1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-26 18:43:33 -05:00
linux/fs/xfs/xfs_aops.c
Dave Chinner 756b1c3433 xfs: use current->journal_info for detecting transaction recursion
Because the iomap code using PF_MEMALLOC_NOFS to detect transaction
recursion in XFS is just wrong. Remove it from the iomap code and
replace it with XFS specific internal checks using
current->journal_info instead.

[djwong: This change also realigns the lifetime of NOFS flag changes to
match the incore transaction, instead of the inconsistent scheme we have
now.]

Fixes: 9070733b4e ("xfs: abstract PF_FSTRANS to PF_MEMALLOC_NOFS")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-02-25 08:07:04 -08:00

681 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* Copyright (c) 2016-2018 Christoph Hellwig.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_iomap.h"
#include "xfs_trace.h"
#include "xfs_bmap.h"
#include "xfs_bmap_util.h"
#include "xfs_reflink.h"
struct xfs_writepage_ctx {
struct iomap_writepage_ctx ctx;
unsigned int data_seq;
unsigned int cow_seq;
};
static inline struct xfs_writepage_ctx *
XFS_WPC(struct iomap_writepage_ctx *ctx)
{
return container_of(ctx, struct xfs_writepage_ctx, ctx);
}
/*
* Fast and loose check if this write could update the on-disk inode size.
*/
static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
{
return ioend->io_offset + ioend->io_size >
XFS_I(ioend->io_inode)->i_d.di_size;
}
STATIC int
xfs_setfilesize_trans_alloc(
struct iomap_ioend *ioend)
{
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
if (error)
return error;
ioend->io_private = tp;
/*
* We may pass freeze protection with a transaction. So tell lockdep
* we released it.
*/
__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
/*
* We hand off the transaction to the completion thread now, so
* clear the flag here.
*/
xfs_trans_clear_context(tp);
return 0;
}
/*
* Update on-disk file size now that data has been written to disk.
*/
STATIC int
__xfs_setfilesize(
struct xfs_inode *ip,
struct xfs_trans *tp,
xfs_off_t offset,
size_t size)
{
xfs_fsize_t isize;
xfs_ilock(ip, XFS_ILOCK_EXCL);
isize = xfs_new_eof(ip, offset + size);
if (!isize) {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
xfs_trans_cancel(tp);
return 0;
}
trace_xfs_setfilesize(ip, offset, size);
ip->i_d.di_size = isize;
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
return xfs_trans_commit(tp);
}
int
xfs_setfilesize(
struct xfs_inode *ip,
xfs_off_t offset,
size_t size)
{
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
int error;
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
if (error)
return error;
return __xfs_setfilesize(ip, tp, offset, size);
}
STATIC int
xfs_setfilesize_ioend(
struct iomap_ioend *ioend,
int error)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
struct xfs_trans *tp = ioend->io_private;
/*
* The transaction may have been allocated in the I/O submission thread,
* thus we need to mark ourselves as being in a transaction manually.
* Similarly for freeze protection.
*/
xfs_trans_set_context(tp);
__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
/* we abort the update if there was an IO error */
if (error) {
xfs_trans_cancel(tp);
return error;
}
return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
}
/*
* IO write completion.
*/
STATIC void
xfs_end_ioend(
struct iomap_ioend *ioend)
{
struct xfs_inode *ip = XFS_I(ioend->io_inode);
xfs_off_t offset = ioend->io_offset;
size_t size = ioend->io_size;
unsigned int nofs_flag;
int error;
/*
* We can allocate memory here while doing writeback on behalf of
* memory reclaim. To avoid memory allocation deadlocks set the
* task-wide nofs context for the following operations.
*/
nofs_flag = memalloc_nofs_save();
/*
* Just clean up the in-memory strutures if the fs has been shut down.
*/
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
error = -EIO;
goto done;
}
/*
* Clean up any COW blocks on an I/O error.
*/
error = blk_status_to_errno(ioend->io_bio->bi_status);
if (unlikely(error)) {
if (ioend->io_flags & IOMAP_F_SHARED)
xfs_reflink_cancel_cow_range(ip, offset, size, true);
goto done;
}
/*
* Success: commit the COW or unwritten blocks if needed.
*/
if (ioend->io_flags & IOMAP_F_SHARED)
error = xfs_reflink_end_cow(ip, offset, size);
else if (ioend->io_type == IOMAP_UNWRITTEN)
error = xfs_iomap_write_unwritten(ip, offset, size, false);
else
ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_private);
done:
if (ioend->io_private)
error = xfs_setfilesize_ioend(ioend, error);
iomap_finish_ioends(ioend, error);
memalloc_nofs_restore(nofs_flag);
}
/*
* If the to be merged ioend has a preallocated transaction for file
* size updates we need to ensure the ioend it is merged into also
* has one. If it already has one we can simply cancel the transaction
* as it is guaranteed to be clean.
*/
static void
xfs_ioend_merge_private(
struct iomap_ioend *ioend,
struct iomap_ioend *next)
{
if (!ioend->io_private) {
ioend->io_private = next->io_private;
next->io_private = NULL;
} else {
xfs_setfilesize_ioend(next, -ECANCELED);
}
}
/* Finish all pending io completions. */
void
xfs_end_io(
struct work_struct *work)
{
struct xfs_inode *ip =
container_of(work, struct xfs_inode, i_ioend_work);
struct iomap_ioend *ioend;
struct list_head tmp;
unsigned long flags;
spin_lock_irqsave(&ip->i_ioend_lock, flags);
list_replace_init(&ip->i_ioend_list, &tmp);
spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
iomap_sort_ioends(&tmp);
while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
io_list))) {
list_del_init(&ioend->io_list);
iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private);
xfs_end_ioend(ioend);
}
}
static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend)
{
return ioend->io_private ||
ioend->io_type == IOMAP_UNWRITTEN ||
(ioend->io_flags & IOMAP_F_SHARED);
}
STATIC void
xfs_end_bio(
struct bio *bio)
{
struct iomap_ioend *ioend = bio->bi_private;
struct xfs_inode *ip = XFS_I(ioend->io_inode);
unsigned long flags;
ASSERT(xfs_ioend_needs_workqueue(ioend));
spin_lock_irqsave(&ip->i_ioend_lock, flags);
if (list_empty(&ip->i_ioend_list))
WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
&ip->i_ioend_work));
list_add_tail(&ioend->io_list, &ip->i_ioend_list);
spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
}
/*
* Fast revalidation of the cached writeback mapping. Return true if the current
* mapping is valid, false otherwise.
*/
static bool
xfs_imap_valid(
struct iomap_writepage_ctx *wpc,
struct xfs_inode *ip,
loff_t offset)
{
if (offset < wpc->iomap.offset ||
offset >= wpc->iomap.offset + wpc->iomap.length)
return false;
/*
* If this is a COW mapping, it is sufficient to check that the mapping
* covers the offset. Be careful to check this first because the caller
* can revalidate a COW mapping without updating the data seqno.
*/
if (wpc->iomap.flags & IOMAP_F_SHARED)
return true;
/*
* This is not a COW mapping. Check the sequence number of the data fork
* because concurrent changes could have invalidated the extent. Check
* the COW fork because concurrent changes since the last time we
* checked (and found nothing at this offset) could have added
* overlapping blocks.
*/
if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq))
return false;
if (xfs_inode_has_cow_data(ip) &&
XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq))
return false;
return true;
}
/*
* Pass in a dellalloc extent and convert it to real extents, return the real
* extent that maps offset_fsb in wpc->iomap.
*
* The current page is held locked so nothing could have removed the block
* backing offset_fsb, although it could have moved from the COW to the data
* fork by another thread.
*/
static int
xfs_convert_blocks(
struct iomap_writepage_ctx *wpc,
struct xfs_inode *ip,
int whichfork,
loff_t offset)
{
int error;
unsigned *seq;
if (whichfork == XFS_COW_FORK)
seq = &XFS_WPC(wpc)->cow_seq;
else
seq = &XFS_WPC(wpc)->data_seq;
/*
* Attempt to allocate whatever delalloc extent currently backs offset
* and put the result into wpc->iomap. Allocate in a loop because it
* may take several attempts to allocate real blocks for a contiguous
* delalloc extent if free space is sufficiently fragmented.
*/
do {
error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
&wpc->iomap, seq);
if (error)
return error;
} while (wpc->iomap.offset + wpc->iomap.length <= offset);
return 0;
}
static int
xfs_map_blocks(
struct iomap_writepage_ctx *wpc,
struct inode *inode,
loff_t offset)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t count = i_blocksize(inode);
xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
xfs_fileoff_t cow_fsb;
int whichfork;
struct xfs_bmbt_irec imap;
struct xfs_iext_cursor icur;
int retries = 0;
int error = 0;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
/*
* COW fork blocks can overlap data fork blocks even if the blocks
* aren't shared. COW I/O always takes precedent, so we must always
* check for overlap on reflink inodes unless the mapping is already a
* COW one, or the COW fork hasn't changed from the last time we looked
* at it.
*
* It's safe to check the COW fork if_seq here without the ILOCK because
* we've indirectly protected against concurrent updates: writeback has
* the page locked, which prevents concurrent invalidations by reflink
* and directio and prevents concurrent buffered writes to the same
* page. Changes to if_seq always happen under i_lock, which protects
* against concurrent updates and provides a memory barrier on the way
* out that ensures that we always see the current value.
*/
if (xfs_imap_valid(wpc, ip, offset))
return 0;
/*
* If we don't have a valid map, now it's time to get a new one for this
* offset. This will convert delayed allocations (including COW ones)
* into real extents. If we return without a valid map, it means we
* landed in a hole and we skip the block.
*/
retry:
cow_fsb = NULLFILEOFF;
whichfork = XFS_DATA_FORK;
xfs_ilock(ip, XFS_ILOCK_SHARED);
ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
(ip->i_df.if_flags & XFS_IFEXTENTS));
/*
* Check if this is offset is covered by a COW extents, and if yes use
* it directly instead of looking up anything in the data fork.
*/
if (xfs_inode_has_cow_data(ip) &&
xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
cow_fsb = imap.br_startoff;
if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
whichfork = XFS_COW_FORK;
goto allocate_blocks;
}
/*
* No COW extent overlap. Revalidate now that we may have updated
* ->cow_seq. If the data mapping is still valid, we're done.
*/
if (xfs_imap_valid(wpc, ip, offset)) {
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return 0;
}
/*
* If we don't have a valid map, now it's time to get a new one for this
* offset. This will convert delayed allocations (including COW ones)
* into real extents.
*/
if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
imap.br_startoff = end_fsb; /* fake a hole past EOF */
XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
/* landed in a hole or beyond EOF? */
if (imap.br_startoff > offset_fsb) {
imap.br_blockcount = imap.br_startoff - offset_fsb;
imap.br_startoff = offset_fsb;
imap.br_startblock = HOLESTARTBLOCK;
imap.br_state = XFS_EXT_NORM;
}
/*
* Truncate to the next COW extent if there is one. This is the only
* opportunity to do this because we can skip COW fork lookups for the
* subsequent blocks in the mapping; however, the requirement to treat
* the COW range separately remains.
*/
if (cow_fsb != NULLFILEOFF &&
cow_fsb < imap.br_startoff + imap.br_blockcount)
imap.br_blockcount = cow_fsb - imap.br_startoff;
/* got a delalloc extent? */
if (imap.br_startblock != HOLESTARTBLOCK &&
isnullstartblock(imap.br_startblock))
goto allocate_blocks;
xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0);
trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
return 0;
allocate_blocks:
error = xfs_convert_blocks(wpc, ip, whichfork, offset);
if (error) {
/*
* If we failed to find the extent in the COW fork we might have
* raced with a COW to data fork conversion or truncate.
* Restart the lookup to catch the extent in the data fork for
* the former case, but prevent additional retries to avoid
* looping forever for the latter case.
*/
if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
goto retry;
ASSERT(error != -EAGAIN);
return error;
}
/*
* Due to merging the return real extent might be larger than the
* original delalloc one. Trim the return extent to the next COW
* boundary again to force a re-lookup.
*/
if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
wpc->iomap.length = cow_offset - wpc->iomap.offset;
}
ASSERT(wpc->iomap.offset <= offset);
ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
return 0;
}
static int
xfs_prepare_ioend(
struct iomap_ioend *ioend,
int status)
{
unsigned int nofs_flag;
/*
* We can allocate memory here while doing writeback on behalf of
* memory reclaim. To avoid memory allocation deadlocks set the
* task-wide nofs context for the following operations.
*/
nofs_flag = memalloc_nofs_save();
/* Convert CoW extents to regular */
if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
ioend->io_offset, ioend->io_size);
}
/* Reserve log space if we might write beyond the on-disk inode size. */
if (!status &&
((ioend->io_flags & IOMAP_F_SHARED) ||
ioend->io_type != IOMAP_UNWRITTEN) &&
xfs_ioend_is_append(ioend) &&
!ioend->io_private)
status = xfs_setfilesize_trans_alloc(ioend);
memalloc_nofs_restore(nofs_flag);
if (xfs_ioend_needs_workqueue(ioend))
ioend->io_bio->bi_end_io = xfs_end_bio;
return status;
}
/*
* If the page has delalloc blocks on it, we need to punch them out before we
* invalidate the page. If we don't, we leave a stale delalloc mapping on the
* inode that can trip up a later direct I/O read operation on the same region.
*
* We prevent this by truncating away the delalloc regions on the page. Because
* they are delalloc, we can do this without needing a transaction. Indeed - if
* we get ENOSPC errors, we have to be able to do this truncation without a
* transaction as there is no space left for block reservation (typically why we
* see a ENOSPC in writeback).
*/
static void
xfs_discard_page(
struct page *page,
loff_t fileoff)
{
struct inode *inode = page->mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
unsigned int pageoff = offset_in_page(fileoff);
xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, fileoff);
xfs_fileoff_t pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff);
int error;
if (XFS_FORCED_SHUTDOWN(mp))
goto out_invalidate;
xfs_alert_ratelimited(mp,
"page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
page, ip->i_ino, fileoff);
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
i_blocks_per_page(inode, page) - pageoff_fsb);
if (error && !XFS_FORCED_SHUTDOWN(mp))
xfs_alert(mp, "page discard unable to remove delalloc mapping.");
out_invalidate:
iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff);
}
static const struct iomap_writeback_ops xfs_writeback_ops = {
.map_blocks = xfs_map_blocks,
.prepare_ioend = xfs_prepare_ioend,
.discard_page = xfs_discard_page,
};
STATIC int
xfs_vm_writepage(
struct page *page,
struct writeback_control *wbc)
{
struct xfs_writepage_ctx wpc = { };
if (WARN_ON_ONCE(current->journal_info)) {
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops);
}
STATIC int
xfs_vm_writepages(
struct address_space *mapping,
struct writeback_control *wbc)
{
struct xfs_writepage_ctx wpc = { };
/*
* Writing back data in a transaction context can result in recursive
* transactions. This is bad, so issue a warning and get out of here.
*/
if (WARN_ON_ONCE(current->journal_info))
return 0;
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
}
STATIC int
xfs_dax_writepages(
struct address_space *mapping,
struct writeback_control *wbc)
{
struct xfs_inode *ip = XFS_I(mapping->host);
xfs_iflags_clear(ip, XFS_ITRUNCATED);
return dax_writeback_mapping_range(mapping,
xfs_inode_buftarg(ip)->bt_daxdev, wbc);
}
STATIC sector_t
xfs_vm_bmap(
struct address_space *mapping,
sector_t block)
{
struct xfs_inode *ip = XFS_I(mapping->host);
trace_xfs_vm_bmap(ip);
/*
* The swap code (ab-)uses ->bmap to get a block mapping and then
* bypasses the file system for actual I/O. We really can't allow
* that on reflinks inodes, so we have to skip out here. And yes,
* 0 is the magic code for a bmap error.
*
* Since we don't pass back blockdev info, we can't return bmap
* information for rt files either.
*/
if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
return 0;
return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
}
STATIC int
xfs_vm_readpage(
struct file *unused,
struct page *page)
{
return iomap_readpage(page, &xfs_read_iomap_ops);
}
STATIC void
xfs_vm_readahead(
struct readahead_control *rac)
{
iomap_readahead(rac, &xfs_read_iomap_ops);
}
static int
xfs_iomap_swapfile_activate(
struct swap_info_struct *sis,
struct file *swap_file,
sector_t *span)
{
sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
return iomap_swapfile_activate(sis, swap_file, span,
&xfs_read_iomap_ops);
}
const struct address_space_operations xfs_address_space_operations = {
.readpage = xfs_vm_readpage,
.readahead = xfs_vm_readahead,
.writepage = xfs_vm_writepage,
.writepages = xfs_vm_writepages,
.set_page_dirty = iomap_set_page_dirty,
.releasepage = iomap_releasepage,
.invalidatepage = iomap_invalidatepage,
.bmap = xfs_vm_bmap,
.direct_IO = noop_direct_IO,
.migratepage = iomap_migrate_page,
.is_partially_uptodate = iomap_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
.swap_activate = xfs_iomap_swapfile_activate,
};
const struct address_space_operations xfs_dax_aops = {
.writepages = xfs_dax_writepages,
.direct_IO = noop_direct_IO,
.set_page_dirty = noop_set_page_dirty,
.invalidatepage = noop_invalidatepage,
.swap_activate = xfs_iomap_swapfile_activate,
};