1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-26 18:43:33 -05:00
linux/mm/percpu-internal.h
Yu Ma 3a6358c0db percpu-internal/pcpu_chunk: re-layout pcpu_chunk structure to reduce false sharing
When running UnixBench/Execl throughput case, false sharing is observed
due to frequent read on base_addr and write on free_bytes, chunk_md.

UnixBench/Execl represents a class of workload where bash scripts are
spawned frequently to do some short jobs.  It will do system call on execl
frequently, and execl will call mm_init to initialize mm_struct of the
process.  mm_init will call __percpu_counter_init for percpu_counters
initialization.  Then pcpu_alloc is called to read the base_addr of
pcpu_chunk for memory allocation.  Inside pcpu_alloc, it will call
pcpu_alloc_area to allocate memory from a specified chunk.  This function
will update "free_bytes" and "chunk_md" to record the rest free bytes and
other meta data for this chunk.  Correspondingly, pcpu_free_area will also
update these 2 members when free memory.

Call trace from perf is as below:
+   57.15%  0.01%  execl   [kernel.kallsyms] [k] __percpu_counter_init
+   57.13%  0.91%  execl   [kernel.kallsyms] [k] pcpu_alloc
-   55.27% 54.51%  execl   [kernel.kallsyms] [k] osq_lock
   - 53.54% 0x654278696e552f34
        main
        __execve
        entry_SYSCALL_64_after_hwframe
        do_syscall_64
        __x64_sys_execve
        do_execveat_common.isra.47
        alloc_bprm
        mm_init
        __percpu_counter_init
        pcpu_alloc
      - __mutex_lock.isra.17

In current pcpu_chunk layout, `base_addr' is in the same cache line with
`free_bytes' and `chunk_md', and `base_addr' is at the last 8 bytes.  This
patch moves `bound_map' up to `base_addr', to let `base_addr' locate in a
new cacheline.

With this change, on Intel Sapphire Rapids 112C/224T platform, based on
v6.4-rc4, the 160 parallel score improves by 24%.

The pcpu_chunk struct is a backing data structure per chunk, so the
additional memory should not be dramatic.  A chunk covers ballpark
between 64kb and 512kb memory depending on some config and boot time
stuff, so I believe the additional memory used here is nominal at best.

Working the #s on my desktop:
Percpu:            58624 kB
28 cores -> ~2.1MB of percpu memory.
At say ~128KB per chunk -> 33 chunks, generously 40 chunks.
Adding alignment might bump the chunk size ~64 bytes, so in total ~2KB
of overhead?

I believe we can do a little better to avoid eating that full padding,
so likely less than that.

[dennis@kernel.org: changelog details]
Link: https://lkml.kernel.org/r/20230610030730.110074-1-yu.ma@intel.com
Signed-off-by: Yu Ma <yu.ma@intel.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-06-19 16:19:29 -07:00

266 lines
7.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _MM_PERCPU_INTERNAL_H
#define _MM_PERCPU_INTERNAL_H
#include <linux/types.h>
#include <linux/percpu.h>
#include <linux/memcontrol.h>
/*
* pcpu_block_md is the metadata block struct.
* Each chunk's bitmap is split into a number of full blocks.
* All units are in terms of bits.
*
* The scan hint is the largest known contiguous area before the contig hint.
* It is not necessarily the actual largest contig hint though. There is an
* invariant that the scan_hint_start > contig_hint_start iff
* scan_hint == contig_hint. This is necessary because when scanning forward,
* we don't know if a new contig hint would be better than the current one.
*/
struct pcpu_block_md {
int scan_hint; /* scan hint for block */
int scan_hint_start; /* block relative starting
position of the scan hint */
int contig_hint; /* contig hint for block */
int contig_hint_start; /* block relative starting
position of the contig hint */
int left_free; /* size of free space along
the left side of the block */
int right_free; /* size of free space along
the right side of the block */
int first_free; /* block position of first free */
int nr_bits; /* total bits responsible for */
};
struct pcpu_chunk {
#ifdef CONFIG_PERCPU_STATS
int nr_alloc; /* # of allocations */
size_t max_alloc_size; /* largest allocation size */
#endif
struct list_head list; /* linked to pcpu_slot lists */
int free_bytes; /* free bytes in the chunk */
struct pcpu_block_md chunk_md;
unsigned long *bound_map; /* boundary map */
/*
* base_addr is the base address of this chunk.
* To reduce false sharing, current layout is optimized to make sure
* base_addr locate in the different cacheline with free_bytes and
* chunk_md.
*/
void *base_addr ____cacheline_aligned_in_smp;
unsigned long *alloc_map; /* allocation map */
struct pcpu_block_md *md_blocks; /* metadata blocks */
void *data; /* chunk data */
bool immutable; /* no [de]population allowed */
bool isolated; /* isolated from active chunk
slots */
int start_offset; /* the overlap with the previous
region to have a page aligned
base_addr */
int end_offset; /* additional area required to
have the region end page
aligned */
#ifdef CONFIG_MEMCG_KMEM
struct obj_cgroup **obj_cgroups; /* vector of object cgroups */
#endif
int nr_pages; /* # of pages served by this chunk */
int nr_populated; /* # of populated pages */
int nr_empty_pop_pages; /* # of empty populated pages */
unsigned long populated[]; /* populated bitmap */
};
extern spinlock_t pcpu_lock;
extern struct list_head *pcpu_chunk_lists;
extern int pcpu_nr_slots;
extern int pcpu_sidelined_slot;
extern int pcpu_to_depopulate_slot;
extern int pcpu_nr_empty_pop_pages;
extern struct pcpu_chunk *pcpu_first_chunk;
extern struct pcpu_chunk *pcpu_reserved_chunk;
/**
* pcpu_chunk_nr_blocks - converts nr_pages to # of md_blocks
* @chunk: chunk of interest
*
* This conversion is from the number of physical pages that the chunk
* serves to the number of bitmap blocks used.
*/
static inline int pcpu_chunk_nr_blocks(struct pcpu_chunk *chunk)
{
return chunk->nr_pages * PAGE_SIZE / PCPU_BITMAP_BLOCK_SIZE;
}
/**
* pcpu_nr_pages_to_map_bits - converts the pages to size of bitmap
* @pages: number of physical pages
*
* This conversion is from physical pages to the number of bits
* required in the bitmap.
*/
static inline int pcpu_nr_pages_to_map_bits(int pages)
{
return pages * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
}
/**
* pcpu_chunk_map_bits - helper to convert nr_pages to size of bitmap
* @chunk: chunk of interest
*
* This conversion is from the number of physical pages that the chunk
* serves to the number of bits in the bitmap.
*/
static inline int pcpu_chunk_map_bits(struct pcpu_chunk *chunk)
{
return pcpu_nr_pages_to_map_bits(chunk->nr_pages);
}
/**
* pcpu_obj_full_size - helper to calculate size of each accounted object
* @size: size of area to allocate in bytes
*
* For each accounted object there is an extra space which is used to store
* obj_cgroup membership if kmemcg is not disabled. Charge it too.
*/
static inline size_t pcpu_obj_full_size(size_t size)
{
size_t extra_size = 0;
#ifdef CONFIG_MEMCG_KMEM
if (!mem_cgroup_kmem_disabled())
extra_size += size / PCPU_MIN_ALLOC_SIZE * sizeof(struct obj_cgroup *);
#endif
return size * num_possible_cpus() + extra_size;
}
#ifdef CONFIG_PERCPU_STATS
#include <linux/spinlock.h>
struct percpu_stats {
u64 nr_alloc; /* lifetime # of allocations */
u64 nr_dealloc; /* lifetime # of deallocations */
u64 nr_cur_alloc; /* current # of allocations */
u64 nr_max_alloc; /* max # of live allocations */
u32 nr_chunks; /* current # of live chunks */
u32 nr_max_chunks; /* max # of live chunks */
size_t min_alloc_size; /* min allocation size */
size_t max_alloc_size; /* max allocation size */
};
extern struct percpu_stats pcpu_stats;
extern struct pcpu_alloc_info pcpu_stats_ai;
/*
* For debug purposes. We don't care about the flexible array.
*/
static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai)
{
memcpy(&pcpu_stats_ai, ai, sizeof(struct pcpu_alloc_info));
/* initialize min_alloc_size to unit_size */
pcpu_stats.min_alloc_size = pcpu_stats_ai.unit_size;
}
/*
* pcpu_stats_area_alloc - increment area allocation stats
* @chunk: the location of the area being allocated
* @size: size of area to allocate in bytes
*
* CONTEXT:
* pcpu_lock.
*/
static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size)
{
lockdep_assert_held(&pcpu_lock);
pcpu_stats.nr_alloc++;
pcpu_stats.nr_cur_alloc++;
pcpu_stats.nr_max_alloc =
max(pcpu_stats.nr_max_alloc, pcpu_stats.nr_cur_alloc);
pcpu_stats.min_alloc_size =
min(pcpu_stats.min_alloc_size, size);
pcpu_stats.max_alloc_size =
max(pcpu_stats.max_alloc_size, size);
chunk->nr_alloc++;
chunk->max_alloc_size = max(chunk->max_alloc_size, size);
}
/*
* pcpu_stats_area_dealloc - decrement allocation stats
* @chunk: the location of the area being deallocated
*
* CONTEXT:
* pcpu_lock.
*/
static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk)
{
lockdep_assert_held(&pcpu_lock);
pcpu_stats.nr_dealloc++;
pcpu_stats.nr_cur_alloc--;
chunk->nr_alloc--;
}
/*
* pcpu_stats_chunk_alloc - increment chunk stats
*/
static inline void pcpu_stats_chunk_alloc(void)
{
unsigned long flags;
spin_lock_irqsave(&pcpu_lock, flags);
pcpu_stats.nr_chunks++;
pcpu_stats.nr_max_chunks =
max(pcpu_stats.nr_max_chunks, pcpu_stats.nr_chunks);
spin_unlock_irqrestore(&pcpu_lock, flags);
}
/*
* pcpu_stats_chunk_dealloc - decrement chunk stats
*/
static inline void pcpu_stats_chunk_dealloc(void)
{
unsigned long flags;
spin_lock_irqsave(&pcpu_lock, flags);
pcpu_stats.nr_chunks--;
spin_unlock_irqrestore(&pcpu_lock, flags);
}
#else
static inline void pcpu_stats_save_ai(const struct pcpu_alloc_info *ai)
{
}
static inline void pcpu_stats_area_alloc(struct pcpu_chunk *chunk, size_t size)
{
}
static inline void pcpu_stats_area_dealloc(struct pcpu_chunk *chunk)
{
}
static inline void pcpu_stats_chunk_alloc(void)
{
}
static inline void pcpu_stats_chunk_dealloc(void)
{
}
#endif /* !CONFIG_PERCPU_STATS */
#endif