1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/sound/mips/ad1843.c
Thomas Gleixner 1a59d1b8e0 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not write to the free software foundation inc
  59 temple place suite 330 boston ma 02111 1307 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1334 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:35 -07:00

547 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* AD1843 low level driver
*
* Copyright 2003 Vivien Chappelier <vivien.chappelier@linux-mips.org>
* Copyright 2008 Thomas Bogendoerfer <tsbogend@alpha.franken.de>
*
* inspired from vwsnd.c (SGI VW audio driver)
* Copyright 1999 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/ad1843.h>
/*
* AD1843 bitfield definitions. All are named as in the AD1843 data
* sheet, with ad1843_ prepended and individual bit numbers removed.
*
* E.g., bits LSS0 through LSS2 become ad1843_LSS.
*
* Only the bitfields we need are defined.
*/
struct ad1843_bitfield {
char reg;
char lo_bit;
char nbits;
};
static const struct ad1843_bitfield
ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */
ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */
ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */
ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */
ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */
ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */
ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */
ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */
ad1843_RD2M = { 3, 0, 5 }, /* Right DAC 2 Mix Gain/Atten */
ad1843_RD2MM = { 3, 7, 1 }, /* Right DAC 2 Mix Mute */
ad1843_LD2M = { 3, 8, 5 }, /* Left DAC 2 Mix Gain/Atten */
ad1843_LD2MM = { 3, 15, 1 }, /* Left DAC 2 Mix Mute */
ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */
ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */
ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */
ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */
ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */
ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */
ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */
ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */
ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */
ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */
ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */
ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */
ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */
ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */
ad1843_MPOM = { 8, 6, 1 }, /* Mono Output Mute */
ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */
ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */
ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */
ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */
ad1843_RDA2G = { 10, 0, 6 }, /* Right DAC2 Analog/Digital Gain */
ad1843_RDA2GM = { 10, 7, 1 }, /* Right DAC2 Analog Mute */
ad1843_LDA2G = { 10, 8, 6 }, /* Left DAC2 Analog/Digital Gain */
ad1843_LDA2GM = { 10, 15, 1 }, /* Left DAC2 Analog Mute */
ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */
ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */
ad1843_RDA2AM = { 12, 7, 1 }, /* Right DAC2 Digital Mute */
ad1843_LDA2AM = { 12, 15, 1 }, /* Left DAC2 Digital Mute */
ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */
ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */
ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */
ad1843_DA2C = { 15, 10, 2 }, /* DAC2 Sample Rate Source */
ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */
ad1843_C2C = { 20, 0, 16 }, /* Clock 2 Sample Rate Select */
ad1843_C3C = { 23, 0, 16 }, /* Clock 3 Sample Rate Select */
ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */
ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */
ad1843_DAMIX = { 25, 14, 1 }, /* DAC Digital Mix Enable */
ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */
ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */
ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */
ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */
ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */
ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */
ad1843_DA2F = { 26, 10, 2 }, /* DAC2 Data Format Select */
ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */
ad1843_DA2SM = { 26, 15, 1 }, /* DAC2 Stereo/Mono Mode Select */
ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */
ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */
ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */
ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */
ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */
ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */
ad1843_DDMEN = { 27, 12, 1 }, /* DAC2 to DAC1 Mix Enable */
ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */
ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */
ad1843_C3EN = { 28, 13, 1 }, /* Clock Generator 3 Enable */
ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */
/*
* The various registers of the AD1843 use three different formats for
* specifying gain. The ad1843_gain structure parameterizes the
* formats.
*/
struct ad1843_gain {
int negative; /* nonzero if gain is negative. */
const struct ad1843_bitfield *lfield;
const struct ad1843_bitfield *rfield;
const struct ad1843_bitfield *lmute;
const struct ad1843_bitfield *rmute;
};
static const struct ad1843_gain ad1843_gain_RECLEV = {
.negative = 0,
.lfield = &ad1843_LIG,
.rfield = &ad1843_RIG
};
static const struct ad1843_gain ad1843_gain_LINE = {
.negative = 1,
.lfield = &ad1843_LX1M,
.rfield = &ad1843_RX1M,
.lmute = &ad1843_LX1MM,
.rmute = &ad1843_RX1MM
};
static const struct ad1843_gain ad1843_gain_LINE_2 = {
.negative = 1,
.lfield = &ad1843_LDA2G,
.rfield = &ad1843_RDA2G,
.lmute = &ad1843_LDA2GM,
.rmute = &ad1843_RDA2GM
};
static const struct ad1843_gain ad1843_gain_MIC = {
.negative = 1,
.lfield = &ad1843_LMCM,
.rfield = &ad1843_RMCM,
.lmute = &ad1843_LMCMM,
.rmute = &ad1843_RMCMM
};
static const struct ad1843_gain ad1843_gain_PCM_0 = {
.negative = 1,
.lfield = &ad1843_LDA1G,
.rfield = &ad1843_RDA1G,
.lmute = &ad1843_LDA1GM,
.rmute = &ad1843_RDA1GM
};
static const struct ad1843_gain ad1843_gain_PCM_1 = {
.negative = 1,
.lfield = &ad1843_LD2M,
.rfield = &ad1843_RD2M,
.lmute = &ad1843_LD2MM,
.rmute = &ad1843_RD2MM
};
static const struct ad1843_gain *ad1843_gain[AD1843_GAIN_SIZE] =
{
&ad1843_gain_RECLEV,
&ad1843_gain_LINE,
&ad1843_gain_LINE_2,
&ad1843_gain_MIC,
&ad1843_gain_PCM_0,
&ad1843_gain_PCM_1,
};
/* read the current value of an AD1843 bitfield. */
static int ad1843_read_bits(struct snd_ad1843 *ad1843,
const struct ad1843_bitfield *field)
{
int w;
w = ad1843->read(ad1843->chip, field->reg);
return w >> field->lo_bit & ((1 << field->nbits) - 1);
}
/*
* write a new value to an AD1843 bitfield and return the old value.
*/
static int ad1843_write_bits(struct snd_ad1843 *ad1843,
const struct ad1843_bitfield *field,
int newval)
{
int w, mask, oldval, newbits;
w = ad1843->read(ad1843->chip, field->reg);
mask = ((1 << field->nbits) - 1) << field->lo_bit;
oldval = (w & mask) >> field->lo_bit;
newbits = (newval << field->lo_bit) & mask;
w = (w & ~mask) | newbits;
ad1843->write(ad1843->chip, field->reg, w);
return oldval;
}
/*
* ad1843_read_multi reads multiple bitfields from the same AD1843
* register. It uses a single read cycle to do it. (Reading the
* ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
* microseconds.)
*
* Called like this.
*
* ad1843_read_multi(ad1843, nfields,
* &ad1843_FIELD1, &val1,
* &ad1843_FIELD2, &val2, ...);
*/
static void ad1843_read_multi(struct snd_ad1843 *ad1843, int argcount, ...)
{
va_list ap;
const struct ad1843_bitfield *fp;
int w = 0, mask, *value, reg = -1;
va_start(ap, argcount);
while (--argcount >= 0) {
fp = va_arg(ap, const struct ad1843_bitfield *);
value = va_arg(ap, int *);
if (reg == -1) {
reg = fp->reg;
w = ad1843->read(ad1843->chip, reg);
}
mask = (1 << fp->nbits) - 1;
*value = w >> fp->lo_bit & mask;
}
va_end(ap);
}
/*
* ad1843_write_multi stores multiple bitfields into the same AD1843
* register. It uses one read and one write cycle to do it.
*
* Called like this.
*
* ad1843_write_multi(ad1843, nfields,
* &ad1843_FIELD1, val1,
* &ad1843_FIELF2, val2, ...);
*/
static void ad1843_write_multi(struct snd_ad1843 *ad1843, int argcount, ...)
{
va_list ap;
int reg;
const struct ad1843_bitfield *fp;
int value;
int w, m, mask, bits;
mask = 0;
bits = 0;
reg = -1;
va_start(ap, argcount);
while (--argcount >= 0) {
fp = va_arg(ap, const struct ad1843_bitfield *);
value = va_arg(ap, int);
if (reg == -1)
reg = fp->reg;
else
WARN_ON(reg != fp->reg);
m = ((1 << fp->nbits) - 1) << fp->lo_bit;
mask |= m;
bits |= (value << fp->lo_bit) & m;
}
va_end(ap);
if (~mask & 0xFFFF)
w = ad1843->read(ad1843->chip, reg);
else
w = 0;
w = (w & ~mask) | bits;
ad1843->write(ad1843->chip, reg, w);
}
int ad1843_get_gain_max(struct snd_ad1843 *ad1843, int id)
{
const struct ad1843_gain *gp = ad1843_gain[id];
int ret;
ret = (1 << gp->lfield->nbits);
if (!gp->lmute)
ret -= 1;
return ret;
}
/*
* ad1843_get_gain reads the specified register and extracts the gain value
* using the supplied gain type.
*/
int ad1843_get_gain(struct snd_ad1843 *ad1843, int id)
{
int lg, rg, lm, rm;
const struct ad1843_gain *gp = ad1843_gain[id];
unsigned short mask = (1 << gp->lfield->nbits) - 1;
ad1843_read_multi(ad1843, 2, gp->lfield, &lg, gp->rfield, &rg);
if (gp->negative) {
lg = mask - lg;
rg = mask - rg;
}
if (gp->lmute) {
ad1843_read_multi(ad1843, 2, gp->lmute, &lm, gp->rmute, &rm);
if (lm)
lg = 0;
if (rm)
rg = 0;
}
return lg << 0 | rg << 8;
}
/*
* Set an audio channel's gain.
*
* Returns the new gain, which may be lower than the old gain.
*/
int ad1843_set_gain(struct snd_ad1843 *ad1843, int id, int newval)
{
const struct ad1843_gain *gp = ad1843_gain[id];
unsigned short mask = (1 << gp->lfield->nbits) - 1;
int lg = (newval >> 0) & mask;
int rg = (newval >> 8) & mask;
int lm = (lg == 0) ? 1 : 0;
int rm = (rg == 0) ? 1 : 0;
if (gp->negative) {
lg = mask - lg;
rg = mask - rg;
}
if (gp->lmute)
ad1843_write_multi(ad1843, 2, gp->lmute, lm, gp->rmute, rm);
ad1843_write_multi(ad1843, 2, gp->lfield, lg, gp->rfield, rg);
return ad1843_get_gain(ad1843, id);
}
/* Returns the current recording source */
int ad1843_get_recsrc(struct snd_ad1843 *ad1843)
{
int val = ad1843_read_bits(ad1843, &ad1843_LSS);
if (val < 0 || val > 2) {
val = 2;
ad1843_write_multi(ad1843, 2,
&ad1843_LSS, val, &ad1843_RSS, val);
}
return val;
}
/*
* Set recording source.
*
* Returns newsrc on success, -errno on failure.
*/
int ad1843_set_recsrc(struct snd_ad1843 *ad1843, int newsrc)
{
if (newsrc < 0 || newsrc > 2)
return -EINVAL;
ad1843_write_multi(ad1843, 2, &ad1843_LSS, newsrc, &ad1843_RSS, newsrc);
return newsrc;
}
/* Setup ad1843 for D/A conversion. */
void ad1843_setup_dac(struct snd_ad1843 *ad1843,
unsigned int id,
unsigned int framerate,
snd_pcm_format_t fmt,
unsigned int channels)
{
int ad_fmt = 0, ad_mode = 0;
switch (fmt) {
case SNDRV_PCM_FORMAT_S8:
ad_fmt = 0;
break;
case SNDRV_PCM_FORMAT_U8:
ad_fmt = 0;
break;
case SNDRV_PCM_FORMAT_S16_LE:
ad_fmt = 1;
break;
case SNDRV_PCM_FORMAT_MU_LAW:
ad_fmt = 2;
break;
case SNDRV_PCM_FORMAT_A_LAW:
ad_fmt = 3;
break;
default:
break;
}
switch (channels) {
case 2:
ad_mode = 0;
break;
case 1:
ad_mode = 1;
break;
default:
break;
}
if (id) {
ad1843_write_bits(ad1843, &ad1843_C2C, framerate);
ad1843_write_multi(ad1843, 2,
&ad1843_DA2SM, ad_mode,
&ad1843_DA2F, ad_fmt);
} else {
ad1843_write_bits(ad1843, &ad1843_C1C, framerate);
ad1843_write_multi(ad1843, 2,
&ad1843_DA1SM, ad_mode,
&ad1843_DA1F, ad_fmt);
}
}
void ad1843_shutdown_dac(struct snd_ad1843 *ad1843, unsigned int id)
{
if (id)
ad1843_write_bits(ad1843, &ad1843_DA2F, 1);
else
ad1843_write_bits(ad1843, &ad1843_DA1F, 1);
}
void ad1843_setup_adc(struct snd_ad1843 *ad1843,
unsigned int framerate,
snd_pcm_format_t fmt,
unsigned int channels)
{
int da_fmt = 0;
switch (fmt) {
case SNDRV_PCM_FORMAT_S8: da_fmt = 0; break;
case SNDRV_PCM_FORMAT_U8: da_fmt = 0; break;
case SNDRV_PCM_FORMAT_S16_LE: da_fmt = 1; break;
case SNDRV_PCM_FORMAT_MU_LAW: da_fmt = 2; break;
case SNDRV_PCM_FORMAT_A_LAW: da_fmt = 3; break;
default: break;
}
ad1843_write_bits(ad1843, &ad1843_C3C, framerate);
ad1843_write_multi(ad1843, 2,
&ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
}
void ad1843_shutdown_adc(struct snd_ad1843 *ad1843)
{
/* nothing to do */
}
/*
* Fully initialize the ad1843. As described in the AD1843 data
* sheet, section "START-UP SEQUENCE". The numbered comments are
* subsection headings from the data sheet. See the data sheet, pages
* 52-54, for more info.
*
* return 0 on success, -errno on failure. */
int ad1843_init(struct snd_ad1843 *ad1843)
{
unsigned long later;
if (ad1843_read_bits(ad1843, &ad1843_INIT) != 0) {
printk(KERN_ERR "ad1843: AD1843 won't initialize\n");
return -EIO;
}
ad1843_write_bits(ad1843, &ad1843_SCF, 1);
/* 4. Put the conversion resources into standby. */
ad1843_write_bits(ad1843, &ad1843_PDNI, 0);
later = jiffies + msecs_to_jiffies(500);
while (ad1843_read_bits(ad1843, &ad1843_PDNO)) {
if (time_after(jiffies, later)) {
printk(KERN_ERR
"ad1843: AD1843 won't power up\n");
return -EIO;
}
schedule_timeout_interruptible(5);
}
/* 5. Power up the clock generators and enable clock output pins. */
ad1843_write_multi(ad1843, 3,
&ad1843_C1EN, 1,
&ad1843_C2EN, 1,
&ad1843_C3EN, 1);
/* 6. Configure conversion resources while they are in standby. */
/* DAC1/2 use clock 1/2 as source, ADC uses clock 3. Always. */
ad1843_write_multi(ad1843, 4,
&ad1843_DA1C, 1,
&ad1843_DA2C, 2,
&ad1843_ADLC, 3,
&ad1843_ADRC, 3);
/* 7. Enable conversion resources. */
ad1843_write_bits(ad1843, &ad1843_ADTLK, 1);
ad1843_write_multi(ad1843, 7,
&ad1843_ANAEN, 1,
&ad1843_AAMEN, 1,
&ad1843_DA1EN, 1,
&ad1843_DA2EN, 1,
&ad1843_DDMEN, 1,
&ad1843_ADLEN, 1,
&ad1843_ADREN, 1);
/* 8. Configure conversion resources while they are enabled. */
/* set gain to 0 for all channels */
ad1843_set_gain(ad1843, AD1843_GAIN_RECLEV, 0);
ad1843_set_gain(ad1843, AD1843_GAIN_LINE, 0);
ad1843_set_gain(ad1843, AD1843_GAIN_LINE_2, 0);
ad1843_set_gain(ad1843, AD1843_GAIN_MIC, 0);
ad1843_set_gain(ad1843, AD1843_GAIN_PCM_0, 0);
ad1843_set_gain(ad1843, AD1843_GAIN_PCM_1, 0);
/* Unmute all channels. */
/* DAC1 */
ad1843_write_multi(ad1843, 2, &ad1843_LDA1GM, 0, &ad1843_RDA1GM, 0);
/* DAC2 */
ad1843_write_multi(ad1843, 2, &ad1843_LDA2GM, 0, &ad1843_RDA2GM, 0);
/* Set default recording source to Line In and set
* mic gain to +20 dB.
*/
ad1843_set_recsrc(ad1843, 2);
ad1843_write_multi(ad1843, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
/* Set Speaker Out level to +/- 4V and unmute it. */
ad1843_write_multi(ad1843, 3,
&ad1843_HPOS, 1,
&ad1843_HPOM, 0,
&ad1843_MPOM, 0);
return 0;
}