1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-23 00:20:52 -05:00
linux/drivers/leds/leds-sun50i-a100.c
Andy Shevchenko 3b29c7b9f7 leds: sun50i-a100: Use match_string() helper to simplify the code
match_string() returns the array index of a matching string.
Use it instead of the open-coded implementation.

Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Jernej Skrabec <jernej.skrabec@gmail.com>
Link: https://lore.kernel.org/r/20240426152515.872917-1-andriy.shevchenko@linux.intel.com
Signed-off-by: Lee Jones <lee@kernel.org>
2024-05-02 18:06:30 +01:00

582 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021-2023 Samuel Holland <samuel@sholland.org>
*
* Partly based on drivers/leds/leds-turris-omnia.c, which is:
* Copyright (c) 2020 by Marek Behún <kabel@kernel.org>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/led-class-multicolor.h>
#include <linux/leds.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/property.h>
#include <linux/reset.h>
#include <linux/spinlock.h>
#define LEDC_CTRL_REG 0x0000
#define LEDC_CTRL_REG_DATA_LENGTH GENMASK(28, 16)
#define LEDC_CTRL_REG_RGB_MODE GENMASK(8, 6)
#define LEDC_CTRL_REG_LEDC_EN BIT(0)
#define LEDC_T01_TIMING_CTRL_REG 0x0004
#define LEDC_T01_TIMING_CTRL_REG_T1H GENMASK(26, 21)
#define LEDC_T01_TIMING_CTRL_REG_T1L GENMASK(20, 16)
#define LEDC_T01_TIMING_CTRL_REG_T0H GENMASK(10, 6)
#define LEDC_T01_TIMING_CTRL_REG_T0L GENMASK(5, 0)
#define LEDC_RESET_TIMING_CTRL_REG 0x000c
#define LEDC_RESET_TIMING_CTRL_REG_TR GENMASK(28, 16)
#define LEDC_RESET_TIMING_CTRL_REG_LED_NUM GENMASK(9, 0)
#define LEDC_DATA_REG 0x0014
#define LEDC_DMA_CTRL_REG 0x0018
#define LEDC_DMA_CTRL_REG_DMA_EN BIT(5)
#define LEDC_DMA_CTRL_REG_FIFO_TRIG_LEVEL GENMASK(4, 0)
#define LEDC_INT_CTRL_REG 0x001c
#define LEDC_INT_CTRL_REG_GLOBAL_INT_EN BIT(5)
#define LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN BIT(1)
#define LEDC_INT_CTRL_REG_TRANS_FINISH_INT_EN BIT(0)
#define LEDC_INT_STS_REG 0x0020
#define LEDC_INT_STS_REG_FIFO_WLW GENMASK(15, 10)
#define LEDC_INT_STS_REG_FIFO_CPUREQ_INT BIT(1)
#define LEDC_INT_STS_REG_TRANS_FINISH_INT BIT(0)
#define LEDC_FIFO_DEPTH 32U
#define LEDC_MAX_LEDS 1024
#define LEDC_CHANNELS_PER_LED 3 /* RGB */
#define LEDS_TO_BYTES(n) ((n) * sizeof(u32))
struct sun50i_a100_ledc_led {
struct led_classdev_mc mc_cdev;
struct mc_subled subled_info[LEDC_CHANNELS_PER_LED];
u32 addr;
};
#define to_ledc_led(mc) container_of(mc, struct sun50i_a100_ledc_led, mc_cdev)
struct sun50i_a100_ledc_timing {
u32 t0h_ns;
u32 t0l_ns;
u32 t1h_ns;
u32 t1l_ns;
u32 treset_ns;
};
struct sun50i_a100_ledc {
struct device *dev;
void __iomem *base;
struct clk *bus_clk;
struct clk *mod_clk;
struct reset_control *reset;
u32 *buffer;
struct dma_chan *dma_chan;
dma_addr_t dma_handle;
unsigned int pio_length;
unsigned int pio_offset;
spinlock_t lock;
unsigned int next_length;
bool xfer_active;
u32 format;
struct sun50i_a100_ledc_timing timing;
u32 max_addr;
u32 num_leds;
struct sun50i_a100_ledc_led leds[] __counted_by(num_leds);
};
static int sun50i_a100_ledc_dma_xfer(struct sun50i_a100_ledc *priv, unsigned int length)
{
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
desc = dmaengine_prep_slave_single(priv->dma_chan, priv->dma_handle,
LEDS_TO_BYTES(length), DMA_MEM_TO_DEV, 0);
if (!desc)
return -ENOMEM;
cookie = dmaengine_submit(desc);
if (dma_submit_error(cookie))
return -EIO;
dma_async_issue_pending(priv->dma_chan);
return 0;
}
static void sun50i_a100_ledc_pio_xfer(struct sun50i_a100_ledc *priv, unsigned int fifo_used)
{
unsigned int burst, length, offset;
u32 control;
length = priv->pio_length;
offset = priv->pio_offset;
burst = min(length, LEDC_FIFO_DEPTH - fifo_used);
iowrite32_rep(priv->base + LEDC_DATA_REG, priv->buffer + offset, burst);
if (burst < length) {
priv->pio_length = length - burst;
priv->pio_offset = offset + burst;
if (!offset) {
control = readl(priv->base + LEDC_INT_CTRL_REG);
control |= LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN;
writel(control, priv->base + LEDC_INT_CTRL_REG);
}
} else {
/* Disable the request IRQ once all data is written. */
control = readl(priv->base + LEDC_INT_CTRL_REG);
control &= ~LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN;
writel(control, priv->base + LEDC_INT_CTRL_REG);
}
}
static void sun50i_a100_ledc_start_xfer(struct sun50i_a100_ledc *priv, unsigned int length)
{
bool use_dma = false;
u32 control;
if (priv->dma_chan && length > LEDC_FIFO_DEPTH) {
int ret;
ret = sun50i_a100_ledc_dma_xfer(priv, length);
if (ret)
dev_warn(priv->dev, "Failed to set up DMA (%d), using PIO\n", ret);
else
use_dma = true;
}
/* The DMA trigger level must be at least the burst length. */
control = FIELD_PREP(LEDC_DMA_CTRL_REG_DMA_EN, use_dma) |
FIELD_PREP_CONST(LEDC_DMA_CTRL_REG_FIFO_TRIG_LEVEL, LEDC_FIFO_DEPTH / 2);
writel(control, priv->base + LEDC_DMA_CTRL_REG);
control = readl(priv->base + LEDC_CTRL_REG);
control &= ~LEDC_CTRL_REG_DATA_LENGTH;
control |= FIELD_PREP(LEDC_CTRL_REG_DATA_LENGTH, length) | LEDC_CTRL_REG_LEDC_EN;
writel(control, priv->base + LEDC_CTRL_REG);
if (!use_dma) {
/* The FIFO is empty when starting a new transfer. */
unsigned int fifo_used = 0;
priv->pio_length = length;
priv->pio_offset = 0;
sun50i_a100_ledc_pio_xfer(priv, fifo_used);
}
}
static irqreturn_t sun50i_a100_ledc_irq(int irq, void *data)
{
struct sun50i_a100_ledc *priv = data;
u32 status;
status = readl(priv->base + LEDC_INT_STS_REG);
if (status & LEDC_INT_STS_REG_TRANS_FINISH_INT) {
unsigned int next_length;
spin_lock(&priv->lock);
/* If another transfer is queued, dequeue and start it. */
next_length = priv->next_length;
if (next_length)
priv->next_length = 0;
else
priv->xfer_active = false;
spin_unlock(&priv->lock);
if (next_length)
sun50i_a100_ledc_start_xfer(priv, next_length);
} else if (status & LEDC_INT_STS_REG_FIFO_CPUREQ_INT) {
/* Continue the current transfer. */
sun50i_a100_ledc_pio_xfer(priv, FIELD_GET(LEDC_INT_STS_REG_FIFO_WLW, status));
}
/* Clear the W1C status bits. */
writel(status, priv->base + LEDC_INT_STS_REG);
return IRQ_HANDLED;
}
static void sun50i_a100_ledc_brightness_set(struct led_classdev *cdev,
enum led_brightness brightness)
{
struct sun50i_a100_ledc *priv = dev_get_drvdata(cdev->dev->parent);
struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev);
struct sun50i_a100_ledc_led *led = to_ledc_led(mc_cdev);
unsigned int next_length;
unsigned long flags;
bool xfer_active;
led_mc_calc_color_components(mc_cdev, brightness);
priv->buffer[led->addr] = led->subled_info[0].brightness << 16 |
led->subled_info[1].brightness << 8 |
led->subled_info[2].brightness;
spin_lock_irqsave(&priv->lock, flags);
/* Start, enqueue, or extend an enqueued transfer, as appropriate. */
next_length = max(priv->next_length, led->addr + 1);
xfer_active = priv->xfer_active;
if (xfer_active)
priv->next_length = next_length;
else
priv->xfer_active = true;
spin_unlock_irqrestore(&priv->lock, flags);
if (!xfer_active)
sun50i_a100_ledc_start_xfer(priv, next_length);
}
static const char *const sun50i_a100_ledc_formats[] = {
"rgb", "rbg", "grb", "gbr", "brg", "bgr",
};
static int sun50i_a100_ledc_parse_format(struct device *dev,
struct sun50i_a100_ledc *priv)
{
const char *format = "grb";
int i;
device_property_read_string(dev, "allwinner,pixel-format", &format);
i = match_string(sun50i_a100_ledc_formats, ARRAY_SIZE(sun50i_a100_ledc_formats), format);
if (i < 0)
return dev_err_probe(dev, i, "Bad pixel format '%s'\n", format);
priv->format = i;
return 0;
}
static void sun50i_a100_ledc_set_format(struct sun50i_a100_ledc *priv)
{
u32 control;
control = readl(priv->base + LEDC_CTRL_REG);
control &= ~LEDC_CTRL_REG_RGB_MODE;
control |= FIELD_PREP(LEDC_CTRL_REG_RGB_MODE, priv->format);
writel(control, priv->base + LEDC_CTRL_REG);
}
static const struct sun50i_a100_ledc_timing sun50i_a100_ledc_default_timing = {
.t0h_ns = 336,
.t0l_ns = 840,
.t1h_ns = 882,
.t1l_ns = 294,
.treset_ns = 300000,
};
static int sun50i_a100_ledc_parse_timing(struct device *dev,
struct sun50i_a100_ledc *priv)
{
struct sun50i_a100_ledc_timing *timing = &priv->timing;
*timing = sun50i_a100_ledc_default_timing;
device_property_read_u32(dev, "allwinner,t0h-ns", &timing->t0h_ns);
device_property_read_u32(dev, "allwinner,t0l-ns", &timing->t0l_ns);
device_property_read_u32(dev, "allwinner,t1h-ns", &timing->t1h_ns);
device_property_read_u32(dev, "allwinner,t1l-ns", &timing->t1l_ns);
device_property_read_u32(dev, "allwinner,treset-ns", &timing->treset_ns);
return 0;
}
static void sun50i_a100_ledc_set_timing(struct sun50i_a100_ledc *priv)
{
const struct sun50i_a100_ledc_timing *timing = &priv->timing;
unsigned long mod_freq = clk_get_rate(priv->mod_clk);
u32 cycle_ns;
u32 control;
if (!mod_freq)
return;
cycle_ns = NSEC_PER_SEC / mod_freq;
control = FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T1H, timing->t1h_ns / cycle_ns) |
FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T1L, timing->t1l_ns / cycle_ns) |
FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T0H, timing->t0h_ns / cycle_ns) |
FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T0L, timing->t0l_ns / cycle_ns);
writel(control, priv->base + LEDC_T01_TIMING_CTRL_REG);
control = FIELD_PREP(LEDC_RESET_TIMING_CTRL_REG_TR, timing->treset_ns / cycle_ns) |
FIELD_PREP(LEDC_RESET_TIMING_CTRL_REG_LED_NUM, priv->max_addr);
writel(control, priv->base + LEDC_RESET_TIMING_CTRL_REG);
}
static int sun50i_a100_ledc_resume(struct device *dev)
{
struct sun50i_a100_ledc *priv = dev_get_drvdata(dev);
int ret;
ret = reset_control_deassert(priv->reset);
if (ret)
return ret;
ret = clk_prepare_enable(priv->bus_clk);
if (ret)
goto err_assert_reset;
ret = clk_prepare_enable(priv->mod_clk);
if (ret)
goto err_disable_bus_clk;
sun50i_a100_ledc_set_format(priv);
sun50i_a100_ledc_set_timing(priv);
writel(LEDC_INT_CTRL_REG_GLOBAL_INT_EN | LEDC_INT_CTRL_REG_TRANS_FINISH_INT_EN,
priv->base + LEDC_INT_CTRL_REG);
return 0;
err_disable_bus_clk:
clk_disable_unprepare(priv->bus_clk);
err_assert_reset:
reset_control_assert(priv->reset);
return ret;
}
static int sun50i_a100_ledc_suspend(struct device *dev)
{
struct sun50i_a100_ledc *priv = dev_get_drvdata(dev);
/* Wait for all transfers to complete. */
for (;;) {
unsigned long flags;
bool xfer_active;
spin_lock_irqsave(&priv->lock, flags);
xfer_active = priv->xfer_active;
spin_unlock_irqrestore(&priv->lock, flags);
if (!xfer_active)
break;
msleep(1);
}
clk_disable_unprepare(priv->mod_clk);
clk_disable_unprepare(priv->bus_clk);
reset_control_assert(priv->reset);
return 0;
}
static void sun50i_a100_ledc_dma_cleanup(void *data)
{
struct sun50i_a100_ledc *priv = data;
dma_release_channel(priv->dma_chan);
}
static int sun50i_a100_ledc_probe(struct platform_device *pdev)
{
struct dma_slave_config dma_cfg = {};
struct led_init_data init_data = {};
struct sun50i_a100_ledc_led *led;
struct device *dev = &pdev->dev;
struct sun50i_a100_ledc *priv;
struct fwnode_handle *child;
struct resource *mem;
u32 max_addr = 0;
u32 num_leds = 0;
int irq, ret;
/*
* The maximum LED address must be known in sun50i_a100_ledc_resume() before
* class device registration, so parse and validate the subnodes up front.
*/
device_for_each_child_node(dev, child) {
u32 addr, color;
ret = fwnode_property_read_u32(child, "reg", &addr);
if (ret || addr >= LEDC_MAX_LEDS) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL, "'reg' must be between 0 and %d\n",
LEDC_MAX_LEDS - 1);
}
ret = fwnode_property_read_u32(child, "color", &color);
if (ret || color != LED_COLOR_ID_RGB) {
fwnode_handle_put(child);
return dev_err_probe(dev, -EINVAL, "'color' must be LED_COLOR_ID_RGB\n");
}
max_addr = max(max_addr, addr);
num_leds++;
}
if (!num_leds)
return -ENODEV;
priv = devm_kzalloc(dev, struct_size(priv, leds, num_leds), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->max_addr = max_addr;
priv->num_leds = num_leds;
spin_lock_init(&priv->lock);
dev_set_drvdata(dev, priv);
ret = sun50i_a100_ledc_parse_format(dev, priv);
if (ret)
return ret;
ret = sun50i_a100_ledc_parse_timing(dev, priv);
if (ret)
return ret;
priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
if (IS_ERR(priv->base))
return PTR_ERR(priv->base);
priv->bus_clk = devm_clk_get(dev, "bus");
if (IS_ERR(priv->bus_clk))
return PTR_ERR(priv->bus_clk);
priv->mod_clk = devm_clk_get(dev, "mod");
if (IS_ERR(priv->mod_clk))
return PTR_ERR(priv->mod_clk);
priv->reset = devm_reset_control_get_exclusive(dev, NULL);
if (IS_ERR(priv->reset))
return PTR_ERR(priv->reset);
priv->dma_chan = dma_request_chan(dev, "tx");
if (IS_ERR(priv->dma_chan)) {
if (PTR_ERR(priv->dma_chan) != -ENODEV)
return PTR_ERR(priv->dma_chan);
priv->dma_chan = NULL;
priv->buffer = devm_kzalloc(dev, LEDS_TO_BYTES(LEDC_MAX_LEDS), GFP_KERNEL);
if (!priv->buffer)
return -ENOMEM;
} else {
ret = devm_add_action_or_reset(dev, sun50i_a100_ledc_dma_cleanup, priv);
if (ret)
return ret;
dma_cfg.dst_addr = mem->start + LEDC_DATA_REG;
dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_cfg.dst_maxburst = LEDC_FIFO_DEPTH / 2;
ret = dmaengine_slave_config(priv->dma_chan, &dma_cfg);
if (ret)
return ret;
priv->buffer = dmam_alloc_attrs(dmaengine_get_dma_device(priv->dma_chan),
LEDS_TO_BYTES(LEDC_MAX_LEDS), &priv->dma_handle,
GFP_KERNEL, DMA_ATTR_WRITE_COMBINE);
if (!priv->buffer)
return -ENOMEM;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(dev, irq, sun50i_a100_ledc_irq, 0, dev_name(dev), priv);
if (ret)
return ret;
ret = sun50i_a100_ledc_resume(dev);
if (ret)
return ret;
led = priv->leds;
device_for_each_child_node(dev, child) {
struct led_classdev *cdev;
/* The node was already validated above. */
fwnode_property_read_u32(child, "reg", &led->addr);
led->subled_info[0].color_index = LED_COLOR_ID_RED;
led->subled_info[0].channel = 0;
led->subled_info[1].color_index = LED_COLOR_ID_GREEN;
led->subled_info[1].channel = 1;
led->subled_info[2].color_index = LED_COLOR_ID_BLUE;
led->subled_info[2].channel = 2;
led->mc_cdev.num_colors = ARRAY_SIZE(led->subled_info);
led->mc_cdev.subled_info = led->subled_info;
cdev = &led->mc_cdev.led_cdev;
cdev->max_brightness = U8_MAX;
cdev->brightness_set = sun50i_a100_ledc_brightness_set;
init_data.fwnode = child;
ret = led_classdev_multicolor_register_ext(dev, &led->mc_cdev, &init_data);
if (ret) {
dev_err_probe(dev, ret, "Failed to register multicolor LED %u", led->addr);
goto err_put_child;
}
led++;
}
dev_info(dev, "Registered %u LEDs\n", num_leds);
return 0;
err_put_child:
fwnode_handle_put(child);
while (led-- > priv->leds)
led_classdev_multicolor_unregister(&led->mc_cdev);
sun50i_a100_ledc_suspend(&pdev->dev);
return ret;
}
static void sun50i_a100_ledc_remove(struct platform_device *pdev)
{
struct sun50i_a100_ledc *priv = platform_get_drvdata(pdev);
for (u32 i = 0; i < priv->num_leds; i++)
led_classdev_multicolor_unregister(&priv->leds[i].mc_cdev);
sun50i_a100_ledc_suspend(&pdev->dev);
}
static const struct of_device_id sun50i_a100_ledc_of_match[] = {
{ .compatible = "allwinner,sun50i-a100-ledc" },
{}
};
MODULE_DEVICE_TABLE(of, sun50i_a100_ledc_of_match);
static DEFINE_SIMPLE_DEV_PM_OPS(sun50i_a100_ledc_pm,
sun50i_a100_ledc_suspend,
sun50i_a100_ledc_resume);
static struct platform_driver sun50i_a100_ledc_driver = {
.probe = sun50i_a100_ledc_probe,
.remove_new = sun50i_a100_ledc_remove,
.shutdown = sun50i_a100_ledc_remove,
.driver = {
.name = "sun50i-a100-ledc",
.of_match_table = sun50i_a100_ledc_of_match,
.pm = pm_ptr(&sun50i_a100_ledc_pm),
},
};
module_platform_driver(sun50i_a100_ledc_driver);
MODULE_AUTHOR("Samuel Holland <samuel@sholland.org>");
MODULE_DESCRIPTION("Allwinner A100 LED controller driver");
MODULE_LICENSE("GPL");