mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-24 17:23:25 -05:00
ab5ac90aec
hugepage migration relies on __alloc_buddy_huge_page to get a new page. This has 2 main disadvantages. 1) it doesn't allow to migrate any huge page if the pool is used completely which is not an exceptional case as the pool is static and unused memory is just wasted. 2) it leads to a weird semantic when migration between two numa nodes might increase the pool size of the destination NUMA node while the page is in use. The issue is caused by per NUMA node surplus pages tracking (see free_huge_page). Address both issues by changing the way how we allocate and account pages allocated for migration. Those should temporal by definition. So we mark them that way (we will abuse page flags in the 3rd page) and update free_huge_page to free such pages to the page allocator. Page migration path then just transfers the temporal status from the new page to the old one which will be freed on the last reference. The global surplus count will never change during this path but we still have to be careful when migrating a per-node suprlus page. This is now handled in move_hugetlb_state which is called from the migration path and it copies the hugetlb specific page state and fixes up the accounting when needed Rename __alloc_buddy_huge_page to __alloc_surplus_huge_page to better reflect its purpose. The new allocation routine for the migration path is __alloc_migrate_huge_page. The user visible effect of this patch is that migrated pages are really temporal and they travel between NUMA nodes as per the migration request: Before migration /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 After /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages:0 /sys/devices/system/node/node0/hugepages/hugepages-2048kB/surplus_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/free_hugepages:0 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages:1 /sys/devices/system/node/node1/hugepages/hugepages-2048kB/surplus_hugepages:0 with the previous implementation, both nodes would have nr_hugepages:1 until the page is freed. Link: http://lkml.kernel.org/r/20180103093213.26329-4-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Andrea Reale <ar@linux.vnet.ibm.com> Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2994 lines
77 KiB
C
2994 lines
77 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Memory Migration functionality - linux/mm/migrate.c
|
|
*
|
|
* Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
|
|
*
|
|
* Page migration was first developed in the context of the memory hotplug
|
|
* project. The main authors of the migration code are:
|
|
*
|
|
* IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
|
|
* Hirokazu Takahashi <taka@valinux.co.jp>
|
|
* Dave Hansen <haveblue@us.ibm.com>
|
|
* Christoph Lameter
|
|
*/
|
|
|
|
#include <linux/migrate.h>
|
|
#include <linux/export.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/nsproxy.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/security.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/compaction.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/hugetlb_cgroup.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/balloon_compaction.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/page_owner.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/ptrace.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/migrate.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* migrate_prep() needs to be called before we start compiling a list of pages
|
|
* to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
|
|
* undesirable, use migrate_prep_local()
|
|
*/
|
|
int migrate_prep(void)
|
|
{
|
|
/*
|
|
* Clear the LRU lists so pages can be isolated.
|
|
* Note that pages may be moved off the LRU after we have
|
|
* drained them. Those pages will fail to migrate like other
|
|
* pages that may be busy.
|
|
*/
|
|
lru_add_drain_all();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
|
|
int migrate_prep_local(void)
|
|
{
|
|
lru_add_drain();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int isolate_movable_page(struct page *page, isolate_mode_t mode)
|
|
{
|
|
struct address_space *mapping;
|
|
|
|
/*
|
|
* Avoid burning cycles with pages that are yet under __free_pages(),
|
|
* or just got freed under us.
|
|
*
|
|
* In case we 'win' a race for a movable page being freed under us and
|
|
* raise its refcount preventing __free_pages() from doing its job
|
|
* the put_page() at the end of this block will take care of
|
|
* release this page, thus avoiding a nasty leakage.
|
|
*/
|
|
if (unlikely(!get_page_unless_zero(page)))
|
|
goto out;
|
|
|
|
/*
|
|
* Check PageMovable before holding a PG_lock because page's owner
|
|
* assumes anybody doesn't touch PG_lock of newly allocated page
|
|
* so unconditionally grapping the lock ruins page's owner side.
|
|
*/
|
|
if (unlikely(!__PageMovable(page)))
|
|
goto out_putpage;
|
|
/*
|
|
* As movable pages are not isolated from LRU lists, concurrent
|
|
* compaction threads can race against page migration functions
|
|
* as well as race against the releasing a page.
|
|
*
|
|
* In order to avoid having an already isolated movable page
|
|
* being (wrongly) re-isolated while it is under migration,
|
|
* or to avoid attempting to isolate pages being released,
|
|
* lets be sure we have the page lock
|
|
* before proceeding with the movable page isolation steps.
|
|
*/
|
|
if (unlikely(!trylock_page(page)))
|
|
goto out_putpage;
|
|
|
|
if (!PageMovable(page) || PageIsolated(page))
|
|
goto out_no_isolated;
|
|
|
|
mapping = page_mapping(page);
|
|
VM_BUG_ON_PAGE(!mapping, page);
|
|
|
|
if (!mapping->a_ops->isolate_page(page, mode))
|
|
goto out_no_isolated;
|
|
|
|
/* Driver shouldn't use PG_isolated bit of page->flags */
|
|
WARN_ON_ONCE(PageIsolated(page));
|
|
__SetPageIsolated(page);
|
|
unlock_page(page);
|
|
|
|
return 0;
|
|
|
|
out_no_isolated:
|
|
unlock_page(page);
|
|
out_putpage:
|
|
put_page(page);
|
|
out:
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* It should be called on page which is PG_movable */
|
|
void putback_movable_page(struct page *page)
|
|
{
|
|
struct address_space *mapping;
|
|
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(!PageMovable(page), page);
|
|
VM_BUG_ON_PAGE(!PageIsolated(page), page);
|
|
|
|
mapping = page_mapping(page);
|
|
mapping->a_ops->putback_page(page);
|
|
__ClearPageIsolated(page);
|
|
}
|
|
|
|
/*
|
|
* Put previously isolated pages back onto the appropriate lists
|
|
* from where they were once taken off for compaction/migration.
|
|
*
|
|
* This function shall be used whenever the isolated pageset has been
|
|
* built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
|
|
* and isolate_huge_page().
|
|
*/
|
|
void putback_movable_pages(struct list_head *l)
|
|
{
|
|
struct page *page;
|
|
struct page *page2;
|
|
|
|
list_for_each_entry_safe(page, page2, l, lru) {
|
|
if (unlikely(PageHuge(page))) {
|
|
putback_active_hugepage(page);
|
|
continue;
|
|
}
|
|
list_del(&page->lru);
|
|
/*
|
|
* We isolated non-lru movable page so here we can use
|
|
* __PageMovable because LRU page's mapping cannot have
|
|
* PAGE_MAPPING_MOVABLE.
|
|
*/
|
|
if (unlikely(__PageMovable(page))) {
|
|
VM_BUG_ON_PAGE(!PageIsolated(page), page);
|
|
lock_page(page);
|
|
if (PageMovable(page))
|
|
putback_movable_page(page);
|
|
else
|
|
__ClearPageIsolated(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
} else {
|
|
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
|
|
page_is_file_cache(page), -hpage_nr_pages(page));
|
|
putback_lru_page(page);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore a potential migration pte to a working pte entry
|
|
*/
|
|
static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
|
|
unsigned long addr, void *old)
|
|
{
|
|
struct page_vma_mapped_walk pvmw = {
|
|
.page = old,
|
|
.vma = vma,
|
|
.address = addr,
|
|
.flags = PVMW_SYNC | PVMW_MIGRATION,
|
|
};
|
|
struct page *new;
|
|
pte_t pte;
|
|
swp_entry_t entry;
|
|
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
while (page_vma_mapped_walk(&pvmw)) {
|
|
if (PageKsm(page))
|
|
new = page;
|
|
else
|
|
new = page - pvmw.page->index +
|
|
linear_page_index(vma, pvmw.address);
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
/* PMD-mapped THP migration entry */
|
|
if (!pvmw.pte) {
|
|
VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
|
|
remove_migration_pmd(&pvmw, new);
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
get_page(new);
|
|
pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
|
|
if (pte_swp_soft_dirty(*pvmw.pte))
|
|
pte = pte_mksoft_dirty(pte);
|
|
|
|
/*
|
|
* Recheck VMA as permissions can change since migration started
|
|
*/
|
|
entry = pte_to_swp_entry(*pvmw.pte);
|
|
if (is_write_migration_entry(entry))
|
|
pte = maybe_mkwrite(pte, vma);
|
|
|
|
if (unlikely(is_zone_device_page(new))) {
|
|
if (is_device_private_page(new)) {
|
|
entry = make_device_private_entry(new, pte_write(pte));
|
|
pte = swp_entry_to_pte(entry);
|
|
} else if (is_device_public_page(new)) {
|
|
pte = pte_mkdevmap(pte);
|
|
flush_dcache_page(new);
|
|
}
|
|
} else
|
|
flush_dcache_page(new);
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
if (PageHuge(new)) {
|
|
pte = pte_mkhuge(pte);
|
|
pte = arch_make_huge_pte(pte, vma, new, 0);
|
|
set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
|
|
if (PageAnon(new))
|
|
hugepage_add_anon_rmap(new, vma, pvmw.address);
|
|
else
|
|
page_dup_rmap(new, true);
|
|
} else
|
|
#endif
|
|
{
|
|
set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
|
|
|
|
if (PageAnon(new))
|
|
page_add_anon_rmap(new, vma, pvmw.address, false);
|
|
else
|
|
page_add_file_rmap(new, false);
|
|
}
|
|
if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
|
|
mlock_vma_page(new);
|
|
|
|
/* No need to invalidate - it was non-present before */
|
|
update_mmu_cache(vma, pvmw.address, pvmw.pte);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Get rid of all migration entries and replace them by
|
|
* references to the indicated page.
|
|
*/
|
|
void remove_migration_ptes(struct page *old, struct page *new, bool locked)
|
|
{
|
|
struct rmap_walk_control rwc = {
|
|
.rmap_one = remove_migration_pte,
|
|
.arg = old,
|
|
};
|
|
|
|
if (locked)
|
|
rmap_walk_locked(new, &rwc);
|
|
else
|
|
rmap_walk(new, &rwc);
|
|
}
|
|
|
|
/*
|
|
* Something used the pte of a page under migration. We need to
|
|
* get to the page and wait until migration is finished.
|
|
* When we return from this function the fault will be retried.
|
|
*/
|
|
void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
|
|
spinlock_t *ptl)
|
|
{
|
|
pte_t pte;
|
|
swp_entry_t entry;
|
|
struct page *page;
|
|
|
|
spin_lock(ptl);
|
|
pte = *ptep;
|
|
if (!is_swap_pte(pte))
|
|
goto out;
|
|
|
|
entry = pte_to_swp_entry(pte);
|
|
if (!is_migration_entry(entry))
|
|
goto out;
|
|
|
|
page = migration_entry_to_page(entry);
|
|
|
|
/*
|
|
* Once radix-tree replacement of page migration started, page_count
|
|
* *must* be zero. And, we don't want to call wait_on_page_locked()
|
|
* against a page without get_page().
|
|
* So, we use get_page_unless_zero(), here. Even failed, page fault
|
|
* will occur again.
|
|
*/
|
|
if (!get_page_unless_zero(page))
|
|
goto out;
|
|
pte_unmap_unlock(ptep, ptl);
|
|
wait_on_page_locked(page);
|
|
put_page(page);
|
|
return;
|
|
out:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
spinlock_t *ptl = pte_lockptr(mm, pmd);
|
|
pte_t *ptep = pte_offset_map(pmd, address);
|
|
__migration_entry_wait(mm, ptep, ptl);
|
|
}
|
|
|
|
void migration_entry_wait_huge(struct vm_area_struct *vma,
|
|
struct mm_struct *mm, pte_t *pte)
|
|
{
|
|
spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
|
|
__migration_entry_wait(mm, pte, ptl);
|
|
}
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (!is_pmd_migration_entry(*pmd))
|
|
goto unlock;
|
|
page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
|
|
if (!get_page_unless_zero(page))
|
|
goto unlock;
|
|
spin_unlock(ptl);
|
|
wait_on_page_locked(page);
|
|
put_page(page);
|
|
return;
|
|
unlock:
|
|
spin_unlock(ptl);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
/* Returns true if all buffers are successfully locked */
|
|
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
|
|
enum migrate_mode mode)
|
|
{
|
|
struct buffer_head *bh = head;
|
|
|
|
/* Simple case, sync compaction */
|
|
if (mode != MIGRATE_ASYNC) {
|
|
do {
|
|
get_bh(bh);
|
|
lock_buffer(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
return true;
|
|
}
|
|
|
|
/* async case, we cannot block on lock_buffer so use trylock_buffer */
|
|
do {
|
|
get_bh(bh);
|
|
if (!trylock_buffer(bh)) {
|
|
/*
|
|
* We failed to lock the buffer and cannot stall in
|
|
* async migration. Release the taken locks
|
|
*/
|
|
struct buffer_head *failed_bh = bh;
|
|
put_bh(failed_bh);
|
|
bh = head;
|
|
while (bh != failed_bh) {
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
bh = bh->b_this_page;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
return true;
|
|
}
|
|
#else
|
|
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
|
|
enum migrate_mode mode)
|
|
{
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_BLOCK */
|
|
|
|
/*
|
|
* Replace the page in the mapping.
|
|
*
|
|
* The number of remaining references must be:
|
|
* 1 for anonymous pages without a mapping
|
|
* 2 for pages with a mapping
|
|
* 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
|
|
*/
|
|
int migrate_page_move_mapping(struct address_space *mapping,
|
|
struct page *newpage, struct page *page,
|
|
struct buffer_head *head, enum migrate_mode mode,
|
|
int extra_count)
|
|
{
|
|
struct zone *oldzone, *newzone;
|
|
int dirty;
|
|
int expected_count = 1 + extra_count;
|
|
void **pslot;
|
|
|
|
/*
|
|
* Device public or private pages have an extra refcount as they are
|
|
* ZONE_DEVICE pages.
|
|
*/
|
|
expected_count += is_device_private_page(page);
|
|
expected_count += is_device_public_page(page);
|
|
|
|
if (!mapping) {
|
|
/* Anonymous page without mapping */
|
|
if (page_count(page) != expected_count)
|
|
return -EAGAIN;
|
|
|
|
/* No turning back from here */
|
|
newpage->index = page->index;
|
|
newpage->mapping = page->mapping;
|
|
if (PageSwapBacked(page))
|
|
__SetPageSwapBacked(newpage);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
|
|
oldzone = page_zone(page);
|
|
newzone = page_zone(newpage);
|
|
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
|
|
pslot = radix_tree_lookup_slot(&mapping->page_tree,
|
|
page_index(page));
|
|
|
|
expected_count += 1 + page_has_private(page);
|
|
if (page_count(page) != expected_count ||
|
|
radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!page_ref_freeze(page, expected_count)) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* In the async migration case of moving a page with buffers, lock the
|
|
* buffers using trylock before the mapping is moved. If the mapping
|
|
* was moved, we later failed to lock the buffers and could not move
|
|
* the mapping back due to an elevated page count, we would have to
|
|
* block waiting on other references to be dropped.
|
|
*/
|
|
if (mode == MIGRATE_ASYNC && head &&
|
|
!buffer_migrate_lock_buffers(head, mode)) {
|
|
page_ref_unfreeze(page, expected_count);
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Now we know that no one else is looking at the page:
|
|
* no turning back from here.
|
|
*/
|
|
newpage->index = page->index;
|
|
newpage->mapping = page->mapping;
|
|
get_page(newpage); /* add cache reference */
|
|
if (PageSwapBacked(page)) {
|
|
__SetPageSwapBacked(newpage);
|
|
if (PageSwapCache(page)) {
|
|
SetPageSwapCache(newpage);
|
|
set_page_private(newpage, page_private(page));
|
|
}
|
|
} else {
|
|
VM_BUG_ON_PAGE(PageSwapCache(page), page);
|
|
}
|
|
|
|
/* Move dirty while page refs frozen and newpage not yet exposed */
|
|
dirty = PageDirty(page);
|
|
if (dirty) {
|
|
ClearPageDirty(page);
|
|
SetPageDirty(newpage);
|
|
}
|
|
|
|
radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
|
|
|
|
/*
|
|
* Drop cache reference from old page by unfreezing
|
|
* to one less reference.
|
|
* We know this isn't the last reference.
|
|
*/
|
|
page_ref_unfreeze(page, expected_count - 1);
|
|
|
|
spin_unlock(&mapping->tree_lock);
|
|
/* Leave irq disabled to prevent preemption while updating stats */
|
|
|
|
/*
|
|
* If moved to a different zone then also account
|
|
* the page for that zone. Other VM counters will be
|
|
* taken care of when we establish references to the
|
|
* new page and drop references to the old page.
|
|
*
|
|
* Note that anonymous pages are accounted for
|
|
* via NR_FILE_PAGES and NR_ANON_MAPPED if they
|
|
* are mapped to swap space.
|
|
*/
|
|
if (newzone != oldzone) {
|
|
__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
|
|
__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
|
|
if (PageSwapBacked(page) && !PageSwapCache(page)) {
|
|
__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
|
|
__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
|
|
}
|
|
if (dirty && mapping_cap_account_dirty(mapping)) {
|
|
__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
|
|
__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
|
|
__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
|
|
__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
|
|
}
|
|
}
|
|
local_irq_enable();
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
EXPORT_SYMBOL(migrate_page_move_mapping);
|
|
|
|
/*
|
|
* The expected number of remaining references is the same as that
|
|
* of migrate_page_move_mapping().
|
|
*/
|
|
int migrate_huge_page_move_mapping(struct address_space *mapping,
|
|
struct page *newpage, struct page *page)
|
|
{
|
|
int expected_count;
|
|
void **pslot;
|
|
|
|
spin_lock_irq(&mapping->tree_lock);
|
|
|
|
pslot = radix_tree_lookup_slot(&mapping->page_tree,
|
|
page_index(page));
|
|
|
|
expected_count = 2 + page_has_private(page);
|
|
if (page_count(page) != expected_count ||
|
|
radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!page_ref_freeze(page, expected_count)) {
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
newpage->index = page->index;
|
|
newpage->mapping = page->mapping;
|
|
|
|
get_page(newpage);
|
|
|
|
radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
|
|
|
|
page_ref_unfreeze(page, expected_count - 1);
|
|
|
|
spin_unlock_irq(&mapping->tree_lock);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Gigantic pages are so large that we do not guarantee that page++ pointer
|
|
* arithmetic will work across the entire page. We need something more
|
|
* specialized.
|
|
*/
|
|
static void __copy_gigantic_page(struct page *dst, struct page *src,
|
|
int nr_pages)
|
|
{
|
|
int i;
|
|
struct page *dst_base = dst;
|
|
struct page *src_base = src;
|
|
|
|
for (i = 0; i < nr_pages; ) {
|
|
cond_resched();
|
|
copy_highpage(dst, src);
|
|
|
|
i++;
|
|
dst = mem_map_next(dst, dst_base, i);
|
|
src = mem_map_next(src, src_base, i);
|
|
}
|
|
}
|
|
|
|
static void copy_huge_page(struct page *dst, struct page *src)
|
|
{
|
|
int i;
|
|
int nr_pages;
|
|
|
|
if (PageHuge(src)) {
|
|
/* hugetlbfs page */
|
|
struct hstate *h = page_hstate(src);
|
|
nr_pages = pages_per_huge_page(h);
|
|
|
|
if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
|
|
__copy_gigantic_page(dst, src, nr_pages);
|
|
return;
|
|
}
|
|
} else {
|
|
/* thp page */
|
|
BUG_ON(!PageTransHuge(src));
|
|
nr_pages = hpage_nr_pages(src);
|
|
}
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
cond_resched();
|
|
copy_highpage(dst + i, src + i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy the page to its new location
|
|
*/
|
|
void migrate_page_states(struct page *newpage, struct page *page)
|
|
{
|
|
int cpupid;
|
|
|
|
if (PageError(page))
|
|
SetPageError(newpage);
|
|
if (PageReferenced(page))
|
|
SetPageReferenced(newpage);
|
|
if (PageUptodate(page))
|
|
SetPageUptodate(newpage);
|
|
if (TestClearPageActive(page)) {
|
|
VM_BUG_ON_PAGE(PageUnevictable(page), page);
|
|
SetPageActive(newpage);
|
|
} else if (TestClearPageUnevictable(page))
|
|
SetPageUnevictable(newpage);
|
|
if (PageChecked(page))
|
|
SetPageChecked(newpage);
|
|
if (PageMappedToDisk(page))
|
|
SetPageMappedToDisk(newpage);
|
|
|
|
/* Move dirty on pages not done by migrate_page_move_mapping() */
|
|
if (PageDirty(page))
|
|
SetPageDirty(newpage);
|
|
|
|
if (page_is_young(page))
|
|
set_page_young(newpage);
|
|
if (page_is_idle(page))
|
|
set_page_idle(newpage);
|
|
|
|
/*
|
|
* Copy NUMA information to the new page, to prevent over-eager
|
|
* future migrations of this same page.
|
|
*/
|
|
cpupid = page_cpupid_xchg_last(page, -1);
|
|
page_cpupid_xchg_last(newpage, cpupid);
|
|
|
|
ksm_migrate_page(newpage, page);
|
|
/*
|
|
* Please do not reorder this without considering how mm/ksm.c's
|
|
* get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
|
|
*/
|
|
if (PageSwapCache(page))
|
|
ClearPageSwapCache(page);
|
|
ClearPagePrivate(page);
|
|
set_page_private(page, 0);
|
|
|
|
/*
|
|
* If any waiters have accumulated on the new page then
|
|
* wake them up.
|
|
*/
|
|
if (PageWriteback(newpage))
|
|
end_page_writeback(newpage);
|
|
|
|
copy_page_owner(page, newpage);
|
|
|
|
mem_cgroup_migrate(page, newpage);
|
|
}
|
|
EXPORT_SYMBOL(migrate_page_states);
|
|
|
|
void migrate_page_copy(struct page *newpage, struct page *page)
|
|
{
|
|
if (PageHuge(page) || PageTransHuge(page))
|
|
copy_huge_page(newpage, page);
|
|
else
|
|
copy_highpage(newpage, page);
|
|
|
|
migrate_page_states(newpage, page);
|
|
}
|
|
EXPORT_SYMBOL(migrate_page_copy);
|
|
|
|
/************************************************************
|
|
* Migration functions
|
|
***********************************************************/
|
|
|
|
/*
|
|
* Common logic to directly migrate a single LRU page suitable for
|
|
* pages that do not use PagePrivate/PagePrivate2.
|
|
*
|
|
* Pages are locked upon entry and exit.
|
|
*/
|
|
int migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
int rc;
|
|
|
|
BUG_ON(PageWriteback(page)); /* Writeback must be complete */
|
|
|
|
rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
|
|
|
|
if (rc != MIGRATEPAGE_SUCCESS)
|
|
return rc;
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
migrate_page_copy(newpage, page);
|
|
else
|
|
migrate_page_states(newpage, page);
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
EXPORT_SYMBOL(migrate_page);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
/*
|
|
* Migration function for pages with buffers. This function can only be used
|
|
* if the underlying filesystem guarantees that no other references to "page"
|
|
* exist.
|
|
*/
|
|
int buffer_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page, enum migrate_mode mode)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
int rc;
|
|
|
|
if (!page_has_buffers(page))
|
|
return migrate_page(mapping, newpage, page, mode);
|
|
|
|
head = page_buffers(page);
|
|
|
|
rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
|
|
|
|
if (rc != MIGRATEPAGE_SUCCESS)
|
|
return rc;
|
|
|
|
/*
|
|
* In the async case, migrate_page_move_mapping locked the buffers
|
|
* with an IRQ-safe spinlock held. In the sync case, the buffers
|
|
* need to be locked now
|
|
*/
|
|
if (mode != MIGRATE_ASYNC)
|
|
BUG_ON(!buffer_migrate_lock_buffers(head, mode));
|
|
|
|
ClearPagePrivate(page);
|
|
set_page_private(newpage, page_private(page));
|
|
set_page_private(page, 0);
|
|
put_page(page);
|
|
get_page(newpage);
|
|
|
|
bh = head;
|
|
do {
|
|
set_bh_page(bh, newpage, bh_offset(bh));
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
SetPagePrivate(newpage);
|
|
|
|
if (mode != MIGRATE_SYNC_NO_COPY)
|
|
migrate_page_copy(newpage, page);
|
|
else
|
|
migrate_page_states(newpage, page);
|
|
|
|
bh = head;
|
|
do {
|
|
unlock_buffer(bh);
|
|
put_bh(bh);
|
|
bh = bh->b_this_page;
|
|
|
|
} while (bh != head);
|
|
|
|
return MIGRATEPAGE_SUCCESS;
|
|
}
|
|
EXPORT_SYMBOL(buffer_migrate_page);
|
|
#endif
|
|
|
|
/*
|
|
* Writeback a page to clean the dirty state
|
|
*/
|
|
static int writeout(struct address_space *mapping, struct page *page)
|
|
{
|
|
struct writeback_control wbc = {
|
|
.sync_mode = WB_SYNC_NONE,
|
|
.nr_to_write = 1,
|
|
.range_start = 0,
|
|
.range_end = LLONG_MAX,
|
|
.for_reclaim = 1
|
|
};
|
|
int rc;
|
|
|
|
if (!mapping->a_ops->writepage)
|
|
/* No write method for the address space */
|
|
return -EINVAL;
|
|
|
|
if (!clear_page_dirty_for_io(page))
|
|
/* Someone else already triggered a write */
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* A dirty page may imply that the underlying filesystem has
|
|
* the page on some queue. So the page must be clean for
|
|
* migration. Writeout may mean we loose the lock and the
|
|
* page state is no longer what we checked for earlier.
|
|
* At this point we know that the migration attempt cannot
|
|
* be successful.
|
|
*/
|
|
remove_migration_ptes(page, page, false);
|
|
|
|
rc = mapping->a_ops->writepage(page, &wbc);
|
|
|
|
if (rc != AOP_WRITEPAGE_ACTIVATE)
|
|
/* unlocked. Relock */
|
|
lock_page(page);
|
|
|
|
return (rc < 0) ? -EIO : -EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Default handling if a filesystem does not provide a migration function.
|
|
*/
|
|
static int fallback_migrate_page(struct address_space *mapping,
|
|
struct page *newpage, struct page *page, enum migrate_mode mode)
|
|
{
|
|
if (PageDirty(page)) {
|
|
/* Only writeback pages in full synchronous migration */
|
|
switch (mode) {
|
|
case MIGRATE_SYNC:
|
|
case MIGRATE_SYNC_NO_COPY:
|
|
break;
|
|
default:
|
|
return -EBUSY;
|
|
}
|
|
return writeout(mapping, page);
|
|
}
|
|
|
|
/*
|
|
* Buffers may be managed in a filesystem specific way.
|
|
* We must have no buffers or drop them.
|
|
*/
|
|
if (page_has_private(page) &&
|
|
!try_to_release_page(page, GFP_KERNEL))
|
|
return -EAGAIN;
|
|
|
|
return migrate_page(mapping, newpage, page, mode);
|
|
}
|
|
|
|
/*
|
|
* Move a page to a newly allocated page
|
|
* The page is locked and all ptes have been successfully removed.
|
|
*
|
|
* The new page will have replaced the old page if this function
|
|
* is successful.
|
|
*
|
|
* Return value:
|
|
* < 0 - error code
|
|
* MIGRATEPAGE_SUCCESS - success
|
|
*/
|
|
static int move_to_new_page(struct page *newpage, struct page *page,
|
|
enum migrate_mode mode)
|
|
{
|
|
struct address_space *mapping;
|
|
int rc = -EAGAIN;
|
|
bool is_lru = !__PageMovable(page);
|
|
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
|
|
|
|
mapping = page_mapping(page);
|
|
|
|
if (likely(is_lru)) {
|
|
if (!mapping)
|
|
rc = migrate_page(mapping, newpage, page, mode);
|
|
else if (mapping->a_ops->migratepage)
|
|
/*
|
|
* Most pages have a mapping and most filesystems
|
|
* provide a migratepage callback. Anonymous pages
|
|
* are part of swap space which also has its own
|
|
* migratepage callback. This is the most common path
|
|
* for page migration.
|
|
*/
|
|
rc = mapping->a_ops->migratepage(mapping, newpage,
|
|
page, mode);
|
|
else
|
|
rc = fallback_migrate_page(mapping, newpage,
|
|
page, mode);
|
|
} else {
|
|
/*
|
|
* In case of non-lru page, it could be released after
|
|
* isolation step. In that case, we shouldn't try migration.
|
|
*/
|
|
VM_BUG_ON_PAGE(!PageIsolated(page), page);
|
|
if (!PageMovable(page)) {
|
|
rc = MIGRATEPAGE_SUCCESS;
|
|
__ClearPageIsolated(page);
|
|
goto out;
|
|
}
|
|
|
|
rc = mapping->a_ops->migratepage(mapping, newpage,
|
|
page, mode);
|
|
WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
|
|
!PageIsolated(page));
|
|
}
|
|
|
|
/*
|
|
* When successful, old pagecache page->mapping must be cleared before
|
|
* page is freed; but stats require that PageAnon be left as PageAnon.
|
|
*/
|
|
if (rc == MIGRATEPAGE_SUCCESS) {
|
|
if (__PageMovable(page)) {
|
|
VM_BUG_ON_PAGE(!PageIsolated(page), page);
|
|
|
|
/*
|
|
* We clear PG_movable under page_lock so any compactor
|
|
* cannot try to migrate this page.
|
|
*/
|
|
__ClearPageIsolated(page);
|
|
}
|
|
|
|
/*
|
|
* Anonymous and movable page->mapping will be cleard by
|
|
* free_pages_prepare so don't reset it here for keeping
|
|
* the type to work PageAnon, for example.
|
|
*/
|
|
if (!PageMappingFlags(page))
|
|
page->mapping = NULL;
|
|
}
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
static int __unmap_and_move(struct page *page, struct page *newpage,
|
|
int force, enum migrate_mode mode)
|
|
{
|
|
int rc = -EAGAIN;
|
|
int page_was_mapped = 0;
|
|
struct anon_vma *anon_vma = NULL;
|
|
bool is_lru = !__PageMovable(page);
|
|
|
|
if (!trylock_page(page)) {
|
|
if (!force || mode == MIGRATE_ASYNC)
|
|
goto out;
|
|
|
|
/*
|
|
* It's not safe for direct compaction to call lock_page.
|
|
* For example, during page readahead pages are added locked
|
|
* to the LRU. Later, when the IO completes the pages are
|
|
* marked uptodate and unlocked. However, the queueing
|
|
* could be merging multiple pages for one bio (e.g.
|
|
* mpage_readpages). If an allocation happens for the
|
|
* second or third page, the process can end up locking
|
|
* the same page twice and deadlocking. Rather than
|
|
* trying to be clever about what pages can be locked,
|
|
* avoid the use of lock_page for direct compaction
|
|
* altogether.
|
|
*/
|
|
if (current->flags & PF_MEMALLOC)
|
|
goto out;
|
|
|
|
lock_page(page);
|
|
}
|
|
|
|
if (PageWriteback(page)) {
|
|
/*
|
|
* Only in the case of a full synchronous migration is it
|
|
* necessary to wait for PageWriteback. In the async case,
|
|
* the retry loop is too short and in the sync-light case,
|
|
* the overhead of stalling is too much
|
|
*/
|
|
switch (mode) {
|
|
case MIGRATE_SYNC:
|
|
case MIGRATE_SYNC_NO_COPY:
|
|
break;
|
|
default:
|
|
rc = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
if (!force)
|
|
goto out_unlock;
|
|
wait_on_page_writeback(page);
|
|
}
|
|
|
|
/*
|
|
* By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
|
|
* we cannot notice that anon_vma is freed while we migrates a page.
|
|
* This get_anon_vma() delays freeing anon_vma pointer until the end
|
|
* of migration. File cache pages are no problem because of page_lock()
|
|
* File Caches may use write_page() or lock_page() in migration, then,
|
|
* just care Anon page here.
|
|
*
|
|
* Only page_get_anon_vma() understands the subtleties of
|
|
* getting a hold on an anon_vma from outside one of its mms.
|
|
* But if we cannot get anon_vma, then we won't need it anyway,
|
|
* because that implies that the anon page is no longer mapped
|
|
* (and cannot be remapped so long as we hold the page lock).
|
|
*/
|
|
if (PageAnon(page) && !PageKsm(page))
|
|
anon_vma = page_get_anon_vma(page);
|
|
|
|
/*
|
|
* Block others from accessing the new page when we get around to
|
|
* establishing additional references. We are usually the only one
|
|
* holding a reference to newpage at this point. We used to have a BUG
|
|
* here if trylock_page(newpage) fails, but would like to allow for
|
|
* cases where there might be a race with the previous use of newpage.
|
|
* This is much like races on refcount of oldpage: just don't BUG().
|
|
*/
|
|
if (unlikely(!trylock_page(newpage)))
|
|
goto out_unlock;
|
|
|
|
if (unlikely(!is_lru)) {
|
|
rc = move_to_new_page(newpage, page, mode);
|
|
goto out_unlock_both;
|
|
}
|
|
|
|
/*
|
|
* Corner case handling:
|
|
* 1. When a new swap-cache page is read into, it is added to the LRU
|
|
* and treated as swapcache but it has no rmap yet.
|
|
* Calling try_to_unmap() against a page->mapping==NULL page will
|
|
* trigger a BUG. So handle it here.
|
|
* 2. An orphaned page (see truncate_complete_page) might have
|
|
* fs-private metadata. The page can be picked up due to memory
|
|
* offlining. Everywhere else except page reclaim, the page is
|
|
* invisible to the vm, so the page can not be migrated. So try to
|
|
* free the metadata, so the page can be freed.
|
|
*/
|
|
if (!page->mapping) {
|
|
VM_BUG_ON_PAGE(PageAnon(page), page);
|
|
if (page_has_private(page)) {
|
|
try_to_free_buffers(page);
|
|
goto out_unlock_both;
|
|
}
|
|
} else if (page_mapped(page)) {
|
|
/* Establish migration ptes */
|
|
VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
|
|
page);
|
|
try_to_unmap(page,
|
|
TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
|
|
page_was_mapped = 1;
|
|
}
|
|
|
|
if (!page_mapped(page))
|
|
rc = move_to_new_page(newpage, page, mode);
|
|
|
|
if (page_was_mapped)
|
|
remove_migration_ptes(page,
|
|
rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
|
|
|
|
out_unlock_both:
|
|
unlock_page(newpage);
|
|
out_unlock:
|
|
/* Drop an anon_vma reference if we took one */
|
|
if (anon_vma)
|
|
put_anon_vma(anon_vma);
|
|
unlock_page(page);
|
|
out:
|
|
/*
|
|
* If migration is successful, decrease refcount of the newpage
|
|
* which will not free the page because new page owner increased
|
|
* refcounter. As well, if it is LRU page, add the page to LRU
|
|
* list in here.
|
|
*/
|
|
if (rc == MIGRATEPAGE_SUCCESS) {
|
|
if (unlikely(__PageMovable(newpage)))
|
|
put_page(newpage);
|
|
else
|
|
putback_lru_page(newpage);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
|
|
* around it.
|
|
*/
|
|
#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
|
|
#define ICE_noinline noinline
|
|
#else
|
|
#define ICE_noinline
|
|
#endif
|
|
|
|
/*
|
|
* Obtain the lock on page, remove all ptes and migrate the page
|
|
* to the newly allocated page in newpage.
|
|
*/
|
|
static ICE_noinline int unmap_and_move(new_page_t get_new_page,
|
|
free_page_t put_new_page,
|
|
unsigned long private, struct page *page,
|
|
int force, enum migrate_mode mode,
|
|
enum migrate_reason reason)
|
|
{
|
|
int rc = MIGRATEPAGE_SUCCESS;
|
|
int *result = NULL;
|
|
struct page *newpage;
|
|
|
|
newpage = get_new_page(page, private, &result);
|
|
if (!newpage)
|
|
return -ENOMEM;
|
|
|
|
if (page_count(page) == 1) {
|
|
/* page was freed from under us. So we are done. */
|
|
ClearPageActive(page);
|
|
ClearPageUnevictable(page);
|
|
if (unlikely(__PageMovable(page))) {
|
|
lock_page(page);
|
|
if (!PageMovable(page))
|
|
__ClearPageIsolated(page);
|
|
unlock_page(page);
|
|
}
|
|
if (put_new_page)
|
|
put_new_page(newpage, private);
|
|
else
|
|
put_page(newpage);
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
|
|
lock_page(page);
|
|
rc = split_huge_page(page);
|
|
unlock_page(page);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
rc = __unmap_and_move(page, newpage, force, mode);
|
|
if (rc == MIGRATEPAGE_SUCCESS)
|
|
set_page_owner_migrate_reason(newpage, reason);
|
|
|
|
out:
|
|
if (rc != -EAGAIN) {
|
|
/*
|
|
* A page that has been migrated has all references
|
|
* removed and will be freed. A page that has not been
|
|
* migrated will have kepts its references and be
|
|
* restored.
|
|
*/
|
|
list_del(&page->lru);
|
|
|
|
/*
|
|
* Compaction can migrate also non-LRU pages which are
|
|
* not accounted to NR_ISOLATED_*. They can be recognized
|
|
* as __PageMovable
|
|
*/
|
|
if (likely(!__PageMovable(page)))
|
|
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
|
|
page_is_file_cache(page), -hpage_nr_pages(page));
|
|
}
|
|
|
|
/*
|
|
* If migration is successful, releases reference grabbed during
|
|
* isolation. Otherwise, restore the page to right list unless
|
|
* we want to retry.
|
|
*/
|
|
if (rc == MIGRATEPAGE_SUCCESS) {
|
|
put_page(page);
|
|
if (reason == MR_MEMORY_FAILURE) {
|
|
/*
|
|
* Set PG_HWPoison on just freed page
|
|
* intentionally. Although it's rather weird,
|
|
* it's how HWPoison flag works at the moment.
|
|
*/
|
|
if (!test_set_page_hwpoison(page))
|
|
num_poisoned_pages_inc();
|
|
}
|
|
} else {
|
|
if (rc != -EAGAIN) {
|
|
if (likely(!__PageMovable(page))) {
|
|
putback_lru_page(page);
|
|
goto put_new;
|
|
}
|
|
|
|
lock_page(page);
|
|
if (PageMovable(page))
|
|
putback_movable_page(page);
|
|
else
|
|
__ClearPageIsolated(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
}
|
|
put_new:
|
|
if (put_new_page)
|
|
put_new_page(newpage, private);
|
|
else
|
|
put_page(newpage);
|
|
}
|
|
|
|
if (result) {
|
|
if (rc)
|
|
*result = rc;
|
|
else
|
|
*result = page_to_nid(newpage);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Counterpart of unmap_and_move_page() for hugepage migration.
|
|
*
|
|
* This function doesn't wait the completion of hugepage I/O
|
|
* because there is no race between I/O and migration for hugepage.
|
|
* Note that currently hugepage I/O occurs only in direct I/O
|
|
* where no lock is held and PG_writeback is irrelevant,
|
|
* and writeback status of all subpages are counted in the reference
|
|
* count of the head page (i.e. if all subpages of a 2MB hugepage are
|
|
* under direct I/O, the reference of the head page is 512 and a bit more.)
|
|
* This means that when we try to migrate hugepage whose subpages are
|
|
* doing direct I/O, some references remain after try_to_unmap() and
|
|
* hugepage migration fails without data corruption.
|
|
*
|
|
* There is also no race when direct I/O is issued on the page under migration,
|
|
* because then pte is replaced with migration swap entry and direct I/O code
|
|
* will wait in the page fault for migration to complete.
|
|
*/
|
|
static int unmap_and_move_huge_page(new_page_t get_new_page,
|
|
free_page_t put_new_page, unsigned long private,
|
|
struct page *hpage, int force,
|
|
enum migrate_mode mode, int reason)
|
|
{
|
|
int rc = -EAGAIN;
|
|
int *result = NULL;
|
|
int page_was_mapped = 0;
|
|
struct page *new_hpage;
|
|
struct anon_vma *anon_vma = NULL;
|
|
|
|
/*
|
|
* Movability of hugepages depends on architectures and hugepage size.
|
|
* This check is necessary because some callers of hugepage migration
|
|
* like soft offline and memory hotremove don't walk through page
|
|
* tables or check whether the hugepage is pmd-based or not before
|
|
* kicking migration.
|
|
*/
|
|
if (!hugepage_migration_supported(page_hstate(hpage))) {
|
|
putback_active_hugepage(hpage);
|
|
return -ENOSYS;
|
|
}
|
|
|
|
new_hpage = get_new_page(hpage, private, &result);
|
|
if (!new_hpage)
|
|
return -ENOMEM;
|
|
|
|
if (!trylock_page(hpage)) {
|
|
if (!force)
|
|
goto out;
|
|
switch (mode) {
|
|
case MIGRATE_SYNC:
|
|
case MIGRATE_SYNC_NO_COPY:
|
|
break;
|
|
default:
|
|
goto out;
|
|
}
|
|
lock_page(hpage);
|
|
}
|
|
|
|
if (PageAnon(hpage))
|
|
anon_vma = page_get_anon_vma(hpage);
|
|
|
|
if (unlikely(!trylock_page(new_hpage)))
|
|
goto put_anon;
|
|
|
|
if (page_mapped(hpage)) {
|
|
try_to_unmap(hpage,
|
|
TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
|
|
page_was_mapped = 1;
|
|
}
|
|
|
|
if (!page_mapped(hpage))
|
|
rc = move_to_new_page(new_hpage, hpage, mode);
|
|
|
|
if (page_was_mapped)
|
|
remove_migration_ptes(hpage,
|
|
rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
|
|
|
|
unlock_page(new_hpage);
|
|
|
|
put_anon:
|
|
if (anon_vma)
|
|
put_anon_vma(anon_vma);
|
|
|
|
if (rc == MIGRATEPAGE_SUCCESS) {
|
|
move_hugetlb_state(hpage, new_hpage, reason);
|
|
put_new_page = NULL;
|
|
}
|
|
|
|
unlock_page(hpage);
|
|
out:
|
|
if (rc != -EAGAIN)
|
|
putback_active_hugepage(hpage);
|
|
if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
|
|
num_poisoned_pages_inc();
|
|
|
|
/*
|
|
* If migration was not successful and there's a freeing callback, use
|
|
* it. Otherwise, put_page() will drop the reference grabbed during
|
|
* isolation.
|
|
*/
|
|
if (put_new_page)
|
|
put_new_page(new_hpage, private);
|
|
else
|
|
putback_active_hugepage(new_hpage);
|
|
|
|
if (result) {
|
|
if (rc)
|
|
*result = rc;
|
|
else
|
|
*result = page_to_nid(new_hpage);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* migrate_pages - migrate the pages specified in a list, to the free pages
|
|
* supplied as the target for the page migration
|
|
*
|
|
* @from: The list of pages to be migrated.
|
|
* @get_new_page: The function used to allocate free pages to be used
|
|
* as the target of the page migration.
|
|
* @put_new_page: The function used to free target pages if migration
|
|
* fails, or NULL if no special handling is necessary.
|
|
* @private: Private data to be passed on to get_new_page()
|
|
* @mode: The migration mode that specifies the constraints for
|
|
* page migration, if any.
|
|
* @reason: The reason for page migration.
|
|
*
|
|
* The function returns after 10 attempts or if no pages are movable any more
|
|
* because the list has become empty or no retryable pages exist any more.
|
|
* The caller should call putback_movable_pages() to return pages to the LRU
|
|
* or free list only if ret != 0.
|
|
*
|
|
* Returns the number of pages that were not migrated, or an error code.
|
|
*/
|
|
int migrate_pages(struct list_head *from, new_page_t get_new_page,
|
|
free_page_t put_new_page, unsigned long private,
|
|
enum migrate_mode mode, int reason)
|
|
{
|
|
int retry = 1;
|
|
int nr_failed = 0;
|
|
int nr_succeeded = 0;
|
|
int pass = 0;
|
|
struct page *page;
|
|
struct page *page2;
|
|
int swapwrite = current->flags & PF_SWAPWRITE;
|
|
int rc;
|
|
|
|
if (!swapwrite)
|
|
current->flags |= PF_SWAPWRITE;
|
|
|
|
for(pass = 0; pass < 10 && retry; pass++) {
|
|
retry = 0;
|
|
|
|
list_for_each_entry_safe(page, page2, from, lru) {
|
|
cond_resched();
|
|
|
|
if (PageHuge(page))
|
|
rc = unmap_and_move_huge_page(get_new_page,
|
|
put_new_page, private, page,
|
|
pass > 2, mode, reason);
|
|
else
|
|
rc = unmap_and_move(get_new_page, put_new_page,
|
|
private, page, pass > 2, mode,
|
|
reason);
|
|
|
|
switch(rc) {
|
|
case -ENOMEM:
|
|
nr_failed++;
|
|
goto out;
|
|
case -EAGAIN:
|
|
retry++;
|
|
break;
|
|
case MIGRATEPAGE_SUCCESS:
|
|
nr_succeeded++;
|
|
break;
|
|
default:
|
|
/*
|
|
* Permanent failure (-EBUSY, -ENOSYS, etc.):
|
|
* unlike -EAGAIN case, the failed page is
|
|
* removed from migration page list and not
|
|
* retried in the next outer loop.
|
|
*/
|
|
nr_failed++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
nr_failed += retry;
|
|
rc = nr_failed;
|
|
out:
|
|
if (nr_succeeded)
|
|
count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
|
|
if (nr_failed)
|
|
count_vm_events(PGMIGRATE_FAIL, nr_failed);
|
|
trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
|
|
|
|
if (!swapwrite)
|
|
current->flags &= ~PF_SWAPWRITE;
|
|
|
|
return rc;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Move a list of individual pages
|
|
*/
|
|
struct page_to_node {
|
|
unsigned long addr;
|
|
struct page *page;
|
|
int node;
|
|
int status;
|
|
};
|
|
|
|
static struct page *new_page_node(struct page *p, unsigned long private,
|
|
int **result)
|
|
{
|
|
struct page_to_node *pm = (struct page_to_node *)private;
|
|
|
|
while (pm->node != MAX_NUMNODES && pm->page != p)
|
|
pm++;
|
|
|
|
if (pm->node == MAX_NUMNODES)
|
|
return NULL;
|
|
|
|
*result = &pm->status;
|
|
|
|
if (PageHuge(p))
|
|
return alloc_huge_page_node(page_hstate(compound_head(p)),
|
|
pm->node);
|
|
else if (thp_migration_supported() && PageTransHuge(p)) {
|
|
struct page *thp;
|
|
|
|
thp = alloc_pages_node(pm->node,
|
|
(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
|
|
HPAGE_PMD_ORDER);
|
|
if (!thp)
|
|
return NULL;
|
|
prep_transhuge_page(thp);
|
|
return thp;
|
|
} else
|
|
return __alloc_pages_node(pm->node,
|
|
GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
|
|
}
|
|
|
|
/*
|
|
* Move a set of pages as indicated in the pm array. The addr
|
|
* field must be set to the virtual address of the page to be moved
|
|
* and the node number must contain a valid target node.
|
|
* The pm array ends with node = MAX_NUMNODES.
|
|
*/
|
|
static int do_move_page_to_node_array(struct mm_struct *mm,
|
|
struct page_to_node *pm,
|
|
int migrate_all)
|
|
{
|
|
int err;
|
|
struct page_to_node *pp;
|
|
LIST_HEAD(pagelist);
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
/*
|
|
* Build a list of pages to migrate
|
|
*/
|
|
for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
struct page *head;
|
|
unsigned int follflags;
|
|
|
|
err = -EFAULT;
|
|
vma = find_vma(mm, pp->addr);
|
|
if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
|
|
goto set_status;
|
|
|
|
/* FOLL_DUMP to ignore special (like zero) pages */
|
|
follflags = FOLL_GET | FOLL_DUMP;
|
|
if (!thp_migration_supported())
|
|
follflags |= FOLL_SPLIT;
|
|
page = follow_page(vma, pp->addr, follflags);
|
|
|
|
err = PTR_ERR(page);
|
|
if (IS_ERR(page))
|
|
goto set_status;
|
|
|
|
err = -ENOENT;
|
|
if (!page)
|
|
goto set_status;
|
|
|
|
err = page_to_nid(page);
|
|
|
|
if (err == pp->node)
|
|
/*
|
|
* Node already in the right place
|
|
*/
|
|
goto put_and_set;
|
|
|
|
err = -EACCES;
|
|
if (page_mapcount(page) > 1 &&
|
|
!migrate_all)
|
|
goto put_and_set;
|
|
|
|
if (PageHuge(page)) {
|
|
if (PageHead(page)) {
|
|
isolate_huge_page(page, &pagelist);
|
|
err = 0;
|
|
pp->page = page;
|
|
}
|
|
goto put_and_set;
|
|
}
|
|
|
|
pp->page = compound_head(page);
|
|
head = compound_head(page);
|
|
err = isolate_lru_page(head);
|
|
if (!err) {
|
|
list_add_tail(&head->lru, &pagelist);
|
|
mod_node_page_state(page_pgdat(head),
|
|
NR_ISOLATED_ANON + page_is_file_cache(head),
|
|
hpage_nr_pages(head));
|
|
}
|
|
put_and_set:
|
|
/*
|
|
* Either remove the duplicate refcount from
|
|
* isolate_lru_page() or drop the page ref if it was
|
|
* not isolated.
|
|
*/
|
|
put_page(page);
|
|
set_status:
|
|
pp->status = err;
|
|
}
|
|
|
|
err = 0;
|
|
if (!list_empty(&pagelist)) {
|
|
err = migrate_pages(&pagelist, new_page_node, NULL,
|
|
(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
|
|
if (err)
|
|
putback_movable_pages(&pagelist);
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Migrate an array of page address onto an array of nodes and fill
|
|
* the corresponding array of status.
|
|
*/
|
|
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
|
|
unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
const int __user *nodes,
|
|
int __user *status, int flags)
|
|
{
|
|
struct page_to_node *pm;
|
|
unsigned long chunk_nr_pages;
|
|
unsigned long chunk_start;
|
|
int err;
|
|
|
|
err = -ENOMEM;
|
|
pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
|
|
if (!pm)
|
|
goto out;
|
|
|
|
migrate_prep();
|
|
|
|
/*
|
|
* Store a chunk of page_to_node array in a page,
|
|
* but keep the last one as a marker
|
|
*/
|
|
chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
|
|
|
|
for (chunk_start = 0;
|
|
chunk_start < nr_pages;
|
|
chunk_start += chunk_nr_pages) {
|
|
int j;
|
|
|
|
if (chunk_start + chunk_nr_pages > nr_pages)
|
|
chunk_nr_pages = nr_pages - chunk_start;
|
|
|
|
/* fill the chunk pm with addrs and nodes from user-space */
|
|
for (j = 0; j < chunk_nr_pages; j++) {
|
|
const void __user *p;
|
|
int node;
|
|
|
|
err = -EFAULT;
|
|
if (get_user(p, pages + j + chunk_start))
|
|
goto out_pm;
|
|
pm[j].addr = (unsigned long) p;
|
|
|
|
if (get_user(node, nodes + j + chunk_start))
|
|
goto out_pm;
|
|
|
|
err = -ENODEV;
|
|
if (node < 0 || node >= MAX_NUMNODES)
|
|
goto out_pm;
|
|
|
|
if (!node_state(node, N_MEMORY))
|
|
goto out_pm;
|
|
|
|
err = -EACCES;
|
|
if (!node_isset(node, task_nodes))
|
|
goto out_pm;
|
|
|
|
pm[j].node = node;
|
|
}
|
|
|
|
/* End marker for this chunk */
|
|
pm[chunk_nr_pages].node = MAX_NUMNODES;
|
|
|
|
/* Migrate this chunk */
|
|
err = do_move_page_to_node_array(mm, pm,
|
|
flags & MPOL_MF_MOVE_ALL);
|
|
if (err < 0)
|
|
goto out_pm;
|
|
|
|
/* Return status information */
|
|
for (j = 0; j < chunk_nr_pages; j++)
|
|
if (put_user(pm[j].status, status + j + chunk_start)) {
|
|
err = -EFAULT;
|
|
goto out_pm;
|
|
}
|
|
}
|
|
err = 0;
|
|
|
|
out_pm:
|
|
free_page((unsigned long)pm);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Determine the nodes of an array of pages and store it in an array of status.
|
|
*/
|
|
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
|
|
const void __user **pages, int *status)
|
|
{
|
|
unsigned long i;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
unsigned long addr = (unsigned long)(*pages);
|
|
struct vm_area_struct *vma;
|
|
struct page *page;
|
|
int err = -EFAULT;
|
|
|
|
vma = find_vma(mm, addr);
|
|
if (!vma || addr < vma->vm_start)
|
|
goto set_status;
|
|
|
|
/* FOLL_DUMP to ignore special (like zero) pages */
|
|
page = follow_page(vma, addr, FOLL_DUMP);
|
|
|
|
err = PTR_ERR(page);
|
|
if (IS_ERR(page))
|
|
goto set_status;
|
|
|
|
err = page ? page_to_nid(page) : -ENOENT;
|
|
set_status:
|
|
*status = err;
|
|
|
|
pages++;
|
|
status++;
|
|
}
|
|
|
|
up_read(&mm->mmap_sem);
|
|
}
|
|
|
|
/*
|
|
* Determine the nodes of a user array of pages and store it in
|
|
* a user array of status.
|
|
*/
|
|
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
|
|
const void __user * __user *pages,
|
|
int __user *status)
|
|
{
|
|
#define DO_PAGES_STAT_CHUNK_NR 16
|
|
const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
|
|
int chunk_status[DO_PAGES_STAT_CHUNK_NR];
|
|
|
|
while (nr_pages) {
|
|
unsigned long chunk_nr;
|
|
|
|
chunk_nr = nr_pages;
|
|
if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
|
|
chunk_nr = DO_PAGES_STAT_CHUNK_NR;
|
|
|
|
if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
|
|
break;
|
|
|
|
do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
|
|
|
|
if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
|
|
break;
|
|
|
|
pages += chunk_nr;
|
|
status += chunk_nr;
|
|
nr_pages -= chunk_nr;
|
|
}
|
|
return nr_pages ? -EFAULT : 0;
|
|
}
|
|
|
|
/*
|
|
* Move a list of pages in the address space of the currently executing
|
|
* process.
|
|
*/
|
|
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
|
|
const void __user * __user *, pages,
|
|
const int __user *, nodes,
|
|
int __user *, status, int, flags)
|
|
{
|
|
struct task_struct *task;
|
|
struct mm_struct *mm;
|
|
int err;
|
|
nodemask_t task_nodes;
|
|
|
|
/* Check flags */
|
|
if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
|
|
return -EINVAL;
|
|
|
|
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
|
|
return -EPERM;
|
|
|
|
/* Find the mm_struct */
|
|
rcu_read_lock();
|
|
task = pid ? find_task_by_vpid(pid) : current;
|
|
if (!task) {
|
|
rcu_read_unlock();
|
|
return -ESRCH;
|
|
}
|
|
get_task_struct(task);
|
|
|
|
/*
|
|
* Check if this process has the right to modify the specified
|
|
* process. Use the regular "ptrace_may_access()" checks.
|
|
*/
|
|
if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
|
|
rcu_read_unlock();
|
|
err = -EPERM;
|
|
goto out;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
err = security_task_movememory(task);
|
|
if (err)
|
|
goto out;
|
|
|
|
task_nodes = cpuset_mems_allowed(task);
|
|
mm = get_task_mm(task);
|
|
put_task_struct(task);
|
|
|
|
if (!mm)
|
|
return -EINVAL;
|
|
|
|
if (nodes)
|
|
err = do_pages_move(mm, task_nodes, nr_pages, pages,
|
|
nodes, status, flags);
|
|
else
|
|
err = do_pages_stat(mm, nr_pages, pages, status);
|
|
|
|
mmput(mm);
|
|
return err;
|
|
|
|
out:
|
|
put_task_struct(task);
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/*
|
|
* Returns true if this is a safe migration target node for misplaced NUMA
|
|
* pages. Currently it only checks the watermarks which crude
|
|
*/
|
|
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
|
|
unsigned long nr_migrate_pages)
|
|
{
|
|
int z;
|
|
|
|
for (z = pgdat->nr_zones - 1; z >= 0; z--) {
|
|
struct zone *zone = pgdat->node_zones + z;
|
|
|
|
if (!populated_zone(zone))
|
|
continue;
|
|
|
|
/* Avoid waking kswapd by allocating pages_to_migrate pages. */
|
|
if (!zone_watermark_ok(zone, 0,
|
|
high_wmark_pages(zone) +
|
|
nr_migrate_pages,
|
|
0, 0))
|
|
continue;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static struct page *alloc_misplaced_dst_page(struct page *page,
|
|
unsigned long data,
|
|
int **result)
|
|
{
|
|
int nid = (int) data;
|
|
struct page *newpage;
|
|
|
|
newpage = __alloc_pages_node(nid,
|
|
(GFP_HIGHUSER_MOVABLE |
|
|
__GFP_THISNODE | __GFP_NOMEMALLOC |
|
|
__GFP_NORETRY | __GFP_NOWARN) &
|
|
~__GFP_RECLAIM, 0);
|
|
|
|
return newpage;
|
|
}
|
|
|
|
/*
|
|
* page migration rate limiting control.
|
|
* Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
|
|
* window of time. Default here says do not migrate more than 1280M per second.
|
|
*/
|
|
static unsigned int migrate_interval_millisecs __read_mostly = 100;
|
|
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
|
|
|
|
/* Returns true if the node is migrate rate-limited after the update */
|
|
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
|
|
unsigned long nr_pages)
|
|
{
|
|
/*
|
|
* Rate-limit the amount of data that is being migrated to a node.
|
|
* Optimal placement is no good if the memory bus is saturated and
|
|
* all the time is being spent migrating!
|
|
*/
|
|
if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
|
|
spin_lock(&pgdat->numabalancing_migrate_lock);
|
|
pgdat->numabalancing_migrate_nr_pages = 0;
|
|
pgdat->numabalancing_migrate_next_window = jiffies +
|
|
msecs_to_jiffies(migrate_interval_millisecs);
|
|
spin_unlock(&pgdat->numabalancing_migrate_lock);
|
|
}
|
|
if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
|
|
trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
|
|
nr_pages);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This is an unlocked non-atomic update so errors are possible.
|
|
* The consequences are failing to migrate when we potentiall should
|
|
* have which is not severe enough to warrant locking. If it is ever
|
|
* a problem, it can be converted to a per-cpu counter.
|
|
*/
|
|
pgdat->numabalancing_migrate_nr_pages += nr_pages;
|
|
return false;
|
|
}
|
|
|
|
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
|
|
{
|
|
int page_lru;
|
|
|
|
VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
|
|
|
|
/* Avoid migrating to a node that is nearly full */
|
|
if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
|
|
return 0;
|
|
|
|
if (isolate_lru_page(page))
|
|
return 0;
|
|
|
|
/*
|
|
* migrate_misplaced_transhuge_page() skips page migration's usual
|
|
* check on page_count(), so we must do it here, now that the page
|
|
* has been isolated: a GUP pin, or any other pin, prevents migration.
|
|
* The expected page count is 3: 1 for page's mapcount and 1 for the
|
|
* caller's pin and 1 for the reference taken by isolate_lru_page().
|
|
*/
|
|
if (PageTransHuge(page) && page_count(page) != 3) {
|
|
putback_lru_page(page);
|
|
return 0;
|
|
}
|
|
|
|
page_lru = page_is_file_cache(page);
|
|
mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
|
|
hpage_nr_pages(page));
|
|
|
|
/*
|
|
* Isolating the page has taken another reference, so the
|
|
* caller's reference can be safely dropped without the page
|
|
* disappearing underneath us during migration.
|
|
*/
|
|
put_page(page);
|
|
return 1;
|
|
}
|
|
|
|
bool pmd_trans_migrating(pmd_t pmd)
|
|
{
|
|
struct page *page = pmd_page(pmd);
|
|
return PageLocked(page);
|
|
}
|
|
|
|
/*
|
|
* Attempt to migrate a misplaced page to the specified destination
|
|
* node. Caller is expected to have an elevated reference count on
|
|
* the page that will be dropped by this function before returning.
|
|
*/
|
|
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
|
|
int node)
|
|
{
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
int isolated;
|
|
int nr_remaining;
|
|
LIST_HEAD(migratepages);
|
|
|
|
/*
|
|
* Don't migrate file pages that are mapped in multiple processes
|
|
* with execute permissions as they are probably shared libraries.
|
|
*/
|
|
if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
|
|
(vma->vm_flags & VM_EXEC))
|
|
goto out;
|
|
|
|
/*
|
|
* Rate-limit the amount of data that is being migrated to a node.
|
|
* Optimal placement is no good if the memory bus is saturated and
|
|
* all the time is being spent migrating!
|
|
*/
|
|
if (numamigrate_update_ratelimit(pgdat, 1))
|
|
goto out;
|
|
|
|
isolated = numamigrate_isolate_page(pgdat, page);
|
|
if (!isolated)
|
|
goto out;
|
|
|
|
list_add(&page->lru, &migratepages);
|
|
nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
|
|
NULL, node, MIGRATE_ASYNC,
|
|
MR_NUMA_MISPLACED);
|
|
if (nr_remaining) {
|
|
if (!list_empty(&migratepages)) {
|
|
list_del(&page->lru);
|
|
dec_node_page_state(page, NR_ISOLATED_ANON +
|
|
page_is_file_cache(page));
|
|
putback_lru_page(page);
|
|
}
|
|
isolated = 0;
|
|
} else
|
|
count_vm_numa_event(NUMA_PAGE_MIGRATE);
|
|
BUG_ON(!list_empty(&migratepages));
|
|
return isolated;
|
|
|
|
out:
|
|
put_page(page);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
/*
|
|
* Migrates a THP to a given target node. page must be locked and is unlocked
|
|
* before returning.
|
|
*/
|
|
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
|
|
struct vm_area_struct *vma,
|
|
pmd_t *pmd, pmd_t entry,
|
|
unsigned long address,
|
|
struct page *page, int node)
|
|
{
|
|
spinlock_t *ptl;
|
|
pg_data_t *pgdat = NODE_DATA(node);
|
|
int isolated = 0;
|
|
struct page *new_page = NULL;
|
|
int page_lru = page_is_file_cache(page);
|
|
unsigned long mmun_start = address & HPAGE_PMD_MASK;
|
|
unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
|
|
|
|
/*
|
|
* Rate-limit the amount of data that is being migrated to a node.
|
|
* Optimal placement is no good if the memory bus is saturated and
|
|
* all the time is being spent migrating!
|
|
*/
|
|
if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
|
|
goto out_dropref;
|
|
|
|
new_page = alloc_pages_node(node,
|
|
(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
|
|
HPAGE_PMD_ORDER);
|
|
if (!new_page)
|
|
goto out_fail;
|
|
prep_transhuge_page(new_page);
|
|
|
|
isolated = numamigrate_isolate_page(pgdat, page);
|
|
if (!isolated) {
|
|
put_page(new_page);
|
|
goto out_fail;
|
|
}
|
|
|
|
/* Prepare a page as a migration target */
|
|
__SetPageLocked(new_page);
|
|
if (PageSwapBacked(page))
|
|
__SetPageSwapBacked(new_page);
|
|
|
|
/* anon mapping, we can simply copy page->mapping to the new page: */
|
|
new_page->mapping = page->mapping;
|
|
new_page->index = page->index;
|
|
migrate_page_copy(new_page, page);
|
|
WARN_ON(PageLRU(new_page));
|
|
|
|
/* Recheck the target PMD */
|
|
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
|
|
spin_unlock(ptl);
|
|
mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
|
|
|
|
/* Reverse changes made by migrate_page_copy() */
|
|
if (TestClearPageActive(new_page))
|
|
SetPageActive(page);
|
|
if (TestClearPageUnevictable(new_page))
|
|
SetPageUnevictable(page);
|
|
|
|
unlock_page(new_page);
|
|
put_page(new_page); /* Free it */
|
|
|
|
/* Retake the callers reference and putback on LRU */
|
|
get_page(page);
|
|
putback_lru_page(page);
|
|
mod_node_page_state(page_pgdat(page),
|
|
NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
|
|
|
|
goto out_unlock;
|
|
}
|
|
|
|
entry = mk_huge_pmd(new_page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
|
|
/*
|
|
* Clear the old entry under pagetable lock and establish the new PTE.
|
|
* Any parallel GUP will either observe the old page blocking on the
|
|
* page lock, block on the page table lock or observe the new page.
|
|
* The SetPageUptodate on the new page and page_add_new_anon_rmap
|
|
* guarantee the copy is visible before the pagetable update.
|
|
*/
|
|
flush_cache_range(vma, mmun_start, mmun_end);
|
|
page_add_anon_rmap(new_page, vma, mmun_start, true);
|
|
pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
|
|
set_pmd_at(mm, mmun_start, pmd, entry);
|
|
update_mmu_cache_pmd(vma, address, &entry);
|
|
|
|
page_ref_unfreeze(page, 2);
|
|
mlock_migrate_page(new_page, page);
|
|
page_remove_rmap(page, true);
|
|
set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
|
|
|
|
spin_unlock(ptl);
|
|
/*
|
|
* No need to double call mmu_notifier->invalidate_range() callback as
|
|
* the above pmdp_huge_clear_flush_notify() did already call it.
|
|
*/
|
|
mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
|
|
|
|
/* Take an "isolate" reference and put new page on the LRU. */
|
|
get_page(new_page);
|
|
putback_lru_page(new_page);
|
|
|
|
unlock_page(new_page);
|
|
unlock_page(page);
|
|
put_page(page); /* Drop the rmap reference */
|
|
put_page(page); /* Drop the LRU isolation reference */
|
|
|
|
count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
|
|
count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
|
|
|
|
mod_node_page_state(page_pgdat(page),
|
|
NR_ISOLATED_ANON + page_lru,
|
|
-HPAGE_PMD_NR);
|
|
return isolated;
|
|
|
|
out_fail:
|
|
count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
|
|
out_dropref:
|
|
ptl = pmd_lock(mm, pmd);
|
|
if (pmd_same(*pmd, entry)) {
|
|
entry = pmd_modify(entry, vma->vm_page_prot);
|
|
set_pmd_at(mm, mmun_start, pmd, entry);
|
|
update_mmu_cache_pmd(vma, address, &entry);
|
|
}
|
|
spin_unlock(ptl);
|
|
|
|
out_unlock:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
#if defined(CONFIG_MIGRATE_VMA_HELPER)
|
|
struct migrate_vma {
|
|
struct vm_area_struct *vma;
|
|
unsigned long *dst;
|
|
unsigned long *src;
|
|
unsigned long cpages;
|
|
unsigned long npages;
|
|
unsigned long start;
|
|
unsigned long end;
|
|
};
|
|
|
|
static int migrate_vma_collect_hole(unsigned long start,
|
|
unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct migrate_vma *migrate = walk->private;
|
|
unsigned long addr;
|
|
|
|
for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
|
|
migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
|
|
migrate->dst[migrate->npages] = 0;
|
|
migrate->npages++;
|
|
migrate->cpages++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int migrate_vma_collect_skip(unsigned long start,
|
|
unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct migrate_vma *migrate = walk->private;
|
|
unsigned long addr;
|
|
|
|
for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
|
|
migrate->dst[migrate->npages] = 0;
|
|
migrate->src[migrate->npages++] = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int migrate_vma_collect_pmd(pmd_t *pmdp,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct migrate_vma *migrate = walk->private;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long addr = start, unmapped = 0;
|
|
spinlock_t *ptl;
|
|
pte_t *ptep;
|
|
|
|
again:
|
|
if (pmd_none(*pmdp))
|
|
return migrate_vma_collect_hole(start, end, walk);
|
|
|
|
if (pmd_trans_huge(*pmdp)) {
|
|
struct page *page;
|
|
|
|
ptl = pmd_lock(mm, pmdp);
|
|
if (unlikely(!pmd_trans_huge(*pmdp))) {
|
|
spin_unlock(ptl);
|
|
goto again;
|
|
}
|
|
|
|
page = pmd_page(*pmdp);
|
|
if (is_huge_zero_page(page)) {
|
|
spin_unlock(ptl);
|
|
split_huge_pmd(vma, pmdp, addr);
|
|
if (pmd_trans_unstable(pmdp))
|
|
return migrate_vma_collect_skip(start, end,
|
|
walk);
|
|
} else {
|
|
int ret;
|
|
|
|
get_page(page);
|
|
spin_unlock(ptl);
|
|
if (unlikely(!trylock_page(page)))
|
|
return migrate_vma_collect_skip(start, end,
|
|
walk);
|
|
ret = split_huge_page(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
if (ret)
|
|
return migrate_vma_collect_skip(start, end,
|
|
walk);
|
|
if (pmd_none(*pmdp))
|
|
return migrate_vma_collect_hole(start, end,
|
|
walk);
|
|
}
|
|
}
|
|
|
|
if (unlikely(pmd_bad(*pmdp)))
|
|
return migrate_vma_collect_skip(start, end, walk);
|
|
|
|
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
|
|
arch_enter_lazy_mmu_mode();
|
|
|
|
for (; addr < end; addr += PAGE_SIZE, ptep++) {
|
|
unsigned long mpfn, pfn;
|
|
struct page *page;
|
|
swp_entry_t entry;
|
|
pte_t pte;
|
|
|
|
pte = *ptep;
|
|
pfn = pte_pfn(pte);
|
|
|
|
if (pte_none(pte)) {
|
|
mpfn = MIGRATE_PFN_MIGRATE;
|
|
migrate->cpages++;
|
|
pfn = 0;
|
|
goto next;
|
|
}
|
|
|
|
if (!pte_present(pte)) {
|
|
mpfn = pfn = 0;
|
|
|
|
/*
|
|
* Only care about unaddressable device page special
|
|
* page table entry. Other special swap entries are not
|
|
* migratable, and we ignore regular swapped page.
|
|
*/
|
|
entry = pte_to_swp_entry(pte);
|
|
if (!is_device_private_entry(entry))
|
|
goto next;
|
|
|
|
page = device_private_entry_to_page(entry);
|
|
mpfn = migrate_pfn(page_to_pfn(page))|
|
|
MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
|
|
if (is_write_device_private_entry(entry))
|
|
mpfn |= MIGRATE_PFN_WRITE;
|
|
} else {
|
|
if (is_zero_pfn(pfn)) {
|
|
mpfn = MIGRATE_PFN_MIGRATE;
|
|
migrate->cpages++;
|
|
pfn = 0;
|
|
goto next;
|
|
}
|
|
page = _vm_normal_page(migrate->vma, addr, pte, true);
|
|
mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
|
|
mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
|
|
}
|
|
|
|
/* FIXME support THP */
|
|
if (!page || !page->mapping || PageTransCompound(page)) {
|
|
mpfn = pfn = 0;
|
|
goto next;
|
|
}
|
|
pfn = page_to_pfn(page);
|
|
|
|
/*
|
|
* By getting a reference on the page we pin it and that blocks
|
|
* any kind of migration. Side effect is that it "freezes" the
|
|
* pte.
|
|
*
|
|
* We drop this reference after isolating the page from the lru
|
|
* for non device page (device page are not on the lru and thus
|
|
* can't be dropped from it).
|
|
*/
|
|
get_page(page);
|
|
migrate->cpages++;
|
|
|
|
/*
|
|
* Optimize for the common case where page is only mapped once
|
|
* in one process. If we can lock the page, then we can safely
|
|
* set up a special migration page table entry now.
|
|
*/
|
|
if (trylock_page(page)) {
|
|
pte_t swp_pte;
|
|
|
|
mpfn |= MIGRATE_PFN_LOCKED;
|
|
ptep_get_and_clear(mm, addr, ptep);
|
|
|
|
/* Setup special migration page table entry */
|
|
entry = make_migration_entry(page, pte_write(pte));
|
|
swp_pte = swp_entry_to_pte(entry);
|
|
if (pte_soft_dirty(pte))
|
|
swp_pte = pte_swp_mksoft_dirty(swp_pte);
|
|
set_pte_at(mm, addr, ptep, swp_pte);
|
|
|
|
/*
|
|
* This is like regular unmap: we remove the rmap and
|
|
* drop page refcount. Page won't be freed, as we took
|
|
* a reference just above.
|
|
*/
|
|
page_remove_rmap(page, false);
|
|
put_page(page);
|
|
|
|
if (pte_present(pte))
|
|
unmapped++;
|
|
}
|
|
|
|
next:
|
|
migrate->dst[migrate->npages] = 0;
|
|
migrate->src[migrate->npages++] = mpfn;
|
|
}
|
|
arch_leave_lazy_mmu_mode();
|
|
pte_unmap_unlock(ptep - 1, ptl);
|
|
|
|
/* Only flush the TLB if we actually modified any entries */
|
|
if (unmapped)
|
|
flush_tlb_range(walk->vma, start, end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* migrate_vma_collect() - collect pages over a range of virtual addresses
|
|
* @migrate: migrate struct containing all migration information
|
|
*
|
|
* This will walk the CPU page table. For each virtual address backed by a
|
|
* valid page, it updates the src array and takes a reference on the page, in
|
|
* order to pin the page until we lock it and unmap it.
|
|
*/
|
|
static void migrate_vma_collect(struct migrate_vma *migrate)
|
|
{
|
|
struct mm_walk mm_walk;
|
|
|
|
mm_walk.pmd_entry = migrate_vma_collect_pmd;
|
|
mm_walk.pte_entry = NULL;
|
|
mm_walk.pte_hole = migrate_vma_collect_hole;
|
|
mm_walk.hugetlb_entry = NULL;
|
|
mm_walk.test_walk = NULL;
|
|
mm_walk.vma = migrate->vma;
|
|
mm_walk.mm = migrate->vma->vm_mm;
|
|
mm_walk.private = migrate;
|
|
|
|
mmu_notifier_invalidate_range_start(mm_walk.mm,
|
|
migrate->start,
|
|
migrate->end);
|
|
walk_page_range(migrate->start, migrate->end, &mm_walk);
|
|
mmu_notifier_invalidate_range_end(mm_walk.mm,
|
|
migrate->start,
|
|
migrate->end);
|
|
|
|
migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* migrate_vma_check_page() - check if page is pinned or not
|
|
* @page: struct page to check
|
|
*
|
|
* Pinned pages cannot be migrated. This is the same test as in
|
|
* migrate_page_move_mapping(), except that here we allow migration of a
|
|
* ZONE_DEVICE page.
|
|
*/
|
|
static bool migrate_vma_check_page(struct page *page)
|
|
{
|
|
/*
|
|
* One extra ref because caller holds an extra reference, either from
|
|
* isolate_lru_page() for a regular page, or migrate_vma_collect() for
|
|
* a device page.
|
|
*/
|
|
int extra = 1;
|
|
|
|
/*
|
|
* FIXME support THP (transparent huge page), it is bit more complex to
|
|
* check them than regular pages, because they can be mapped with a pmd
|
|
* or with a pte (split pte mapping).
|
|
*/
|
|
if (PageCompound(page))
|
|
return false;
|
|
|
|
/* Page from ZONE_DEVICE have one extra reference */
|
|
if (is_zone_device_page(page)) {
|
|
/*
|
|
* Private page can never be pin as they have no valid pte and
|
|
* GUP will fail for those. Yet if there is a pending migration
|
|
* a thread might try to wait on the pte migration entry and
|
|
* will bump the page reference count. Sadly there is no way to
|
|
* differentiate a regular pin from migration wait. Hence to
|
|
* avoid 2 racing thread trying to migrate back to CPU to enter
|
|
* infinite loop (one stoping migration because the other is
|
|
* waiting on pte migration entry). We always return true here.
|
|
*
|
|
* FIXME proper solution is to rework migration_entry_wait() so
|
|
* it does not need to take a reference on page.
|
|
*/
|
|
if (is_device_private_page(page))
|
|
return true;
|
|
|
|
/*
|
|
* Only allow device public page to be migrated and account for
|
|
* the extra reference count imply by ZONE_DEVICE pages.
|
|
*/
|
|
if (!is_device_public_page(page))
|
|
return false;
|
|
extra++;
|
|
}
|
|
|
|
/* For file back page */
|
|
if (page_mapping(page))
|
|
extra += 1 + page_has_private(page);
|
|
|
|
if ((page_count(page) - extra) > page_mapcount(page))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* migrate_vma_prepare() - lock pages and isolate them from the lru
|
|
* @migrate: migrate struct containing all migration information
|
|
*
|
|
* This locks pages that have been collected by migrate_vma_collect(). Once each
|
|
* page is locked it is isolated from the lru (for non-device pages). Finally,
|
|
* the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
|
|
* migrated by concurrent kernel threads.
|
|
*/
|
|
static void migrate_vma_prepare(struct migrate_vma *migrate)
|
|
{
|
|
const unsigned long npages = migrate->npages;
|
|
const unsigned long start = migrate->start;
|
|
unsigned long addr, i, restore = 0;
|
|
bool allow_drain = true;
|
|
|
|
lru_add_drain();
|
|
|
|
for (i = 0; (i < npages) && migrate->cpages; i++) {
|
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
|
bool remap = true;
|
|
|
|
if (!page)
|
|
continue;
|
|
|
|
if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
|
|
/*
|
|
* Because we are migrating several pages there can be
|
|
* a deadlock between 2 concurrent migration where each
|
|
* are waiting on each other page lock.
|
|
*
|
|
* Make migrate_vma() a best effort thing and backoff
|
|
* for any page we can not lock right away.
|
|
*/
|
|
if (!trylock_page(page)) {
|
|
migrate->src[i] = 0;
|
|
migrate->cpages--;
|
|
put_page(page);
|
|
continue;
|
|
}
|
|
remap = false;
|
|
migrate->src[i] |= MIGRATE_PFN_LOCKED;
|
|
}
|
|
|
|
/* ZONE_DEVICE pages are not on LRU */
|
|
if (!is_zone_device_page(page)) {
|
|
if (!PageLRU(page) && allow_drain) {
|
|
/* Drain CPU's pagevec */
|
|
lru_add_drain_all();
|
|
allow_drain = false;
|
|
}
|
|
|
|
if (isolate_lru_page(page)) {
|
|
if (remap) {
|
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
|
migrate->cpages--;
|
|
restore++;
|
|
} else {
|
|
migrate->src[i] = 0;
|
|
unlock_page(page);
|
|
migrate->cpages--;
|
|
put_page(page);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Drop the reference we took in collect */
|
|
put_page(page);
|
|
}
|
|
|
|
if (!migrate_vma_check_page(page)) {
|
|
if (remap) {
|
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
|
migrate->cpages--;
|
|
restore++;
|
|
|
|
if (!is_zone_device_page(page)) {
|
|
get_page(page);
|
|
putback_lru_page(page);
|
|
}
|
|
} else {
|
|
migrate->src[i] = 0;
|
|
unlock_page(page);
|
|
migrate->cpages--;
|
|
|
|
if (!is_zone_device_page(page))
|
|
putback_lru_page(page);
|
|
else
|
|
put_page(page);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
|
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
|
|
|
if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
|
|
continue;
|
|
|
|
remove_migration_pte(page, migrate->vma, addr, page);
|
|
|
|
migrate->src[i] = 0;
|
|
unlock_page(page);
|
|
put_page(page);
|
|
restore--;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* migrate_vma_unmap() - replace page mapping with special migration pte entry
|
|
* @migrate: migrate struct containing all migration information
|
|
*
|
|
* Replace page mapping (CPU page table pte) with a special migration pte entry
|
|
* and check again if it has been pinned. Pinned pages are restored because we
|
|
* cannot migrate them.
|
|
*
|
|
* This is the last step before we call the device driver callback to allocate
|
|
* destination memory and copy contents of original page over to new page.
|
|
*/
|
|
static void migrate_vma_unmap(struct migrate_vma *migrate)
|
|
{
|
|
int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
|
|
const unsigned long npages = migrate->npages;
|
|
const unsigned long start = migrate->start;
|
|
unsigned long addr, i, restore = 0;
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
|
|
|
if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
|
|
continue;
|
|
|
|
if (page_mapped(page)) {
|
|
try_to_unmap(page, flags);
|
|
if (page_mapped(page))
|
|
goto restore;
|
|
}
|
|
|
|
if (migrate_vma_check_page(page))
|
|
continue;
|
|
|
|
restore:
|
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
|
migrate->cpages--;
|
|
restore++;
|
|
}
|
|
|
|
for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
|
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
|
|
|
if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
|
|
continue;
|
|
|
|
remove_migration_ptes(page, page, false);
|
|
|
|
migrate->src[i] = 0;
|
|
unlock_page(page);
|
|
restore--;
|
|
|
|
if (is_zone_device_page(page))
|
|
put_page(page);
|
|
else
|
|
putback_lru_page(page);
|
|
}
|
|
}
|
|
|
|
static void migrate_vma_insert_page(struct migrate_vma *migrate,
|
|
unsigned long addr,
|
|
struct page *page,
|
|
unsigned long *src,
|
|
unsigned long *dst)
|
|
{
|
|
struct vm_area_struct *vma = migrate->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct mem_cgroup *memcg;
|
|
bool flush = false;
|
|
spinlock_t *ptl;
|
|
pte_t entry;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
/* Only allow populating anonymous memory */
|
|
if (!vma_is_anonymous(vma))
|
|
goto abort;
|
|
|
|
pgdp = pgd_offset(mm, addr);
|
|
p4dp = p4d_alloc(mm, pgdp, addr);
|
|
if (!p4dp)
|
|
goto abort;
|
|
pudp = pud_alloc(mm, p4dp, addr);
|
|
if (!pudp)
|
|
goto abort;
|
|
pmdp = pmd_alloc(mm, pudp, addr);
|
|
if (!pmdp)
|
|
goto abort;
|
|
|
|
if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
|
|
goto abort;
|
|
|
|
/*
|
|
* Use pte_alloc() instead of pte_alloc_map(). We can't run
|
|
* pte_offset_map() on pmds where a huge pmd might be created
|
|
* from a different thread.
|
|
*
|
|
* pte_alloc_map() is safe to use under down_write(mmap_sem) or when
|
|
* parallel threads are excluded by other means.
|
|
*
|
|
* Here we only have down_read(mmap_sem).
|
|
*/
|
|
if (pte_alloc(mm, pmdp, addr))
|
|
goto abort;
|
|
|
|
/* See the comment in pte_alloc_one_map() */
|
|
if (unlikely(pmd_trans_unstable(pmdp)))
|
|
goto abort;
|
|
|
|
if (unlikely(anon_vma_prepare(vma)))
|
|
goto abort;
|
|
if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
|
|
goto abort;
|
|
|
|
/*
|
|
* The memory barrier inside __SetPageUptodate makes sure that
|
|
* preceding stores to the page contents become visible before
|
|
* the set_pte_at() write.
|
|
*/
|
|
__SetPageUptodate(page);
|
|
|
|
if (is_zone_device_page(page)) {
|
|
if (is_device_private_page(page)) {
|
|
swp_entry_t swp_entry;
|
|
|
|
swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
|
|
entry = swp_entry_to_pte(swp_entry);
|
|
} else if (is_device_public_page(page)) {
|
|
entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
|
|
if (vma->vm_flags & VM_WRITE)
|
|
entry = pte_mkwrite(pte_mkdirty(entry));
|
|
entry = pte_mkdevmap(entry);
|
|
}
|
|
} else {
|
|
entry = mk_pte(page, vma->vm_page_prot);
|
|
if (vma->vm_flags & VM_WRITE)
|
|
entry = pte_mkwrite(pte_mkdirty(entry));
|
|
}
|
|
|
|
ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
|
|
|
|
if (pte_present(*ptep)) {
|
|
unsigned long pfn = pte_pfn(*ptep);
|
|
|
|
if (!is_zero_pfn(pfn)) {
|
|
pte_unmap_unlock(ptep, ptl);
|
|
mem_cgroup_cancel_charge(page, memcg, false);
|
|
goto abort;
|
|
}
|
|
flush = true;
|
|
} else if (!pte_none(*ptep)) {
|
|
pte_unmap_unlock(ptep, ptl);
|
|
mem_cgroup_cancel_charge(page, memcg, false);
|
|
goto abort;
|
|
}
|
|
|
|
/*
|
|
* Check for usefaultfd but do not deliver the fault. Instead,
|
|
* just back off.
|
|
*/
|
|
if (userfaultfd_missing(vma)) {
|
|
pte_unmap_unlock(ptep, ptl);
|
|
mem_cgroup_cancel_charge(page, memcg, false);
|
|
goto abort;
|
|
}
|
|
|
|
inc_mm_counter(mm, MM_ANONPAGES);
|
|
page_add_new_anon_rmap(page, vma, addr, false);
|
|
mem_cgroup_commit_charge(page, memcg, false, false);
|
|
if (!is_zone_device_page(page))
|
|
lru_cache_add_active_or_unevictable(page, vma);
|
|
get_page(page);
|
|
|
|
if (flush) {
|
|
flush_cache_page(vma, addr, pte_pfn(*ptep));
|
|
ptep_clear_flush_notify(vma, addr, ptep);
|
|
set_pte_at_notify(mm, addr, ptep, entry);
|
|
update_mmu_cache(vma, addr, ptep);
|
|
} else {
|
|
/* No need to invalidate - it was non-present before */
|
|
set_pte_at(mm, addr, ptep, entry);
|
|
update_mmu_cache(vma, addr, ptep);
|
|
}
|
|
|
|
pte_unmap_unlock(ptep, ptl);
|
|
*src = MIGRATE_PFN_MIGRATE;
|
|
return;
|
|
|
|
abort:
|
|
*src &= ~MIGRATE_PFN_MIGRATE;
|
|
}
|
|
|
|
/*
|
|
* migrate_vma_pages() - migrate meta-data from src page to dst page
|
|
* @migrate: migrate struct containing all migration information
|
|
*
|
|
* This migrates struct page meta-data from source struct page to destination
|
|
* struct page. This effectively finishes the migration from source page to the
|
|
* destination page.
|
|
*/
|
|
static void migrate_vma_pages(struct migrate_vma *migrate)
|
|
{
|
|
const unsigned long npages = migrate->npages;
|
|
const unsigned long start = migrate->start;
|
|
struct vm_area_struct *vma = migrate->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long addr, i, mmu_start;
|
|
bool notified = false;
|
|
|
|
for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
|
|
struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
|
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
|
struct address_space *mapping;
|
|
int r;
|
|
|
|
if (!newpage) {
|
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
|
continue;
|
|
}
|
|
|
|
if (!page) {
|
|
if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
|
|
continue;
|
|
}
|
|
if (!notified) {
|
|
mmu_start = addr;
|
|
notified = true;
|
|
mmu_notifier_invalidate_range_start(mm,
|
|
mmu_start,
|
|
migrate->end);
|
|
}
|
|
migrate_vma_insert_page(migrate, addr, newpage,
|
|
&migrate->src[i],
|
|
&migrate->dst[i]);
|
|
continue;
|
|
}
|
|
|
|
mapping = page_mapping(page);
|
|
|
|
if (is_zone_device_page(newpage)) {
|
|
if (is_device_private_page(newpage)) {
|
|
/*
|
|
* For now only support private anonymous when
|
|
* migrating to un-addressable device memory.
|
|
*/
|
|
if (mapping) {
|
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
|
continue;
|
|
}
|
|
} else if (!is_device_public_page(newpage)) {
|
|
/*
|
|
* Other types of ZONE_DEVICE page are not
|
|
* supported.
|
|
*/
|
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
|
|
if (r != MIGRATEPAGE_SUCCESS)
|
|
migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
|
|
}
|
|
|
|
/*
|
|
* No need to double call mmu_notifier->invalidate_range() callback as
|
|
* the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
|
|
* did already call it.
|
|
*/
|
|
if (notified)
|
|
mmu_notifier_invalidate_range_only_end(mm, mmu_start,
|
|
migrate->end);
|
|
}
|
|
|
|
/*
|
|
* migrate_vma_finalize() - restore CPU page table entry
|
|
* @migrate: migrate struct containing all migration information
|
|
*
|
|
* This replaces the special migration pte entry with either a mapping to the
|
|
* new page if migration was successful for that page, or to the original page
|
|
* otherwise.
|
|
*
|
|
* This also unlocks the pages and puts them back on the lru, or drops the extra
|
|
* refcount, for device pages.
|
|
*/
|
|
static void migrate_vma_finalize(struct migrate_vma *migrate)
|
|
{
|
|
const unsigned long npages = migrate->npages;
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
|
|
struct page *page = migrate_pfn_to_page(migrate->src[i]);
|
|
|
|
if (!page) {
|
|
if (newpage) {
|
|
unlock_page(newpage);
|
|
put_page(newpage);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
|
|
if (newpage) {
|
|
unlock_page(newpage);
|
|
put_page(newpage);
|
|
}
|
|
newpage = page;
|
|
}
|
|
|
|
remove_migration_ptes(page, newpage, false);
|
|
unlock_page(page);
|
|
migrate->cpages--;
|
|
|
|
if (is_zone_device_page(page))
|
|
put_page(page);
|
|
else
|
|
putback_lru_page(page);
|
|
|
|
if (newpage != page) {
|
|
unlock_page(newpage);
|
|
if (is_zone_device_page(newpage))
|
|
put_page(newpage);
|
|
else
|
|
putback_lru_page(newpage);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* migrate_vma() - migrate a range of memory inside vma
|
|
*
|
|
* @ops: migration callback for allocating destination memory and copying
|
|
* @vma: virtual memory area containing the range to be migrated
|
|
* @start: start address of the range to migrate (inclusive)
|
|
* @end: end address of the range to migrate (exclusive)
|
|
* @src: array of hmm_pfn_t containing source pfns
|
|
* @dst: array of hmm_pfn_t containing destination pfns
|
|
* @private: pointer passed back to each of the callback
|
|
* Returns: 0 on success, error code otherwise
|
|
*
|
|
* This function tries to migrate a range of memory virtual address range, using
|
|
* callbacks to allocate and copy memory from source to destination. First it
|
|
* collects all the pages backing each virtual address in the range, saving this
|
|
* inside the src array. Then it locks those pages and unmaps them. Once the pages
|
|
* are locked and unmapped, it checks whether each page is pinned or not. Pages
|
|
* that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
|
|
* in the corresponding src array entry. It then restores any pages that are
|
|
* pinned, by remapping and unlocking those pages.
|
|
*
|
|
* At this point it calls the alloc_and_copy() callback. For documentation on
|
|
* what is expected from that callback, see struct migrate_vma_ops comments in
|
|
* include/linux/migrate.h
|
|
*
|
|
* After the alloc_and_copy() callback, this function goes over each entry in
|
|
* the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
|
|
* set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
|
|
* then the function tries to migrate struct page information from the source
|
|
* struct page to the destination struct page. If it fails to migrate the struct
|
|
* page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
|
|
* array.
|
|
*
|
|
* At this point all successfully migrated pages have an entry in the src
|
|
* array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
|
|
* array entry with MIGRATE_PFN_VALID flag set.
|
|
*
|
|
* It then calls the finalize_and_map() callback. See comments for "struct
|
|
* migrate_vma_ops", in include/linux/migrate.h for details about
|
|
* finalize_and_map() behavior.
|
|
*
|
|
* After the finalize_and_map() callback, for successfully migrated pages, this
|
|
* function updates the CPU page table to point to new pages, otherwise it
|
|
* restores the CPU page table to point to the original source pages.
|
|
*
|
|
* Function returns 0 after the above steps, even if no pages were migrated
|
|
* (The function only returns an error if any of the arguments are invalid.)
|
|
*
|
|
* Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
|
|
* unsigned long entries.
|
|
*/
|
|
int migrate_vma(const struct migrate_vma_ops *ops,
|
|
struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
unsigned long *src,
|
|
unsigned long *dst,
|
|
void *private)
|
|
{
|
|
struct migrate_vma migrate;
|
|
|
|
/* Sanity check the arguments */
|
|
start &= PAGE_MASK;
|
|
end &= PAGE_MASK;
|
|
if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
|
|
return -EINVAL;
|
|
if (start < vma->vm_start || start >= vma->vm_end)
|
|
return -EINVAL;
|
|
if (end <= vma->vm_start || end > vma->vm_end)
|
|
return -EINVAL;
|
|
if (!ops || !src || !dst || start >= end)
|
|
return -EINVAL;
|
|
|
|
memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
|
|
migrate.src = src;
|
|
migrate.dst = dst;
|
|
migrate.start = start;
|
|
migrate.npages = 0;
|
|
migrate.cpages = 0;
|
|
migrate.end = end;
|
|
migrate.vma = vma;
|
|
|
|
/* Collect, and try to unmap source pages */
|
|
migrate_vma_collect(&migrate);
|
|
if (!migrate.cpages)
|
|
return 0;
|
|
|
|
/* Lock and isolate page */
|
|
migrate_vma_prepare(&migrate);
|
|
if (!migrate.cpages)
|
|
return 0;
|
|
|
|
/* Unmap pages */
|
|
migrate_vma_unmap(&migrate);
|
|
if (!migrate.cpages)
|
|
return 0;
|
|
|
|
/*
|
|
* At this point pages are locked and unmapped, and thus they have
|
|
* stable content and can safely be copied to destination memory that
|
|
* is allocated by the callback.
|
|
*
|
|
* Note that migration can fail in migrate_vma_struct_page() for each
|
|
* individual page.
|
|
*/
|
|
ops->alloc_and_copy(vma, src, dst, start, end, private);
|
|
|
|
/* This does the real migration of struct page */
|
|
migrate_vma_pages(&migrate);
|
|
|
|
ops->finalize_and_map(vma, src, dst, start, end, private);
|
|
|
|
/* Unlock and remap pages */
|
|
migrate_vma_finalize(&migrate);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(migrate_vma);
|
|
#endif /* defined(MIGRATE_VMA_HELPER) */
|