mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-22 07:53:11 -05:00
1d6d399223
1) Per-CPU kthreads must stay affine to a single CPU and never execute relevant code on any other CPU. This is currently handled by smpboot code which takes care of CPU-hotplug operations. Affinity here is a correctness constraint. 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't run anywhere else. The affinity is set through kthread_bind_mask() and the subsystem takes care by itself to handle CPU-hotplug operations. Affinity here is assumed to be a correctness constraint. 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This is not a correctness constraint but merely a preference in terms of memory locality. kswapd and kcompactd both fall into this category. The affinity is set manually like for any other task and CPU-hotplug is supposed to be handled by the relevant subsystem so that the task is properly reaffined whenever a given CPU from the node comes up. Also care should be taken so that the node affinity doesn't cross isolated (nohz_full) cpumask boundaries. 4) Similar to the previous point except kthreads have a _preferred_ affinity different than a node. Both RCU boost kthreads and RCU exp kworkers fall into this category as they refer to "RCU nodes" from a distinctly distributed tree. Currently the preferred affinity patterns (3 and 4) have at least 4 identified users, with more or less success when it comes to handle CPU-hotplug operations and CPU isolation. Each of which do it in its own ad-hoc way. This is an infrastructure proposal to handle this with the following API changes: _ kthread_create_on_node() automatically affines the created kthread to its target node unless it has been set as per-cpu or bound with kthread_bind[_mask]() before the first wake-up. - kthread_affine_preferred() is a new function that can be called right after kthread_create_on_node() to specify a preferred affinity different than the specified node. When the preferred affinity can't be applied because the possible targets are offline or isolated (nohz_full), the kthread is affine to the housekeeping CPUs (which means to all online CPUs most of the time or only the non-nohz_full CPUs when nohz_full= is set). kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been converted, along with a few old drivers. Summary of the changes: * Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu() * Introduce task_cpu_fallback_mask() that defines the default last resort affinity of a task to become nohz_full aware * Add some correctness check to ensure kthread_bind() is always called before the first kthread wake up. * Default affine kthread to its preferred node. * Convert kswapd / kcompactd and remove their halfway working ad-hoc affinity implementation * Implement kthreads preferred affinity * Unify kthread worker and kthread API's style * Convert RCU kthreads to the new API and remove the ad-hoc affinity implementation. -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEEd76+gtGM8MbftQlOhSRUR1COjHcFAmeNf8gACgkQhSRUR1CO jHedQQ/+IxTjjqQiItzrq41TES2S0desHDq8lNJFb7rsR/DtKFyLx3s67cOYV+cM Yx54QHg2m/Fz4nXMQ7Po5ygOtJGCKBc5C5QQy7y0lVKeTQK+daDfEtBSa3oG7j3C u+E3tTY6qxkbCzymUyaKkHN4/ay2vLvjFS50luV7KMyI3x47Aji+t7VdCX4LCPP2 eAwOALWD0+7qLJ/VF6gsmQLKA4Qx7PQAzBa3KSBmUN9UcN8Gk1bQHCTIQKDHP9LQ v8BXrNZtYX1o2+snNYpX2z6/ECjxkdwriOgqqZY5306hd9RAQ1u46Dx3byrIqjGn ULG/XQ2istPyhTqb/h+RbrobdOcwEUIeqk8hRRbBXE8bPpqUz9EMuaCMxWDbQjgH NTuKG4ifKJ/IqstkkuDkdOiByE/ysMmwqrTXgSnu2ITNL9yY3BEgFbvA95hgo42s f7QCxEfZb1MHcNEMENSMwM3xw5lLMGMpxVZcMQ3gLwyotMBRrhFZm1qZJG7TITYW IDIeCbH4JOMdQwLs3CcWTXio0N5/85NhRNFV+IDn96OrgxObgnMtV8QwNgjXBAJ5 wGeJWt8s34W1Zo3qS9gEuVzEhW4XaxISQQMkHe8faKkK6iHmIB/VjSQikDwwUNQ/ AspYj82RyWBCDZsqhiYh71kpxjvS6Xp0bj39Ce1sNsOnuksxKkQ= =g8In -----END PGP SIGNATURE----- Merge tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks Pull kthread updates from Frederic Weisbecker: "Kthreads affinity follow either of 4 existing different patterns: 1) Per-CPU kthreads must stay affine to a single CPU and never execute relevant code on any other CPU. This is currently handled by smpboot code which takes care of CPU-hotplug operations. Affinity here is a correctness constraint. 2) Some kthreads _have_ to be affine to a specific set of CPUs and can't run anywhere else. The affinity is set through kthread_bind_mask() and the subsystem takes care by itself to handle CPU-hotplug operations. Affinity here is assumed to be a correctness constraint. 3) Per-node kthreads _prefer_ to be affine to a specific NUMA node. This is not a correctness constraint but merely a preference in terms of memory locality. kswapd and kcompactd both fall into this category. The affinity is set manually like for any other task and CPU-hotplug is supposed to be handled by the relevant subsystem so that the task is properly reaffined whenever a given CPU from the node comes up. Also care should be taken so that the node affinity doesn't cross isolated (nohz_full) cpumask boundaries. 4) Similar to the previous point except kthreads have a _preferred_ affinity different than a node. Both RCU boost kthreads and RCU exp kworkers fall into this category as they refer to "RCU nodes" from a distinctly distributed tree. Currently the preferred affinity patterns (3 and 4) have at least 4 identified users, with more or less success when it comes to handle CPU-hotplug operations and CPU isolation. Each of which do it in its own ad-hoc way. This is an infrastructure proposal to handle this with the following API changes: - kthread_create_on_node() automatically affines the created kthread to its target node unless it has been set as per-cpu or bound with kthread_bind[_mask]() before the first wake-up. - kthread_affine_preferred() is a new function that can be called right after kthread_create_on_node() to specify a preferred affinity different than the specified node. When the preferred affinity can't be applied because the possible targets are offline or isolated (nohz_full), the kthread is affine to the housekeeping CPUs (which means to all online CPUs most of the time or only the non-nohz_full CPUs when nohz_full= is set). kswapd, kcompactd, RCU boost kthreads and RCU exp kworkers have been converted, along with a few old drivers. Summary of the changes: - Consolidate a bunch of ad-hoc implementations of kthread_run_on_cpu() - Introduce task_cpu_fallback_mask() that defines the default last resort affinity of a task to become nohz_full aware - Add some correctness check to ensure kthread_bind() is always called before the first kthread wake up. - Default affine kthread to its preferred node. - Convert kswapd / kcompactd and remove their halfway working ad-hoc affinity implementation - Implement kthreads preferred affinity - Unify kthread worker and kthread API's style - Convert RCU kthreads to the new API and remove the ad-hoc affinity implementation" * tag 'kthread-for-6.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: kthread: modify kernel-doc function name to match code rcu: Use kthread preferred affinity for RCU exp kworkers treewide: Introduce kthread_run_worker[_on_cpu]() kthread: Unify kthread_create_on_cpu() and kthread_create_worker_on_cpu() automatic format rcu: Use kthread preferred affinity for RCU boost kthread: Implement preferred affinity mm: Create/affine kswapd to its preferred node mm: Create/affine kcompactd to its preferred node kthread: Default affine kthread to its preferred NUMA node kthread: Make sure kthread hasn't started while binding it sched,arm64: Handle CPU isolation on last resort fallback rq selection arm64: Exclude nohz_full CPUs from 32bits el0 support lib: test_objpool: Use kthread_run_on_cpu() kallsyms: Use kthread_run_on_cpu() soc/qman: test: Use kthread_run_on_cpu() arm/bL_switcher: Use kthread_run_on_cpu() |
||
---|---|---|
.. | ||
damon | ||
kasan | ||
kfence | ||
kmsan | ||
backing-dev.c | ||
balloon_compaction.c | ||
bootmem_info.c | ||
cma.c | ||
cma.h | ||
cma_debug.c | ||
cma_sysfs.c | ||
compaction.c | ||
debug.c | ||
debug_page_alloc.c | ||
debug_page_ref.c | ||
debug_vm_pgtable.c | ||
dmapool.c | ||
dmapool_test.c | ||
early_ioremap.c | ||
execmem.c | ||
fadvise.c | ||
fail_page_alloc.c | ||
failslab.c | ||
filemap.c | ||
folio-compat.c | ||
gup.c | ||
gup_test.c | ||
gup_test.h | ||
highmem.c | ||
hmm.c | ||
huge_memory.c | ||
hugetlb.c | ||
hugetlb_cgroup.c | ||
hugetlb_vmemmap.c | ||
hugetlb_vmemmap.h | ||
hwpoison-inject.c | ||
init-mm.c | ||
internal.h | ||
interval_tree.c | ||
io-mapping.c | ||
ioremap.c | ||
Kconfig | ||
Kconfig.debug | ||
khugepaged.c | ||
kmemleak.c | ||
ksm.c | ||
list_lru.c | ||
maccess.c | ||
madvise.c | ||
Makefile | ||
mapping_dirty_helpers.c | ||
memblock.c | ||
memcontrol-v1.c | ||
memcontrol-v1.h | ||
memcontrol.c | ||
memfd.c | ||
memory-failure.c | ||
memory-tiers.c | ||
memory.c | ||
memory_hotplug.c | ||
mempolicy.c | ||
mempool.c | ||
memremap.c | ||
memtest.c | ||
migrate.c | ||
migrate_device.c | ||
mincore.c | ||
mlock.c | ||
mm_init.c | ||
mm_slot.h | ||
mmap.c | ||
mmap_lock.c | ||
mmu_gather.c | ||
mmu_notifier.c | ||
mmzone.c | ||
mprotect.c | ||
mremap.c | ||
mseal.c | ||
msync.c | ||
nommu.c | ||
numa.c | ||
numa_emulation.c | ||
numa_memblks.c | ||
oom_kill.c | ||
page-writeback.c | ||
page_alloc.c | ||
page_counter.c | ||
page_ext.c | ||
page_frag_cache.c | ||
page_idle.c | ||
page_io.c | ||
page_isolation.c | ||
page_owner.c | ||
page_poison.c | ||
page_reporting.c | ||
page_reporting.h | ||
page_table_check.c | ||
page_vma_mapped.c | ||
pagewalk.c | ||
percpu-internal.h | ||
percpu-km.c | ||
percpu-stats.c | ||
percpu-vm.c | ||
percpu.c | ||
pgalloc-track.h | ||
pgtable-generic.c | ||
process_vm_access.c | ||
ptdump.c | ||
readahead.c | ||
rmap.c | ||
rodata_test.c | ||
secretmem.c | ||
shmem.c | ||
shmem_quota.c | ||
show_mem.c | ||
shrinker.c | ||
shrinker_debug.c | ||
shuffle.c | ||
shuffle.h | ||
slab.h | ||
slab_common.c | ||
slub.c | ||
sparse-vmemmap.c | ||
sparse.c | ||
swap.c | ||
swap.h | ||
swap_cgroup.c | ||
swap_slots.c | ||
swap_state.c | ||
swapfile.c | ||
truncate.c | ||
usercopy.c | ||
userfaultfd.c | ||
util.c | ||
vma.c | ||
vma.h | ||
vma_internal.h | ||
vmalloc.c | ||
vmpressure.c | ||
vmscan.c | ||
vmstat.c | ||
workingset.c | ||
z3fold.c | ||
zbud.c | ||
zpool.c | ||
zsmalloc.c | ||
zswap.c |