)
{
struct ses_device *ses_dev = edev->scratch;
return (ses_dev->page2 != NULL);
}
static int ses_probe(struct device *dev)
{
struct scsi_device *sdev = to_scsi_device(dev);
int err = -ENODEV;
if (sdev->type != TYPE_ENCLOSURE)
goto out;
err = 0;
sdev_printk(KERN_NOTICE, sdev, "Attached Enclosure device\n");
out:
return err;
}
#define SES_TIMEOUT (30 * HZ)
#define SES_RETRIES 3
static void init_device_slot_control(unsigned char *dest_desc,
struct enclosure_component *ecomp,
unsigned char *status)
{
memcpy(dest_desc, status, 4);
dest_desc[0] = 0;
/* only clear byte 1 for ENCLOSURE_COMPONENT_DEVICE */
if (ecomp->type == ENCLOSURE_COMPONENT_DEVICE)
dest_desc[1] = 0;
dest_desc[2] &= 0xde;
dest_desc[3] &= 0x3c;
}
static int ses_recv_diag(struct scsi_device *sdev, int page_code,
void *buf, int bufflen)
{
int ret;
unsigned char cmd[] = {
RECEIVE_DIAGNOSTIC,
1, /* Set PCV bit */
page_code,
bufflen >> 8,
bufflen & 0xff,
0
};
unsigned char recv_page_code;
struct scsi_failure failure_defs[] = {
{
.sense = UNIT_ATTENTION,
.asc = 0x29,
.ascq = SCMD_FAILURE_ASCQ_ANY,
.allowed = SES_RETRIES,
.result = SAM_STAT_CHECK_CONDITION,
},
{
.sense = NOT_READY,
.asc = SCMD_FAILURE_ASC_ANY,
.ascq = SCMD_FAILURE_ASCQ_ANY,
.allowed = SES_RETRIES,
.result = SAM_STAT_CHECK_CONDITION,
},
{}
};
struct scsi_failures failures = {
.failure_definitions = failure_defs,
};
const struct scsi_exec_args exec_args = {
.failures = &failures,
};
ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buf, bufflen,
SES_TIMEOUT, 1, &exec_args);
if (unlikely(ret))
return ret;
recv_page_code = ((unsigned char *)buf)[0];
if (likely(recv_page_code == page_code))
return ret;
/* successful diagnostic but wrong page code. This happens to some
* USB devices, just print a message and pretend there was an error */
sdev_printk(KERN_ERR, sdev,
"Wrong diagnostic page; asked for %d got %u\n",
page_code, recv_page_code);
return -EINVAL;
}
static int ses_send_diag(struct scsi_device *sdev, int page_code,
void *buf, int bufflen)
{
int result;
unsigned char cmd[] = {
SEND_DIAGNOSTIC,
0x10, /* Set PF bit */
0,
bufflen >> 8,
bufflen & 0xff,
0
};
struct scsi_failure failure_defs[] = {
{
.sense = UNIT_ATTENTION,
.asc = 0x29,
.ascq = SCMD_FAILURE_ASCQ_ANY,
.allowed = SES_RETRIES,
.result = SAM_STAT_CHECK_CONDITION,
},
{
.sense = NOT_READY,
.asc = SCMD_FAILURE_ASC_ANY,
.ascq = SCMD_FAILURE_ASCQ_ANY,
.allowed = SES_RETRIES,
.result = SAM_STAT_CHECK_CONDITION,
},
{}
};
struct scsi_failures failures = {
.failure_definitions = failure_defs,
};
const struct scsi_exec_args exec_args = {
.failures = &failures,
};
result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, buf, bufflen,
SES_TIMEOUT, 1, &exec_args);
if (result)
sdev_printk(KERN_ERR, sdev, "SEND DIAGNOSTIC result: %8x\n",
result);
return result;
}
static int ses_set_page2_descriptor(struct enclosure_device *edev,
struct enclosure_component *ecomp,
unsigned char *desc)
{
int i, j, count = 0, descriptor = ecomp->number;
struct scsi_device *sdev = to_scsi_device(edev->edev.parent);
struct ses_device *ses_dev = edev->scratch;
unsigned char *type_ptr = ses_dev->page1_types;
unsigned char *desc_ptr = ses_dev->page2 + 8;
/* Clear everything */
memset(desc_ptr, 0, ses_dev->page2_len - 8);
for (i = 0; i < ses_dev->page1_num_types; i++, type_ptr += 4) {
for (j = 0; j < type_ptr[1]; j++) {
desc_ptr += 4;
if (type_ptr[0] != ENCLOSURE_COMPONENT_DEVICE &&
type_ptr[0] != ENCLOSURE_COMPONENT_ARRAY_DEVICE)
continue;
if (count++ == descriptor) {
memcpy(desc_ptr, desc, 4);
/* set select */
desc_ptr[0] |= 0x80;
/* clear reserved, just in case */
desc_ptr[0] &= 0xf0;
}
}
}
return ses_send_diag(sdev, 2, ses_dev->page2, ses_dev->page2_len);
}
static unsigned char *ses_get_page2_descriptor(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
int i, j, count = 0, descriptor = ecomp->number;
struct scsi_device *sdev = to_scsi_device(edev->edev.parent);
struct ses_device *ses_dev = edev->scratch;
unsigned char *type_ptr = ses_dev->page1_types;
unsigned char *desc_ptr = ses_dev->page2 + 8;
if (ses_recv_diag(sdev, 2, ses_dev->page2, ses_dev->page2_len) < 0)
return NULL;
for (i = 0; i < ses_dev->page1_num_types; i++, type_ptr += 4) {
for (j = 0; j < type_ptr[1]; j++) {
desc_ptr += 4;
if (type_ptr[0] != ENCLOSURE_COMPONENT_DEVICE &&
type_ptr[0] != ENCLOSURE_COMPONENT_ARRAY_DEVICE)
continue;
if (count++ == descriptor)
return desc_ptr;
}
}
return NULL;
}
/* For device slot and array device slot elements, byte 3 bit 6
* is "fault sensed" while byte 3 bit 5 is "fault reqstd". As this
* code stands these bits are shifted 4 positions right so in
* sysfs they will appear as bits 2 and 1 respectively. Strange. */
static void ses_get_fault(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
unsigned char *desc;
if (!ses_page2_supported(edev)) {
ecomp->fault = 0;
return;
}
desc = ses_get_page2_descriptor(edev, ecomp);
if (desc)
ecomp->fault = (desc[3] & 0x60) >> 4;
}
static int ses_set_fault(struct enclosure_device *edev,
struct enclosure_component *ecomp,
enum enclosure_component_setting val)
{
unsigned char desc[4];
unsigned char *desc_ptr;
if (!ses_page2_supported(edev))
return -EINVAL;
desc_ptr = ses_get_page2_descriptor(edev, ecomp);
if (!desc_ptr)
return -EIO;
init_device_slot_control(desc, ecomp, desc_ptr);
switch (val) {
case ENCLOSURE_SETTING_DISABLED:
desc[3] &= 0xdf;
break;
case ENCLOSURE_SETTING_ENABLED:
desc[3] |= 0x20;
break;
default:
/* SES doesn't do the SGPIO blink settings */
return -EINVAL;
}
return ses_set_page2_descriptor(edev, ecomp, desc);
}
static void ses_get_status(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
unsigned char *desc;
if (!ses_page2_supported(edev)) {
ecomp->status = 0;
return;
}
desc = ses_get_page2_descriptor(edev, ecomp);
if (desc)
ecomp->status = (desc[0] & 0x0f);
}
static void ses_get_locate(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
unsigned char *desc;
if (!ses_page2_supported(edev)) {
ecomp->locate = 0;
return;
}
desc = ses_get_page2_descriptor(edev, ecomp);
if (desc)
ecomp->locate = (desc[2] & 0x02) ? 1 : 0;
}
static int ses_set_locate(struct enclosure_device *edev,
struct enclosure_component *ecomp,
enum enclosure_component_setting val)
{
unsigned char desc[4];
unsigned char *desc_ptr;
if (!ses_page2_supported(edev))
return -EINVAL;
desc_ptr = ses_get_page2_descriptor(edev, ecomp);
if (!desc_ptr)
return -EIO;
init_device_slot_control(desc, ecomp, desc_ptr);
switch (val) {
case ENCLOSURE_SETTING_DISABLED:
desc[2] &= 0xfd;
break;
case ENCLOSURE_SETTING_ENABLED:
desc[2] |= 0x02;
break;
default:
/* SES doesn't do the SGPIO blink settings */
return -EINVAL;
}
return ses_set_page2_descriptor(edev, ecomp, desc);
}
static int ses_set_active(struct enclosure_device *edev,
struct enclosure_component *ecomp,
enum enclosure_component_setting val)
{
unsigned char desc[4];
unsigned char *desc_ptr;
if (!ses_page2_supported(edev))
return -EINVAL;
desc_ptr = ses_get_page2_descriptor(edev, ecomp);
if (!desc_ptr)
return -EIO;
init_device_slot_control(desc, ecomp, desc_ptr);
switch (val) {
case ENCLOSURE_SETTING_DISABLED:
desc[2] &= 0x7f;
ecomp->active = 0;
break;
case ENCLOSURE_SETTING_ENABLED:
desc[2] |= 0x80;
ecomp->active = 1;
break;
default:
/* SES doesn't do the SGPIO blink settings */
return -EINVAL;
}
return ses_set_page2_descriptor(edev, ecomp, desc);
}
static int ses_show_id(struct enclosure_device *edev, char *buf)
{
struct ses_device *ses_dev = edev->scratch;
unsigned long long id = get_unaligned_be64(ses_dev->page1+8+4);
return sprintf(buf, "%#llx\n", id);
}
static void ses_get_power_status(struct enclosure_device *edev,
struct enclosure_component *ecomp)
{
unsigned char *desc;
if (!ses_page2_supported(edev)) {
ecomp->power_status = 0;
return;
}
desc = ses_get_page2_descriptor(edev, ecomp);
if (desc)
ecomp->power_status = (desc[3] & 0x10) ? 0 : 1;
}
static int ses_set_power_status(struct enclosure_device *edev,
struct enclosure_component *ecomp,
int val)
{
unsigned char desc[4];
unsigned char *desc_ptr;
if (!ses_page2_supported(edev))
return -EINVAL;
desc_ptr = ses_get_page2_descriptor(edev, ecomp);
if (!desc_ptr)
return -EIO;
init_device_slot_control(desc, ecomp, desc_ptr);
switch (val) {
/* power = 1 is device_off = 0 and vice versa */
case 0:
desc[3] |= 0x10;
break;
case 1:
desc[3] &= 0xef;
break;
default:
return -EINVAL;
}
ecomp->power_status = val;
return ses_set_page2_descriptor(edev, ecomp, desc);
}
static struct enclosure_component_callbacks ses_enclosure_callbacks = {
.get_fault = ses_get_fault,
.set_fault = ses_set_fault,
.get_status = ses_get_status,
.get_locate = ses_get_locate,
.set_locate = ses_set_locate,
.get_power_status = ses_get_power_status,
.set_power_status = ses_set_power_status,
.set_active = ses_set_active,
.show_id = ses_show_id,
};
struct ses_host_edev {
struct Scsi_Host *shost;
struct enclosure_device *edev;
};
#if 0
int ses_match_host(struct enclosure_device *edev, void *data)
{
struct ses_host_edev *sed = data;
struct scsi_device *sdev;
if (!scsi_is_sdev_device(edev->edev.parent))
return 0;
sdev = to_scsi_device(edev->edev.parent);
if (sdev->host != sed->shost)
return 0;
sed->edev = edev;
return 1;
}
#endif /* 0 */
static int ses_process_descriptor(struct enclosure_component *ecomp,
unsigned char *desc, int max_desc_len)
{
int eip = desc[0] & 0x10;
int invalid = desc[0] & 0x80;
enum scsi_protocol proto = desc[0] & 0x0f;
u64 addr = 0;
int slot = -1;
struct ses_component *scomp = ecomp->scratch;
unsigned char *d;
if (invalid)
return 0;
switch (proto) {
case SCSI_PROTOCOL_FCP:
if (eip) {
if (max_desc_len <= 7)
return 1;
d = desc + 4;
slot = d[3];
}
break;
case SCSI_PROTOCOL_SAS:
if (eip) {
if (max_desc_len <= 27)
return 1;
d = desc + 4;
slot = d[3];
d = desc + 8;
} else {
if (max_desc_len <= 23)
return 1;
d = desc + 4;
}
/* only take the phy0 addr */
addr = (u64)d[12] << 56 |
(u64)d[13] << 48 |
(u64)d[14] << 40 |
(u64)d[15] << 32 |
(u64)d[16] << 24 |
(u64)d[17] << 16 |
(u64)d[18] << 8 |
(u64)d[19];
break;
default:
/* FIXME: Need to add more protocols than just SAS */
break;
}
ecomp->slot = slot;
scomp->addr = addr;
return 0;
}
struct efd {
u64 addr;
struct device *dev;
};
static int ses_enclosure_find_by_addr(struct enclosure_device *edev,
void *data)
{
struct efd *efd = data;
int i;
struct ses_component *scomp;
for (i = 0; i < edev->components; i++) {
scomp = edev->component[i].scratch;
if (scomp->addr != efd->addr)
continue;
if (enclosure_add_device(edev, i, efd->dev) == 0)
kobject_uevent(&efd->dev->kobj, KOBJ_CHANGE);
return 1;
}
return 0;
}
#define INIT_ALLOC_SIZE 32
static void ses_enclosure_data_process(struct enclosure_device *edev,
struct scsi_device *sdev,
int create)
{
u32 result;
unsigned char *buf = NULL, *type_ptr, *desc_ptr, *addl_desc_ptr = NULL;
int i, j, page7_len, len, components;
struct ses_device *ses_dev = edev->scratch;
int types = ses_dev->page1_num_types;
unsigned char *hdr_buf = kzalloc(INIT_ALLOC_SIZE, GFP_KERNEL);
if (!hdr_buf)
goto simple_populate;
/* re-read page 10 */
if (ses_dev->page10)
ses_recv_diag(sdev, 10, ses_dev->page10, ses_dev->page10_len);
/* Page 7 for the descriptors is optional */
result = ses_recv_diag(sdev, 7, hdr_buf, INIT_ALLOC_SIZE);
if (result)
goto simple_populate;
page7_len = len = (hdr_buf[2] << 8) + hdr_buf[3] + 4;
/* add 1 for trailing '\0' we'll use */
buf = kzalloc(len + 1, GFP_KERNEL);
if (!buf)
goto simple_populate;
result = ses_recv_diag(sdev, 7, buf, len);
if (result) {
simple_populate:
kfree(buf);
buf = NULL;
desc_ptr = NULL;
len = 0;
page7_len = 0;
} else {
desc_ptr = buf + 8;
len = (desc_ptr[2] << 8) + desc_ptr[3];
/* skip past overall descriptor */
desc_ptr += len + 4;
}
if (ses_dev->page10 && ses_dev->page10_len > 9)
addl_desc_ptr = ses_dev->page10 + 8;
type_ptr = ses_dev->page1_types;
components = 0;
for (i = 0; i < types; i++, type_ptr += 4) {
for (j = 0; j < type_ptr[1]; j++) {
char *name = NULL;
struct enclosure_component *ecomp;
int max_desc_len;
if (desc_ptr) {
if (desc_ptr + 3 >= buf + page7_len) {
desc_ptr = NULL;
} else {
len = (desc_ptr[2] << 8) + desc_ptr[3];
desc_ptr += 4;
if (desc_ptr + len > buf + page7_len)
desc_ptr = NULL;
else {
/* Add trailing zero - pushes into
* reserved space */
desc_ptr[len] = '\0';
name = desc_ptr;
}
}
}
if (type_ptr[0] == ENCLOSURE_COMPONENT_DEVICE ||
type_ptr[0] == ENCLOSURE_COMPONENT_ARRAY_DEVICE) {
if (create)
ecomp = enclosure_component_alloc(
edev,
components++,
type_ptr[0],
name);
else if (components < edev->components)
ecomp = &edev->component[components++];
else
ecomp = ERR_PTR(-EINVAL);
if (!IS_ERR(ecomp)) {
if (addl_desc_ptr) {
max_desc_len = ses_dev->page10_len -
(addl_desc_ptr - ses_dev->page10);
if (ses_process_descriptor(ecomp,
addl_desc_ptr,
max_desc_len))
addl_desc_ptr = NULL;
}
if (create)
enclosure_component_register(
ecomp);
}
}
if (desc_ptr)
desc_ptr += len;
if (addl_desc_ptr &&
/* only find additional descriptions for specific devices */
(type_ptr[0] == ENCLOSURE_COMPONENT_DEVICE ||
type_ptr[0] == ENCLOSURE_COMPONENT_ARRAY_DEVICE ||
type_ptr[0] == ENCLOSURE_COMPONENT_SAS_EXPANDER ||
/* these elements are optional */
type_ptr[0] == ENCLOSURE_COMPONENT_SCSI_TARGET_PORT ||
type_ptr[0] == ENCLOSURE_COMPONENT_SCSI_INITIATOR_PORT ||
type_ptr[0] == ENCLOSURE_COMPONENT_CONTROLLER_ELECTRONICS)) {
addl_desc_ptr += addl_desc_ptr[1] + 2;
if (addl_desc_ptr + 1 >= ses_dev->page10 + ses_dev->page10_len)
addl_desc_ptr = NULL;
}
}
}
kfree(buf);
kfree(hdr_buf);
}
static void ses_match_to_enclosure(struct enclosure_device *edev,
struct scsi_device *sdev,
int refresh)
{
struct scsi_device *edev_sdev = to_scsi_device(edev->edev.parent);
struct efd efd = {
.addr = 0,
};
if (refresh)
ses_enclosure_data_process(edev, edev_sdev, 0);
if (scsi_is_sas_rphy(sdev->sdev_target->dev.parent))
efd.addr = sas_get_address(sdev);
if (efd.addr) {
efd.dev = &sdev->sdev_gendev;
enclosure_for_each_device(ses_enclosure_find_by_addr, &efd);
}
}
static int ses_intf_add(struct device *cdev)
{
struct scsi_device *sdev = to_scsi_device(cdev->parent);
struct scsi_device *tmp_sdev;
unsigned char *buf = NULL, *hdr_buf, *type_ptr, page;
struct ses_device *ses_dev;
u32 result;
int i, types, len, components = 0;
int err = -ENOMEM;
int num_enclosures;
struct enclosure_device *edev;
struct ses_component *scomp = NULL;
if (!scsi_device_enclosure(sdev)) {
/* not an enclosure, but might be in one */
struct enclosure_device *prev = NULL;
while ((edev = enclosure_find(&sdev->host->shost_gendev, prev)) != NULL) {
ses_match_to_enclosure(edev, sdev, 1);
prev = edev;
}
return -ENODEV;
}
/* TYPE_ENCLOSURE prints a message in probe */
if (sdev->type != TYPE_ENCLOSURE)
sdev_printk(KERN_NOTICE, sdev, "Embedded Enclosure Device\n");
ses_dev = kzalloc(sizeof(*ses_dev), GFP_KERNEL);
hdr_buf = kzalloc(INIT_ALLOC_SIZE, GFP_KERNEL);
if (!hdr_buf || !ses_dev)
goto err_init_free;
page = 1;
result = ses_recv_diag(sdev, page, hdr_buf, INIT_ALLOC_SIZE);
if (result)
goto recv_failed;
len = (hdr_buf[2] << 8) + hdr_buf[3] + 4;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
goto err_free;
result = ses_recv_diag(sdev, page, buf, len);
if (result)
goto recv_failed;
types = 0;
/* we always have one main enclosure and the rest are referred
* to as secondary subenclosures */
num_enclosures = buf[1] + 1;
/* begin at the enclosure descriptor */
type_ptr = buf + 8;
/* skip all the enclosure descriptors */
for (i = 0; i < num_enclosures && type_ptr < buf + len; i++) {
types += type_ptr[2];
type_ptr += type_ptr[3] + 4;
}
ses_dev->page1_types = type_ptr;
ses_dev->page1_num_types = types;
for (i = 0; i < types && type_ptr < buf + len; i++, type_ptr += 4) {
if (type_ptr[0] == ENCLOSURE_COMPONENT_DEVICE ||
type_ptr[0] == ENCLOSURE_COMPONENT_ARRAY_DEVICE)
components += type_ptr[1];
}
ses_dev->page1 = buf;
ses_dev->page1_len = len;
buf = NULL;
page = 2;
result = ses_recv_diag(sdev, page, hdr_buf, INIT_ALLOC_SIZE);
if (result)
goto page2_not_supported;
len = (hdr_buf[2] << 8) + hdr_buf[3] + 4;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
goto err_free;
/* make sure getting page 2 actually works */
result = ses_recv_diag(sdev, 2, buf, len);
if (result)
goto recv_failed;
ses_dev->page2 = buf;
ses_dev->page2_len = len;
buf = NULL;
/* The additional information page --- allows us
* to match up the devices */
page = 10;
result = ses_recv_diag(sdev, page, hdr_buf, INIT_ALLOC_SIZE);
if (!result) {
len = (hdr_buf[2] << 8) + hdr_buf[3] + 4;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
goto err_free;
result = ses_recv_diag(sdev, page, buf, len);
if (result)
goto recv_failed;
ses_dev->page10 = buf;
ses_dev->page10_len = len;
buf = NULL;
}
page2_not_supported:
if (components > 0) {
scomp = kcalloc(components, sizeof(struct ses_component), GFP_KERNEL);
if (!scomp)
goto err_free;
}
edev = enclosure_register(cdev->parent, dev_name(&sdev->sdev_gendev),
components, &ses_enclosure_callbacks);
if (IS_ERR(edev)) {
err = PTR_ERR(edev);
goto err_free;
}
kfree(hdr_buf);
edev->scratch = ses_dev;
for (i = 0; i < components; i++)
edev->component[i].scratch = scomp + i;
ses_enclosure_data_process(edev, sdev, 1);
/* see if there are any devices matching before
* we found the enclosure */
shost_for_each_device(tmp_sdev, sdev->host) {
if (tmp_sdev->lun != 0 || scsi_device_enclosure(tmp_sdev))
continue;
ses_match_to_enclosure(edev, tmp_sdev, 0);
}
return 0;
recv_failed:
sdev_printk(KERN_ERR, sdev, "Failed to get diagnostic page 0x%x\n",
page);
err = -ENODEV;
err_free:
kfree(buf);
kfree(scomp);
kfree(ses_dev->page10);
kfree(ses_dev->page2);
kfree(ses_dev->page1);
err_init_free:
kfree(ses_dev);
kfree(hdr_buf);
sdev_printk(KERN_ERR, sdev, "Failed to bind enclosure %d\n", err);
return err;
}
static int ses_remove(struct device *dev)
{
return 0;
}
static void ses_intf_remove_component(struct scsi_device *sdev)
{
struct enclosure_device *edev, *prev = NULL;
while ((edev = enclosure_find(&sdev->host->shost_gendev, prev)) != NULL) {
prev = edev;
if (!enclosure_remove_device(edev, &sdev->sdev_gendev))
break;
}
if (edev)
put_device(&edev->edev);
}
static void ses_intf_remove_enclosure(struct scsi_device *sdev)
{
struct enclosure_device *edev;
struct ses_device *ses_dev;
/* exact match to this enclosure */
edev = enclosure_find(&sdev->sdev_gendev, NULL);
if (!edev)
return;
ses_dev = edev->scratch;
edev->scratch = NULL;
kfree(ses_dev->page10);
kfree(ses_dev->page1);
kfree(ses_dev->page2);
kfree(ses_dev);
if (edev->components)
kfree(edev->component[0].scratch);
put_device(&edev->edev);
enclosure_unregister(edev);
}
static void ses_intf_remove(struct device *cdev)
{
struct scsi_device *sdev = to_scsi_device(cdev->parent);
if (!scsi_device_enclosure(sdev))
ses_intf_remove_component(sdev);
else
ses_intf_remove_enclosure(sdev);
}
static struct class_interface ses_interface = {
.add_dev = ses_intf_add,
.remove_dev = ses_intf_remove,
};
static struct scsi_driver ses_template = {
.gendrv = {
.name = "ses",
.probe = ses_probe,
.remove = ses_remove,
},
};
static int __init ses_init(void)
{
int err;
err = scsi_register_interface(&ses_interface);
if (err)
return err;
err = scsi_register_driver(&ses_template.gendrv);
if (err)
goto out_unreg;
return 0;
out_unreg:
scsi_unregister_interface(&ses_interface);
return err;
}
static void __exit ses_exit(void)
{
scsi_unregister_driver(&ses_template.gendrv);
scsi_unregister_interface(&ses_interface);
}
module_init(ses_init);
module_exit(ses_exit);
MODULE_ALIAS_SCSI_DEVICE(TYPE_ENCLOSURE);
MODULE_AUTHOR("James Bottomley");
MODULE_DESCRIPTION("SCSI Enclosure Services (ses) driver");
MODULE_LICENSE("GPL v2");