mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-24 17:23:25 -05:00
3e1547116f
This makes an array of strings available, like our other enums. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
437 lines
11 KiB
C
437 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Moving/copying garbage collector
|
|
*
|
|
* Copyright 2012 Google, Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc_background.h"
|
|
#include "alloc_foreground.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_update.h"
|
|
#include "buckets.h"
|
|
#include "clock.h"
|
|
#include "disk_groups.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "eytzinger.h"
|
|
#include "io.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "movinggc.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/wait.h>
|
|
|
|
static int bucket_offset_cmp(const void *_l, const void *_r, size_t size)
|
|
{
|
|
const struct copygc_heap_entry *l = _l;
|
|
const struct copygc_heap_entry *r = _r;
|
|
|
|
return cmp_int(l->dev, r->dev) ?:
|
|
cmp_int(l->offset, r->offset);
|
|
}
|
|
|
|
static enum data_cmd copygc_pred(struct bch_fs *c, void *arg,
|
|
struct bkey_s_c k,
|
|
struct bch_io_opts *io_opts,
|
|
struct data_opts *data_opts)
|
|
{
|
|
copygc_heap *h = &c->copygc_heap;
|
|
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
|
|
const union bch_extent_entry *entry;
|
|
struct extent_ptr_decoded p = { 0 };
|
|
|
|
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev);
|
|
struct copygc_heap_entry search = {
|
|
.dev = p.ptr.dev,
|
|
.offset = p.ptr.offset,
|
|
};
|
|
ssize_t i;
|
|
|
|
if (p.ptr.cached)
|
|
continue;
|
|
|
|
i = eytzinger0_find_le(h->data, h->used,
|
|
sizeof(h->data[0]),
|
|
bucket_offset_cmp, &search);
|
|
#if 0
|
|
/* eytzinger search verify code: */
|
|
ssize_t j = -1, k;
|
|
|
|
for (k = 0; k < h->used; k++)
|
|
if (h->data[k].offset <= ptr->offset &&
|
|
(j < 0 || h->data[k].offset > h->data[j].offset))
|
|
j = k;
|
|
|
|
BUG_ON(i != j);
|
|
#endif
|
|
if (i >= 0 &&
|
|
p.ptr.dev == h->data[i].dev &&
|
|
p.ptr.offset < h->data[i].offset + ca->mi.bucket_size &&
|
|
p.ptr.gen == h->data[i].gen) {
|
|
/*
|
|
* We need to use the journal reserve here, because
|
|
* - journal reclaim depends on btree key cache
|
|
* flushing to make forward progress,
|
|
* - which has to make forward progress when the
|
|
* journal is pre-reservation full,
|
|
* - and depends on allocation - meaning allocator and
|
|
* copygc
|
|
*/
|
|
|
|
data_opts->target = io_opts->background_target;
|
|
data_opts->nr_replicas = 1;
|
|
data_opts->btree_insert_flags = BTREE_INSERT_USE_RESERVE|
|
|
BTREE_INSERT_JOURNAL_RESERVED;
|
|
data_opts->rewrite_dev = p.ptr.dev;
|
|
|
|
if (p.has_ec)
|
|
data_opts->nr_replicas += p.ec.redundancy;
|
|
|
|
return DATA_REWRITE;
|
|
}
|
|
}
|
|
|
|
return DATA_SKIP;
|
|
}
|
|
|
|
static bool have_copygc_reserve(struct bch_dev *ca)
|
|
{
|
|
bool ret;
|
|
|
|
spin_lock(&ca->fs->freelist_lock);
|
|
ret = fifo_full(&ca->free[RESERVE_movinggc]) ||
|
|
ca->allocator_state != ALLOCATOR_running;
|
|
spin_unlock(&ca->fs->freelist_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int fragmentation_cmp(copygc_heap *heap,
|
|
struct copygc_heap_entry l,
|
|
struct copygc_heap_entry r)
|
|
{
|
|
return cmp_int(l.fragmentation, r.fragmentation);
|
|
}
|
|
|
|
static int walk_buckets_to_copygc(struct bch_fs *c)
|
|
{
|
|
copygc_heap *h = &c->copygc_heap;
|
|
struct btree_trans trans;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
struct bkey_alloc_unpacked u;
|
|
int ret;
|
|
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
|
|
for_each_btree_key(&trans, iter, BTREE_ID_alloc, POS_MIN,
|
|
BTREE_ITER_PREFETCH, k, ret) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, iter.pos.inode);
|
|
struct copygc_heap_entry e;
|
|
|
|
u = bch2_alloc_unpack(k);
|
|
|
|
if (u.data_type != BCH_DATA_user ||
|
|
u.dirty_sectors >= ca->mi.bucket_size ||
|
|
bch2_bucket_is_open(c, iter.pos.inode, iter.pos.offset))
|
|
continue;
|
|
|
|
e = (struct copygc_heap_entry) {
|
|
.dev = iter.pos.inode,
|
|
.gen = u.gen,
|
|
.replicas = 1 + u.stripe_redundancy,
|
|
.fragmentation = u.dirty_sectors * (1U << 15)
|
|
/ ca->mi.bucket_size,
|
|
.sectors = u.dirty_sectors,
|
|
.offset = bucket_to_sector(ca, iter.pos.offset),
|
|
};
|
|
heap_add_or_replace(h, e, -fragmentation_cmp, NULL);
|
|
|
|
}
|
|
bch2_trans_iter_exit(&trans, &iter);
|
|
|
|
bch2_trans_exit(&trans);
|
|
return ret;
|
|
}
|
|
|
|
static int bucket_inorder_cmp(const void *_l, const void *_r)
|
|
{
|
|
const struct copygc_heap_entry *l = _l;
|
|
const struct copygc_heap_entry *r = _r;
|
|
|
|
return cmp_int(l->dev, r->dev) ?: cmp_int(l->offset, r->offset);
|
|
}
|
|
|
|
static int check_copygc_was_done(struct bch_fs *c,
|
|
u64 *sectors_not_moved,
|
|
u64 *buckets_not_moved)
|
|
{
|
|
copygc_heap *h = &c->copygc_heap;
|
|
struct btree_trans trans;
|
|
struct btree_iter iter;
|
|
struct bkey_s_c k;
|
|
struct bkey_alloc_unpacked u;
|
|
struct copygc_heap_entry *i;
|
|
int ret = 0;
|
|
|
|
sort(h->data, h->used, sizeof(h->data[0]), bucket_inorder_cmp, NULL);
|
|
|
|
bch2_trans_init(&trans, c, 0, 0);
|
|
bch2_trans_iter_init(&trans, &iter, BTREE_ID_alloc, POS_MIN, 0);
|
|
|
|
for (i = h->data; i < h->data + h->used; i++) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, i->dev);
|
|
|
|
bch2_btree_iter_set_pos(&iter, POS(i->dev, sector_to_bucket(ca, i->offset)));
|
|
|
|
ret = lockrestart_do(&trans,
|
|
bkey_err(k = bch2_btree_iter_peek_slot(&iter)));
|
|
if (ret)
|
|
break;
|
|
|
|
u = bch2_alloc_unpack(k);
|
|
|
|
if (u.gen == i->gen && u.dirty_sectors) {
|
|
*sectors_not_moved += u.dirty_sectors;
|
|
*buckets_not_moved += 1;
|
|
}
|
|
}
|
|
bch2_trans_iter_exit(&trans, &iter);
|
|
|
|
bch2_trans_exit(&trans);
|
|
return ret;
|
|
}
|
|
|
|
static int bch2_copygc(struct bch_fs *c)
|
|
{
|
|
copygc_heap *h = &c->copygc_heap;
|
|
struct copygc_heap_entry e, *i;
|
|
struct bch_move_stats move_stats;
|
|
u64 sectors_to_move = 0, sectors_to_write = 0, sectors_not_moved = 0;
|
|
u64 sectors_reserved = 0;
|
|
u64 buckets_to_move, buckets_not_moved = 0;
|
|
struct bch_dev *ca;
|
|
unsigned dev_idx;
|
|
size_t heap_size = 0;
|
|
int ret;
|
|
|
|
bch_move_stats_init(&move_stats, "copygc");
|
|
|
|
/*
|
|
* Find buckets with lowest sector counts, skipping completely
|
|
* empty buckets, by building a maxheap sorted by sector count,
|
|
* and repeatedly replacing the maximum element until all
|
|
* buckets have been visited.
|
|
*/
|
|
h->used = 0;
|
|
|
|
for_each_rw_member(ca, c, dev_idx)
|
|
heap_size += ca->mi.nbuckets >> 7;
|
|
|
|
if (h->size < heap_size) {
|
|
free_heap(&c->copygc_heap);
|
|
if (!init_heap(&c->copygc_heap, heap_size, GFP_KERNEL)) {
|
|
bch_err(c, "error allocating copygc heap");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
for_each_rw_member(ca, c, dev_idx) {
|
|
closure_wait_event(&c->freelist_wait, have_copygc_reserve(ca));
|
|
|
|
spin_lock(&ca->fs->freelist_lock);
|
|
sectors_reserved += fifo_used(&ca->free[RESERVE_movinggc]) * ca->mi.bucket_size;
|
|
spin_unlock(&ca->fs->freelist_lock);
|
|
}
|
|
|
|
ret = walk_buckets_to_copygc(c);
|
|
if (ret) {
|
|
bch2_fs_fatal_error(c, "error walking buckets to copygc!");
|
|
return ret;
|
|
}
|
|
|
|
if (!h->used) {
|
|
bch_err_ratelimited(c, "copygc requested to run but found no buckets to move!");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Our btree node allocations also come out of RESERVE_movingc:
|
|
*/
|
|
sectors_reserved = (sectors_reserved * 3) / 4;
|
|
if (!sectors_reserved) {
|
|
bch2_fs_fatal_error(c, "stuck, ran out of copygc reserve!");
|
|
return -1;
|
|
}
|
|
|
|
for (i = h->data; i < h->data + h->used; i++) {
|
|
sectors_to_move += i->sectors;
|
|
sectors_to_write += i->sectors * i->replicas;
|
|
}
|
|
|
|
while (sectors_to_write > sectors_reserved) {
|
|
BUG_ON(!heap_pop(h, e, -fragmentation_cmp, NULL));
|
|
sectors_to_write -= e.sectors * e.replicas;
|
|
}
|
|
|
|
buckets_to_move = h->used;
|
|
|
|
if (!buckets_to_move) {
|
|
bch_err_ratelimited(c, "copygc cannot run - sectors_reserved %llu!",
|
|
sectors_reserved);
|
|
return 0;
|
|
}
|
|
|
|
eytzinger0_sort(h->data, h->used,
|
|
sizeof(h->data[0]),
|
|
bucket_offset_cmp, NULL);
|
|
|
|
ret = bch2_move_data(c,
|
|
0, POS_MIN,
|
|
BTREE_ID_NR, POS_MAX,
|
|
NULL,
|
|
writepoint_ptr(&c->copygc_write_point),
|
|
copygc_pred, NULL,
|
|
&move_stats);
|
|
if (ret) {
|
|
bch_err(c, "error %i from bch2_move_data() in copygc", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = check_copygc_was_done(c, §ors_not_moved, &buckets_not_moved);
|
|
if (ret) {
|
|
bch_err(c, "error %i from check_copygc_was_done()", ret);
|
|
return ret;
|
|
}
|
|
|
|
if (sectors_not_moved)
|
|
bch_warn_ratelimited(c,
|
|
"copygc finished but %llu/%llu sectors, %llu/%llu buckets not moved (move stats: moved %llu sectors, raced %llu keys, %llu sectors)",
|
|
sectors_not_moved, sectors_to_move,
|
|
buckets_not_moved, buckets_to_move,
|
|
atomic64_read(&move_stats.sectors_moved),
|
|
atomic64_read(&move_stats.keys_raced),
|
|
atomic64_read(&move_stats.sectors_raced));
|
|
|
|
trace_copygc(c,
|
|
atomic64_read(&move_stats.sectors_moved), sectors_not_moved,
|
|
buckets_to_move, buckets_not_moved);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copygc runs when the amount of fragmented data is above some arbitrary
|
|
* threshold:
|
|
*
|
|
* The threshold at the limit - when the device is full - is the amount of space
|
|
* we reserved in bch2_recalc_capacity; we can't have more than that amount of
|
|
* disk space stranded due to fragmentation and store everything we have
|
|
* promised to store.
|
|
*
|
|
* But we don't want to be running copygc unnecessarily when the device still
|
|
* has plenty of free space - rather, we want copygc to smoothly run every so
|
|
* often and continually reduce the amount of fragmented space as the device
|
|
* fills up. So, we increase the threshold by half the current free space.
|
|
*/
|
|
unsigned long bch2_copygc_wait_amount(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned dev_idx;
|
|
s64 wait = S64_MAX, fragmented_allowed, fragmented;
|
|
|
|
for_each_rw_member(ca, c, dev_idx) {
|
|
struct bch_dev_usage usage = bch2_dev_usage_read(ca);
|
|
|
|
fragmented_allowed = ((__dev_buckets_reclaimable(ca, usage) *
|
|
ca->mi.bucket_size) >> 1);
|
|
fragmented = usage.d[BCH_DATA_user].fragmented;
|
|
|
|
wait = min(wait, max(0LL, fragmented_allowed - fragmented));
|
|
}
|
|
|
|
return wait;
|
|
}
|
|
|
|
static int bch2_copygc_thread(void *arg)
|
|
{
|
|
struct bch_fs *c = arg;
|
|
struct io_clock *clock = &c->io_clock[WRITE];
|
|
u64 last, wait;
|
|
|
|
set_freezable();
|
|
|
|
while (!kthread_should_stop()) {
|
|
cond_resched();
|
|
|
|
if (kthread_wait_freezable(c->copy_gc_enabled))
|
|
break;
|
|
|
|
last = atomic64_read(&clock->now);
|
|
wait = bch2_copygc_wait_amount(c);
|
|
|
|
if (wait > clock->max_slop) {
|
|
trace_copygc_wait(c, wait, last + wait);
|
|
c->copygc_wait = last + wait;
|
|
bch2_kthread_io_clock_wait(clock, last + wait,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
continue;
|
|
}
|
|
|
|
c->copygc_wait = 0;
|
|
|
|
if (bch2_copygc(c))
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_copygc_stop(struct bch_fs *c)
|
|
{
|
|
if (c->copygc_thread) {
|
|
kthread_stop(c->copygc_thread);
|
|
put_task_struct(c->copygc_thread);
|
|
}
|
|
c->copygc_thread = NULL;
|
|
}
|
|
|
|
int bch2_copygc_start(struct bch_fs *c)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
if (c->copygc_thread)
|
|
return 0;
|
|
|
|
if (c->opts.nochanges)
|
|
return 0;
|
|
|
|
if (bch2_fs_init_fault("copygc_start"))
|
|
return -ENOMEM;
|
|
|
|
t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name);
|
|
if (IS_ERR(t)) {
|
|
bch_err(c, "error creating copygc thread: %li", PTR_ERR(t));
|
|
return PTR_ERR(t);
|
|
}
|
|
|
|
get_task_struct(t);
|
|
|
|
c->copygc_thread = t;
|
|
wake_up_process(c->copygc_thread);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_fs_copygc_init(struct bch_fs *c)
|
|
{
|
|
}
|