mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-23 08:35:19 -05:00
f7abf14f00
For some unknown reason the introduction of the timer_wait_running callback
missed to fixup posix CPU timers, which went unnoticed for almost four years.
Marco reported recently that the WARN_ON() in timer_wait_running()
triggers with a posix CPU timer test case.
Posix CPU timers have two execution models for expiring timers depending on
CONFIG_POSIX_CPU_TIMERS_TASK_WORK:
1) If not enabled, the expiry happens in hard interrupt context so
spin waiting on the remote CPU is reasonably time bound.
Implement an empty stub function for that case.
2) If enabled, the expiry happens in task work before returning to user
space or guest mode. The expired timers are marked as firing and moved
from the timer queue to a local list head with sighand lock held. Once
the timers are moved, sighand lock is dropped and the expiry happens in
fully preemptible context. That means the expiring task can be scheduled
out, migrated, interrupted etc. So spin waiting on it is more than
suboptimal.
The timer wheel has a timer_wait_running() mechanism for RT, which uses
a per CPU timer-base expiry lock which is held by the expiry code and the
task waiting for the timer function to complete blocks on that lock.
This does not work in the same way for posix CPU timers as there is no
timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry lock
can be used too in a slightly different way:
- Add a mutex to struct posix_cputimers_work. This struct is per task
and used to schedule the expiry task work from the timer interrupt.
- Add a task_struct pointer to struct cpu_timer which is used to store
a the task which runs the expiry. That's filled in when the task
moves the expired timers to the local expiry list. That's not
affecting the size of the k_itimer union as there are bigger union
members already
- Let the task take the expiry mutex around the expiry function
- Let the waiter acquire a task reference with rcu_read_lock() held and
block on the expiry mutex
This avoids spin-waiting on a task which might not even be on a CPU and
works nicely for RT too.
Fixes: ec8f954a40
("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marco Elver <elver@google.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87zg764ojw.ffs@tglx
1692 lines
46 KiB
C
1692 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Implement CPU time clocks for the POSIX clock interface.
|
|
*/
|
|
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/cputime.h>
|
|
#include <linux/posix-timers.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <trace/events/timer.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/sched/deadline.h>
|
|
#include <linux/task_work.h>
|
|
|
|
#include "posix-timers.h"
|
|
|
|
static void posix_cpu_timer_rearm(struct k_itimer *timer);
|
|
|
|
void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
|
|
{
|
|
posix_cputimers_init(pct);
|
|
if (cpu_limit != RLIM_INFINITY) {
|
|
pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
|
|
pct->timers_active = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called after updating RLIMIT_CPU to run cpu timer and update
|
|
* tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
|
|
* necessary. Needs siglock protection since other code may update the
|
|
* expiration cache as well.
|
|
*
|
|
* Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and
|
|
* we cannot lock_task_sighand. Cannot fail if task is current.
|
|
*/
|
|
int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
|
|
{
|
|
u64 nsecs = rlim_new * NSEC_PER_SEC;
|
|
unsigned long irq_fl;
|
|
|
|
if (!lock_task_sighand(task, &irq_fl))
|
|
return -ESRCH;
|
|
set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
|
|
unlock_task_sighand(task, &irq_fl);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Functions for validating access to tasks.
|
|
*/
|
|
static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
|
|
{
|
|
const bool thread = !!CPUCLOCK_PERTHREAD(clock);
|
|
const pid_t upid = CPUCLOCK_PID(clock);
|
|
struct pid *pid;
|
|
|
|
if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
|
|
return NULL;
|
|
|
|
/*
|
|
* If the encoded PID is 0, then the timer is targeted at current
|
|
* or the process to which current belongs.
|
|
*/
|
|
if (upid == 0)
|
|
return thread ? task_pid(current) : task_tgid(current);
|
|
|
|
pid = find_vpid(upid);
|
|
if (!pid)
|
|
return NULL;
|
|
|
|
if (thread) {
|
|
struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
|
|
return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
|
|
}
|
|
|
|
/*
|
|
* For clock_gettime(PROCESS) allow finding the process by
|
|
* with the pid of the current task. The code needs the tgid
|
|
* of the process so that pid_task(pid, PIDTYPE_TGID) can be
|
|
* used to find the process.
|
|
*/
|
|
if (gettime && (pid == task_pid(current)))
|
|
return task_tgid(current);
|
|
|
|
/*
|
|
* For processes require that pid identifies a process.
|
|
*/
|
|
return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
|
|
}
|
|
|
|
static inline int validate_clock_permissions(const clockid_t clock)
|
|
{
|
|
int ret;
|
|
|
|
rcu_read_lock();
|
|
ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline enum pid_type clock_pid_type(const clockid_t clock)
|
|
{
|
|
return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
|
|
}
|
|
|
|
static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
|
|
{
|
|
return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
|
|
}
|
|
|
|
/*
|
|
* Update expiry time from increment, and increase overrun count,
|
|
* given the current clock sample.
|
|
*/
|
|
static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
|
|
{
|
|
u64 delta, incr, expires = timer->it.cpu.node.expires;
|
|
int i;
|
|
|
|
if (!timer->it_interval)
|
|
return expires;
|
|
|
|
if (now < expires)
|
|
return expires;
|
|
|
|
incr = timer->it_interval;
|
|
delta = now + incr - expires;
|
|
|
|
/* Don't use (incr*2 < delta), incr*2 might overflow. */
|
|
for (i = 0; incr < delta - incr; i++)
|
|
incr = incr << 1;
|
|
|
|
for (; i >= 0; incr >>= 1, i--) {
|
|
if (delta < incr)
|
|
continue;
|
|
|
|
timer->it.cpu.node.expires += incr;
|
|
timer->it_overrun += 1LL << i;
|
|
delta -= incr;
|
|
}
|
|
return timer->it.cpu.node.expires;
|
|
}
|
|
|
|
/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
|
|
static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
|
|
{
|
|
return !(~pct->bases[CPUCLOCK_PROF].nextevt |
|
|
~pct->bases[CPUCLOCK_VIRT].nextevt |
|
|
~pct->bases[CPUCLOCK_SCHED].nextevt);
|
|
}
|
|
|
|
static int
|
|
posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
|
|
{
|
|
int error = validate_clock_permissions(which_clock);
|
|
|
|
if (!error) {
|
|
tp->tv_sec = 0;
|
|
tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
|
|
if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
|
|
/*
|
|
* If sched_clock is using a cycle counter, we
|
|
* don't have any idea of its true resolution
|
|
* exported, but it is much more than 1s/HZ.
|
|
*/
|
|
tp->tv_nsec = 1;
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
|
|
{
|
|
int error = validate_clock_permissions(clock);
|
|
|
|
/*
|
|
* You can never reset a CPU clock, but we check for other errors
|
|
* in the call before failing with EPERM.
|
|
*/
|
|
return error ? : -EPERM;
|
|
}
|
|
|
|
/*
|
|
* Sample a per-thread clock for the given task. clkid is validated.
|
|
*/
|
|
static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
|
|
{
|
|
u64 utime, stime;
|
|
|
|
if (clkid == CPUCLOCK_SCHED)
|
|
return task_sched_runtime(p);
|
|
|
|
task_cputime(p, &utime, &stime);
|
|
|
|
switch (clkid) {
|
|
case CPUCLOCK_PROF:
|
|
return utime + stime;
|
|
case CPUCLOCK_VIRT:
|
|
return utime;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
|
|
{
|
|
samples[CPUCLOCK_PROF] = stime + utime;
|
|
samples[CPUCLOCK_VIRT] = utime;
|
|
samples[CPUCLOCK_SCHED] = rtime;
|
|
}
|
|
|
|
static void task_sample_cputime(struct task_struct *p, u64 *samples)
|
|
{
|
|
u64 stime, utime;
|
|
|
|
task_cputime(p, &utime, &stime);
|
|
store_samples(samples, stime, utime, p->se.sum_exec_runtime);
|
|
}
|
|
|
|
static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
|
|
u64 *samples)
|
|
{
|
|
u64 stime, utime, rtime;
|
|
|
|
utime = atomic64_read(&at->utime);
|
|
stime = atomic64_read(&at->stime);
|
|
rtime = atomic64_read(&at->sum_exec_runtime);
|
|
store_samples(samples, stime, utime, rtime);
|
|
}
|
|
|
|
/*
|
|
* Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
|
|
* to avoid race conditions with concurrent updates to cputime.
|
|
*/
|
|
static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
|
|
{
|
|
u64 curr_cputime = atomic64_read(cputime);
|
|
|
|
do {
|
|
if (sum_cputime <= curr_cputime)
|
|
return;
|
|
} while (!atomic64_try_cmpxchg(cputime, &curr_cputime, sum_cputime));
|
|
}
|
|
|
|
static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
|
|
struct task_cputime *sum)
|
|
{
|
|
__update_gt_cputime(&cputime_atomic->utime, sum->utime);
|
|
__update_gt_cputime(&cputime_atomic->stime, sum->stime);
|
|
__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
|
|
}
|
|
|
|
/**
|
|
* thread_group_sample_cputime - Sample cputime for a given task
|
|
* @tsk: Task for which cputime needs to be started
|
|
* @samples: Storage for time samples
|
|
*
|
|
* Called from sys_getitimer() to calculate the expiry time of an active
|
|
* timer. That means group cputime accounting is already active. Called
|
|
* with task sighand lock held.
|
|
*
|
|
* Updates @times with an uptodate sample of the thread group cputimes.
|
|
*/
|
|
void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
|
|
{
|
|
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
|
|
struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
|
|
|
|
WARN_ON_ONCE(!pct->timers_active);
|
|
|
|
proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
|
|
}
|
|
|
|
/**
|
|
* thread_group_start_cputime - Start cputime and return a sample
|
|
* @tsk: Task for which cputime needs to be started
|
|
* @samples: Storage for time samples
|
|
*
|
|
* The thread group cputime accounting is avoided when there are no posix
|
|
* CPU timers armed. Before starting a timer it's required to check whether
|
|
* the time accounting is active. If not, a full update of the atomic
|
|
* accounting store needs to be done and the accounting enabled.
|
|
*
|
|
* Updates @times with an uptodate sample of the thread group cputimes.
|
|
*/
|
|
static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
|
|
{
|
|
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
|
|
struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
|
|
|
|
lockdep_assert_task_sighand_held(tsk);
|
|
|
|
/* Check if cputimer isn't running. This is accessed without locking. */
|
|
if (!READ_ONCE(pct->timers_active)) {
|
|
struct task_cputime sum;
|
|
|
|
/*
|
|
* The POSIX timer interface allows for absolute time expiry
|
|
* values through the TIMER_ABSTIME flag, therefore we have
|
|
* to synchronize the timer to the clock every time we start it.
|
|
*/
|
|
thread_group_cputime(tsk, &sum);
|
|
update_gt_cputime(&cputimer->cputime_atomic, &sum);
|
|
|
|
/*
|
|
* We're setting timers_active without a lock. Ensure this
|
|
* only gets written to in one operation. We set it after
|
|
* update_gt_cputime() as a small optimization, but
|
|
* barriers are not required because update_gt_cputime()
|
|
* can handle concurrent updates.
|
|
*/
|
|
WRITE_ONCE(pct->timers_active, true);
|
|
}
|
|
proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
|
|
}
|
|
|
|
static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
|
|
{
|
|
struct task_cputime ct;
|
|
|
|
thread_group_cputime(tsk, &ct);
|
|
store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
|
|
}
|
|
|
|
/*
|
|
* Sample a process (thread group) clock for the given task clkid. If the
|
|
* group's cputime accounting is already enabled, read the atomic
|
|
* store. Otherwise a full update is required. clkid is already validated.
|
|
*/
|
|
static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
|
|
bool start)
|
|
{
|
|
struct thread_group_cputimer *cputimer = &p->signal->cputimer;
|
|
struct posix_cputimers *pct = &p->signal->posix_cputimers;
|
|
u64 samples[CPUCLOCK_MAX];
|
|
|
|
if (!READ_ONCE(pct->timers_active)) {
|
|
if (start)
|
|
thread_group_start_cputime(p, samples);
|
|
else
|
|
__thread_group_cputime(p, samples);
|
|
} else {
|
|
proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
|
|
}
|
|
|
|
return samples[clkid];
|
|
}
|
|
|
|
static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
|
|
{
|
|
const clockid_t clkid = CPUCLOCK_WHICH(clock);
|
|
struct task_struct *tsk;
|
|
u64 t;
|
|
|
|
rcu_read_lock();
|
|
tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
|
|
if (!tsk) {
|
|
rcu_read_unlock();
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (CPUCLOCK_PERTHREAD(clock))
|
|
t = cpu_clock_sample(clkid, tsk);
|
|
else
|
|
t = cpu_clock_sample_group(clkid, tsk, false);
|
|
rcu_read_unlock();
|
|
|
|
*tp = ns_to_timespec64(t);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
|
|
* This is called from sys_timer_create() and do_cpu_nanosleep() with the
|
|
* new timer already all-zeros initialized.
|
|
*/
|
|
static int posix_cpu_timer_create(struct k_itimer *new_timer)
|
|
{
|
|
static struct lock_class_key posix_cpu_timers_key;
|
|
struct pid *pid;
|
|
|
|
rcu_read_lock();
|
|
pid = pid_for_clock(new_timer->it_clock, false);
|
|
if (!pid) {
|
|
rcu_read_unlock();
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If posix timer expiry is handled in task work context then
|
|
* timer::it_lock can be taken without disabling interrupts as all
|
|
* other locking happens in task context. This requires a separate
|
|
* lock class key otherwise regular posix timer expiry would record
|
|
* the lock class being taken in interrupt context and generate a
|
|
* false positive warning.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
|
|
lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
|
|
|
|
new_timer->kclock = &clock_posix_cpu;
|
|
timerqueue_init(&new_timer->it.cpu.node);
|
|
new_timer->it.cpu.pid = get_pid(pid);
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
|
|
static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
|
|
struct task_struct *tsk)
|
|
{
|
|
int clkidx = CPUCLOCK_WHICH(timer->it_clock);
|
|
|
|
if (CPUCLOCK_PERTHREAD(timer->it_clock))
|
|
return tsk->posix_cputimers.bases + clkidx;
|
|
else
|
|
return tsk->signal->posix_cputimers.bases + clkidx;
|
|
}
|
|
|
|
/*
|
|
* Force recalculating the base earliest expiration on the next tick.
|
|
* This will also re-evaluate the need to keep around the process wide
|
|
* cputime counter and tick dependency and eventually shut these down
|
|
* if necessary.
|
|
*/
|
|
static void trigger_base_recalc_expires(struct k_itimer *timer,
|
|
struct task_struct *tsk)
|
|
{
|
|
struct posix_cputimer_base *base = timer_base(timer, tsk);
|
|
|
|
base->nextevt = 0;
|
|
}
|
|
|
|
/*
|
|
* Dequeue the timer and reset the base if it was its earliest expiration.
|
|
* It makes sure the next tick recalculates the base next expiration so we
|
|
* don't keep the costly process wide cputime counter around for a random
|
|
* amount of time, along with the tick dependency.
|
|
*
|
|
* If another timer gets queued between this and the next tick, its
|
|
* expiration will update the base next event if necessary on the next
|
|
* tick.
|
|
*/
|
|
static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
|
|
{
|
|
struct cpu_timer *ctmr = &timer->it.cpu;
|
|
struct posix_cputimer_base *base;
|
|
|
|
if (!cpu_timer_dequeue(ctmr))
|
|
return;
|
|
|
|
base = timer_base(timer, p);
|
|
if (cpu_timer_getexpires(ctmr) == base->nextevt)
|
|
trigger_base_recalc_expires(timer, p);
|
|
}
|
|
|
|
|
|
/*
|
|
* Clean up a CPU-clock timer that is about to be destroyed.
|
|
* This is called from timer deletion with the timer already locked.
|
|
* If we return TIMER_RETRY, it's necessary to release the timer's lock
|
|
* and try again. (This happens when the timer is in the middle of firing.)
|
|
*/
|
|
static int posix_cpu_timer_del(struct k_itimer *timer)
|
|
{
|
|
struct cpu_timer *ctmr = &timer->it.cpu;
|
|
struct sighand_struct *sighand;
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
rcu_read_lock();
|
|
p = cpu_timer_task_rcu(timer);
|
|
if (!p)
|
|
goto out;
|
|
|
|
/*
|
|
* Protect against sighand release/switch in exit/exec and process/
|
|
* thread timer list entry concurrent read/writes.
|
|
*/
|
|
sighand = lock_task_sighand(p, &flags);
|
|
if (unlikely(sighand == NULL)) {
|
|
/*
|
|
* This raced with the reaping of the task. The exit cleanup
|
|
* should have removed this timer from the timer queue.
|
|
*/
|
|
WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
|
|
} else {
|
|
if (timer->it.cpu.firing)
|
|
ret = TIMER_RETRY;
|
|
else
|
|
disarm_timer(timer, p);
|
|
|
|
unlock_task_sighand(p, &flags);
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
if (!ret)
|
|
put_pid(ctmr->pid);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cleanup_timerqueue(struct timerqueue_head *head)
|
|
{
|
|
struct timerqueue_node *node;
|
|
struct cpu_timer *ctmr;
|
|
|
|
while ((node = timerqueue_getnext(head))) {
|
|
timerqueue_del(head, node);
|
|
ctmr = container_of(node, struct cpu_timer, node);
|
|
ctmr->head = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clean out CPU timers which are still armed when a thread exits. The
|
|
* timers are only removed from the list. No other updates are done. The
|
|
* corresponding posix timers are still accessible, but cannot be rearmed.
|
|
*
|
|
* This must be called with the siglock held.
|
|
*/
|
|
static void cleanup_timers(struct posix_cputimers *pct)
|
|
{
|
|
cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
|
|
cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
|
|
cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
|
|
}
|
|
|
|
/*
|
|
* These are both called with the siglock held, when the current thread
|
|
* is being reaped. When the final (leader) thread in the group is reaped,
|
|
* posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
|
|
*/
|
|
void posix_cpu_timers_exit(struct task_struct *tsk)
|
|
{
|
|
cleanup_timers(&tsk->posix_cputimers);
|
|
}
|
|
void posix_cpu_timers_exit_group(struct task_struct *tsk)
|
|
{
|
|
cleanup_timers(&tsk->signal->posix_cputimers);
|
|
}
|
|
|
|
/*
|
|
* Insert the timer on the appropriate list before any timers that
|
|
* expire later. This must be called with the sighand lock held.
|
|
*/
|
|
static void arm_timer(struct k_itimer *timer, struct task_struct *p)
|
|
{
|
|
struct posix_cputimer_base *base = timer_base(timer, p);
|
|
struct cpu_timer *ctmr = &timer->it.cpu;
|
|
u64 newexp = cpu_timer_getexpires(ctmr);
|
|
|
|
if (!cpu_timer_enqueue(&base->tqhead, ctmr))
|
|
return;
|
|
|
|
/*
|
|
* We are the new earliest-expiring POSIX 1.b timer, hence
|
|
* need to update expiration cache. Take into account that
|
|
* for process timers we share expiration cache with itimers
|
|
* and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
|
|
*/
|
|
if (newexp < base->nextevt)
|
|
base->nextevt = newexp;
|
|
|
|
if (CPUCLOCK_PERTHREAD(timer->it_clock))
|
|
tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
|
|
else
|
|
tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
|
|
}
|
|
|
|
/*
|
|
* The timer is locked, fire it and arrange for its reload.
|
|
*/
|
|
static void cpu_timer_fire(struct k_itimer *timer)
|
|
{
|
|
struct cpu_timer *ctmr = &timer->it.cpu;
|
|
|
|
if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
|
|
/*
|
|
* User don't want any signal.
|
|
*/
|
|
cpu_timer_setexpires(ctmr, 0);
|
|
} else if (unlikely(timer->sigq == NULL)) {
|
|
/*
|
|
* This a special case for clock_nanosleep,
|
|
* not a normal timer from sys_timer_create.
|
|
*/
|
|
wake_up_process(timer->it_process);
|
|
cpu_timer_setexpires(ctmr, 0);
|
|
} else if (!timer->it_interval) {
|
|
/*
|
|
* One-shot timer. Clear it as soon as it's fired.
|
|
*/
|
|
posix_timer_event(timer, 0);
|
|
cpu_timer_setexpires(ctmr, 0);
|
|
} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
|
|
/*
|
|
* The signal did not get queued because the signal
|
|
* was ignored, so we won't get any callback to
|
|
* reload the timer. But we need to keep it
|
|
* ticking in case the signal is deliverable next time.
|
|
*/
|
|
posix_cpu_timer_rearm(timer);
|
|
++timer->it_requeue_pending;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Guts of sys_timer_settime for CPU timers.
|
|
* This is called with the timer locked and interrupts disabled.
|
|
* If we return TIMER_RETRY, it's necessary to release the timer's lock
|
|
* and try again. (This happens when the timer is in the middle of firing.)
|
|
*/
|
|
static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
|
|
struct itimerspec64 *new, struct itimerspec64 *old)
|
|
{
|
|
clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
|
|
u64 old_expires, new_expires, old_incr, val;
|
|
struct cpu_timer *ctmr = &timer->it.cpu;
|
|
struct sighand_struct *sighand;
|
|
struct task_struct *p;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
rcu_read_lock();
|
|
p = cpu_timer_task_rcu(timer);
|
|
if (!p) {
|
|
/*
|
|
* If p has just been reaped, we can no
|
|
* longer get any information about it at all.
|
|
*/
|
|
rcu_read_unlock();
|
|
return -ESRCH;
|
|
}
|
|
|
|
/*
|
|
* Use the to_ktime conversion because that clamps the maximum
|
|
* value to KTIME_MAX and avoid multiplication overflows.
|
|
*/
|
|
new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
|
|
|
|
/*
|
|
* Protect against sighand release/switch in exit/exec and p->cpu_timers
|
|
* and p->signal->cpu_timers read/write in arm_timer()
|
|
*/
|
|
sighand = lock_task_sighand(p, &flags);
|
|
/*
|
|
* If p has just been reaped, we can no
|
|
* longer get any information about it at all.
|
|
*/
|
|
if (unlikely(sighand == NULL)) {
|
|
rcu_read_unlock();
|
|
return -ESRCH;
|
|
}
|
|
|
|
/*
|
|
* Disarm any old timer after extracting its expiry time.
|
|
*/
|
|
old_incr = timer->it_interval;
|
|
old_expires = cpu_timer_getexpires(ctmr);
|
|
|
|
if (unlikely(timer->it.cpu.firing)) {
|
|
timer->it.cpu.firing = -1;
|
|
ret = TIMER_RETRY;
|
|
} else {
|
|
cpu_timer_dequeue(ctmr);
|
|
}
|
|
|
|
/*
|
|
* We need to sample the current value to convert the new
|
|
* value from to relative and absolute, and to convert the
|
|
* old value from absolute to relative. To set a process
|
|
* timer, we need a sample to balance the thread expiry
|
|
* times (in arm_timer). With an absolute time, we must
|
|
* check if it's already passed. In short, we need a sample.
|
|
*/
|
|
if (CPUCLOCK_PERTHREAD(timer->it_clock))
|
|
val = cpu_clock_sample(clkid, p);
|
|
else
|
|
val = cpu_clock_sample_group(clkid, p, true);
|
|
|
|
if (old) {
|
|
if (old_expires == 0) {
|
|
old->it_value.tv_sec = 0;
|
|
old->it_value.tv_nsec = 0;
|
|
} else {
|
|
/*
|
|
* Update the timer in case it has overrun already.
|
|
* If it has, we'll report it as having overrun and
|
|
* with the next reloaded timer already ticking,
|
|
* though we are swallowing that pending
|
|
* notification here to install the new setting.
|
|
*/
|
|
u64 exp = bump_cpu_timer(timer, val);
|
|
|
|
if (val < exp) {
|
|
old_expires = exp - val;
|
|
old->it_value = ns_to_timespec64(old_expires);
|
|
} else {
|
|
old->it_value.tv_nsec = 1;
|
|
old->it_value.tv_sec = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (unlikely(ret)) {
|
|
/*
|
|
* We are colliding with the timer actually firing.
|
|
* Punt after filling in the timer's old value, and
|
|
* disable this firing since we are already reporting
|
|
* it as an overrun (thanks to bump_cpu_timer above).
|
|
*/
|
|
unlock_task_sighand(p, &flags);
|
|
goto out;
|
|
}
|
|
|
|
if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
|
|
new_expires += val;
|
|
}
|
|
|
|
/*
|
|
* Install the new expiry time (or zero).
|
|
* For a timer with no notification action, we don't actually
|
|
* arm the timer (we'll just fake it for timer_gettime).
|
|
*/
|
|
cpu_timer_setexpires(ctmr, new_expires);
|
|
if (new_expires != 0 && val < new_expires) {
|
|
arm_timer(timer, p);
|
|
}
|
|
|
|
unlock_task_sighand(p, &flags);
|
|
/*
|
|
* Install the new reload setting, and
|
|
* set up the signal and overrun bookkeeping.
|
|
*/
|
|
timer->it_interval = timespec64_to_ktime(new->it_interval);
|
|
|
|
/*
|
|
* This acts as a modification timestamp for the timer,
|
|
* so any automatic reload attempt will punt on seeing
|
|
* that we have reset the timer manually.
|
|
*/
|
|
timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
|
|
~REQUEUE_PENDING;
|
|
timer->it_overrun_last = 0;
|
|
timer->it_overrun = -1;
|
|
|
|
if (val >= new_expires) {
|
|
if (new_expires != 0) {
|
|
/*
|
|
* The designated time already passed, so we notify
|
|
* immediately, even if the thread never runs to
|
|
* accumulate more time on this clock.
|
|
*/
|
|
cpu_timer_fire(timer);
|
|
}
|
|
|
|
/*
|
|
* Make sure we don't keep around the process wide cputime
|
|
* counter or the tick dependency if they are not necessary.
|
|
*/
|
|
sighand = lock_task_sighand(p, &flags);
|
|
if (!sighand)
|
|
goto out;
|
|
|
|
if (!cpu_timer_queued(ctmr))
|
|
trigger_base_recalc_expires(timer, p);
|
|
|
|
unlock_task_sighand(p, &flags);
|
|
}
|
|
out:
|
|
rcu_read_unlock();
|
|
if (old)
|
|
old->it_interval = ns_to_timespec64(old_incr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
|
|
{
|
|
clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
|
|
struct cpu_timer *ctmr = &timer->it.cpu;
|
|
u64 now, expires = cpu_timer_getexpires(ctmr);
|
|
struct task_struct *p;
|
|
|
|
rcu_read_lock();
|
|
p = cpu_timer_task_rcu(timer);
|
|
if (!p)
|
|
goto out;
|
|
|
|
/*
|
|
* Easy part: convert the reload time.
|
|
*/
|
|
itp->it_interval = ktime_to_timespec64(timer->it_interval);
|
|
|
|
if (!expires)
|
|
goto out;
|
|
|
|
/*
|
|
* Sample the clock to take the difference with the expiry time.
|
|
*/
|
|
if (CPUCLOCK_PERTHREAD(timer->it_clock))
|
|
now = cpu_clock_sample(clkid, p);
|
|
else
|
|
now = cpu_clock_sample_group(clkid, p, false);
|
|
|
|
if (now < expires) {
|
|
itp->it_value = ns_to_timespec64(expires - now);
|
|
} else {
|
|
/*
|
|
* The timer should have expired already, but the firing
|
|
* hasn't taken place yet. Say it's just about to expire.
|
|
*/
|
|
itp->it_value.tv_nsec = 1;
|
|
itp->it_value.tv_sec = 0;
|
|
}
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
#define MAX_COLLECTED 20
|
|
|
|
static u64 collect_timerqueue(struct timerqueue_head *head,
|
|
struct list_head *firing, u64 now)
|
|
{
|
|
struct timerqueue_node *next;
|
|
int i = 0;
|
|
|
|
while ((next = timerqueue_getnext(head))) {
|
|
struct cpu_timer *ctmr;
|
|
u64 expires;
|
|
|
|
ctmr = container_of(next, struct cpu_timer, node);
|
|
expires = cpu_timer_getexpires(ctmr);
|
|
/* Limit the number of timers to expire at once */
|
|
if (++i == MAX_COLLECTED || now < expires)
|
|
return expires;
|
|
|
|
ctmr->firing = 1;
|
|
/* See posix_cpu_timer_wait_running() */
|
|
rcu_assign_pointer(ctmr->handling, current);
|
|
cpu_timer_dequeue(ctmr);
|
|
list_add_tail(&ctmr->elist, firing);
|
|
}
|
|
|
|
return U64_MAX;
|
|
}
|
|
|
|
static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
|
|
struct list_head *firing)
|
|
{
|
|
struct posix_cputimer_base *base = pct->bases;
|
|
int i;
|
|
|
|
for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
|
|
base->nextevt = collect_timerqueue(&base->tqhead, firing,
|
|
samples[i]);
|
|
}
|
|
}
|
|
|
|
static inline void check_dl_overrun(struct task_struct *tsk)
|
|
{
|
|
if (tsk->dl.dl_overrun) {
|
|
tsk->dl.dl_overrun = 0;
|
|
send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
|
|
}
|
|
}
|
|
|
|
static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
|
|
{
|
|
if (time < limit)
|
|
return false;
|
|
|
|
if (print_fatal_signals) {
|
|
pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
|
|
rt ? "RT" : "CPU", hard ? "hard" : "soft",
|
|
current->comm, task_pid_nr(current));
|
|
}
|
|
send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check for any per-thread CPU timers that have fired and move them off
|
|
* the tsk->cpu_timers[N] list onto the firing list. Here we update the
|
|
* tsk->it_*_expires values to reflect the remaining thread CPU timers.
|
|
*/
|
|
static void check_thread_timers(struct task_struct *tsk,
|
|
struct list_head *firing)
|
|
{
|
|
struct posix_cputimers *pct = &tsk->posix_cputimers;
|
|
u64 samples[CPUCLOCK_MAX];
|
|
unsigned long soft;
|
|
|
|
if (dl_task(tsk))
|
|
check_dl_overrun(tsk);
|
|
|
|
if (expiry_cache_is_inactive(pct))
|
|
return;
|
|
|
|
task_sample_cputime(tsk, samples);
|
|
collect_posix_cputimers(pct, samples, firing);
|
|
|
|
/*
|
|
* Check for the special case thread timers.
|
|
*/
|
|
soft = task_rlimit(tsk, RLIMIT_RTTIME);
|
|
if (soft != RLIM_INFINITY) {
|
|
/* Task RT timeout is accounted in jiffies. RTTIME is usec */
|
|
unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
|
|
unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
|
|
|
|
/* At the hard limit, send SIGKILL. No further action. */
|
|
if (hard != RLIM_INFINITY &&
|
|
check_rlimit(rttime, hard, SIGKILL, true, true))
|
|
return;
|
|
|
|
/* At the soft limit, send a SIGXCPU every second */
|
|
if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
|
|
soft += USEC_PER_SEC;
|
|
tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
|
|
}
|
|
}
|
|
|
|
if (expiry_cache_is_inactive(pct))
|
|
tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
|
|
}
|
|
|
|
static inline void stop_process_timers(struct signal_struct *sig)
|
|
{
|
|
struct posix_cputimers *pct = &sig->posix_cputimers;
|
|
|
|
/* Turn off the active flag. This is done without locking. */
|
|
WRITE_ONCE(pct->timers_active, false);
|
|
tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
|
|
}
|
|
|
|
static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
|
|
u64 *expires, u64 cur_time, int signo)
|
|
{
|
|
if (!it->expires)
|
|
return;
|
|
|
|
if (cur_time >= it->expires) {
|
|
if (it->incr)
|
|
it->expires += it->incr;
|
|
else
|
|
it->expires = 0;
|
|
|
|
trace_itimer_expire(signo == SIGPROF ?
|
|
ITIMER_PROF : ITIMER_VIRTUAL,
|
|
task_tgid(tsk), cur_time);
|
|
send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
|
|
}
|
|
|
|
if (it->expires && it->expires < *expires)
|
|
*expires = it->expires;
|
|
}
|
|
|
|
/*
|
|
* Check for any per-thread CPU timers that have fired and move them
|
|
* off the tsk->*_timers list onto the firing list. Per-thread timers
|
|
* have already been taken off.
|
|
*/
|
|
static void check_process_timers(struct task_struct *tsk,
|
|
struct list_head *firing)
|
|
{
|
|
struct signal_struct *const sig = tsk->signal;
|
|
struct posix_cputimers *pct = &sig->posix_cputimers;
|
|
u64 samples[CPUCLOCK_MAX];
|
|
unsigned long soft;
|
|
|
|
/*
|
|
* If there are no active process wide timers (POSIX 1.b, itimers,
|
|
* RLIMIT_CPU) nothing to check. Also skip the process wide timer
|
|
* processing when there is already another task handling them.
|
|
*/
|
|
if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
|
|
return;
|
|
|
|
/*
|
|
* Signify that a thread is checking for process timers.
|
|
* Write access to this field is protected by the sighand lock.
|
|
*/
|
|
pct->expiry_active = true;
|
|
|
|
/*
|
|
* Collect the current process totals. Group accounting is active
|
|
* so the sample can be taken directly.
|
|
*/
|
|
proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
|
|
collect_posix_cputimers(pct, samples, firing);
|
|
|
|
/*
|
|
* Check for the special case process timers.
|
|
*/
|
|
check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
|
|
&pct->bases[CPUCLOCK_PROF].nextevt,
|
|
samples[CPUCLOCK_PROF], SIGPROF);
|
|
check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
|
|
&pct->bases[CPUCLOCK_VIRT].nextevt,
|
|
samples[CPUCLOCK_VIRT], SIGVTALRM);
|
|
|
|
soft = task_rlimit(tsk, RLIMIT_CPU);
|
|
if (soft != RLIM_INFINITY) {
|
|
/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
|
|
unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
|
|
u64 ptime = samples[CPUCLOCK_PROF];
|
|
u64 softns = (u64)soft * NSEC_PER_SEC;
|
|
u64 hardns = (u64)hard * NSEC_PER_SEC;
|
|
|
|
/* At the hard limit, send SIGKILL. No further action. */
|
|
if (hard != RLIM_INFINITY &&
|
|
check_rlimit(ptime, hardns, SIGKILL, false, true))
|
|
return;
|
|
|
|
/* At the soft limit, send a SIGXCPU every second */
|
|
if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
|
|
sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
|
|
softns += NSEC_PER_SEC;
|
|
}
|
|
|
|
/* Update the expiry cache */
|
|
if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
|
|
pct->bases[CPUCLOCK_PROF].nextevt = softns;
|
|
}
|
|
|
|
if (expiry_cache_is_inactive(pct))
|
|
stop_process_timers(sig);
|
|
|
|
pct->expiry_active = false;
|
|
}
|
|
|
|
/*
|
|
* This is called from the signal code (via posixtimer_rearm)
|
|
* when the last timer signal was delivered and we have to reload the timer.
|
|
*/
|
|
static void posix_cpu_timer_rearm(struct k_itimer *timer)
|
|
{
|
|
clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
|
|
struct task_struct *p;
|
|
struct sighand_struct *sighand;
|
|
unsigned long flags;
|
|
u64 now;
|
|
|
|
rcu_read_lock();
|
|
p = cpu_timer_task_rcu(timer);
|
|
if (!p)
|
|
goto out;
|
|
|
|
/* Protect timer list r/w in arm_timer() */
|
|
sighand = lock_task_sighand(p, &flags);
|
|
if (unlikely(sighand == NULL))
|
|
goto out;
|
|
|
|
/*
|
|
* Fetch the current sample and update the timer's expiry time.
|
|
*/
|
|
if (CPUCLOCK_PERTHREAD(timer->it_clock))
|
|
now = cpu_clock_sample(clkid, p);
|
|
else
|
|
now = cpu_clock_sample_group(clkid, p, true);
|
|
|
|
bump_cpu_timer(timer, now);
|
|
|
|
/*
|
|
* Now re-arm for the new expiry time.
|
|
*/
|
|
arm_timer(timer, p);
|
|
unlock_task_sighand(p, &flags);
|
|
out:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* task_cputimers_expired - Check whether posix CPU timers are expired
|
|
*
|
|
* @samples: Array of current samples for the CPUCLOCK clocks
|
|
* @pct: Pointer to a posix_cputimers container
|
|
*
|
|
* Returns true if any member of @samples is greater than the corresponding
|
|
* member of @pct->bases[CLK].nextevt. False otherwise
|
|
*/
|
|
static inline bool
|
|
task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CPUCLOCK_MAX; i++) {
|
|
if (samples[i] >= pct->bases[i].nextevt)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* fastpath_timer_check - POSIX CPU timers fast path.
|
|
*
|
|
* @tsk: The task (thread) being checked.
|
|
*
|
|
* Check the task and thread group timers. If both are zero (there are no
|
|
* timers set) return false. Otherwise snapshot the task and thread group
|
|
* timers and compare them with the corresponding expiration times. Return
|
|
* true if a timer has expired, else return false.
|
|
*/
|
|
static inline bool fastpath_timer_check(struct task_struct *tsk)
|
|
{
|
|
struct posix_cputimers *pct = &tsk->posix_cputimers;
|
|
struct signal_struct *sig;
|
|
|
|
if (!expiry_cache_is_inactive(pct)) {
|
|
u64 samples[CPUCLOCK_MAX];
|
|
|
|
task_sample_cputime(tsk, samples);
|
|
if (task_cputimers_expired(samples, pct))
|
|
return true;
|
|
}
|
|
|
|
sig = tsk->signal;
|
|
pct = &sig->posix_cputimers;
|
|
/*
|
|
* Check if thread group timers expired when timers are active and
|
|
* no other thread in the group is already handling expiry for
|
|
* thread group cputimers. These fields are read without the
|
|
* sighand lock. However, this is fine because this is meant to be
|
|
* a fastpath heuristic to determine whether we should try to
|
|
* acquire the sighand lock to handle timer expiry.
|
|
*
|
|
* In the worst case scenario, if concurrently timers_active is set
|
|
* or expiry_active is cleared, but the current thread doesn't see
|
|
* the change yet, the timer checks are delayed until the next
|
|
* thread in the group gets a scheduler interrupt to handle the
|
|
* timer. This isn't an issue in practice because these types of
|
|
* delays with signals actually getting sent are expected.
|
|
*/
|
|
if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
|
|
u64 samples[CPUCLOCK_MAX];
|
|
|
|
proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
|
|
samples);
|
|
|
|
if (task_cputimers_expired(samples, pct))
|
|
return true;
|
|
}
|
|
|
|
if (dl_task(tsk) && tsk->dl.dl_overrun)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void handle_posix_cpu_timers(struct task_struct *tsk);
|
|
|
|
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
|
|
static void posix_cpu_timers_work(struct callback_head *work)
|
|
{
|
|
struct posix_cputimers_work *cw = container_of(work, typeof(*cw), work);
|
|
|
|
mutex_lock(&cw->mutex);
|
|
handle_posix_cpu_timers(current);
|
|
mutex_unlock(&cw->mutex);
|
|
}
|
|
|
|
/*
|
|
* Invoked from the posix-timer core when a cancel operation failed because
|
|
* the timer is marked firing. The caller holds rcu_read_lock(), which
|
|
* protects the timer and the task which is expiring it from being freed.
|
|
*/
|
|
static void posix_cpu_timer_wait_running(struct k_itimer *timr)
|
|
{
|
|
struct task_struct *tsk = rcu_dereference(timr->it.cpu.handling);
|
|
|
|
/* Has the handling task completed expiry already? */
|
|
if (!tsk)
|
|
return;
|
|
|
|
/* Ensure that the task cannot go away */
|
|
get_task_struct(tsk);
|
|
/* Now drop the RCU protection so the mutex can be locked */
|
|
rcu_read_unlock();
|
|
/* Wait on the expiry mutex */
|
|
mutex_lock(&tsk->posix_cputimers_work.mutex);
|
|
/* Release it immediately again. */
|
|
mutex_unlock(&tsk->posix_cputimers_work.mutex);
|
|
/* Drop the task reference. */
|
|
put_task_struct(tsk);
|
|
/* Relock RCU so the callsite is balanced */
|
|
rcu_read_lock();
|
|
}
|
|
|
|
static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
|
|
{
|
|
/* Ensure that timr->it.cpu.handling task cannot go away */
|
|
rcu_read_lock();
|
|
spin_unlock_irq(&timr->it_lock);
|
|
posix_cpu_timer_wait_running(timr);
|
|
rcu_read_unlock();
|
|
/* @timr is on stack and is valid */
|
|
spin_lock_irq(&timr->it_lock);
|
|
}
|
|
|
|
/*
|
|
* Clear existing posix CPU timers task work.
|
|
*/
|
|
void clear_posix_cputimers_work(struct task_struct *p)
|
|
{
|
|
/*
|
|
* A copied work entry from the old task is not meaningful, clear it.
|
|
* N.B. init_task_work will not do this.
|
|
*/
|
|
memset(&p->posix_cputimers_work.work, 0,
|
|
sizeof(p->posix_cputimers_work.work));
|
|
init_task_work(&p->posix_cputimers_work.work,
|
|
posix_cpu_timers_work);
|
|
mutex_init(&p->posix_cputimers_work.mutex);
|
|
p->posix_cputimers_work.scheduled = false;
|
|
}
|
|
|
|
/*
|
|
* Initialize posix CPU timers task work in init task. Out of line to
|
|
* keep the callback static and to avoid header recursion hell.
|
|
*/
|
|
void __init posix_cputimers_init_work(void)
|
|
{
|
|
clear_posix_cputimers_work(current);
|
|
}
|
|
|
|
/*
|
|
* Note: All operations on tsk->posix_cputimer_work.scheduled happen either
|
|
* in hard interrupt context or in task context with interrupts
|
|
* disabled. Aside of that the writer/reader interaction is always in the
|
|
* context of the current task, which means they are strict per CPU.
|
|
*/
|
|
static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
|
|
{
|
|
return tsk->posix_cputimers_work.scheduled;
|
|
}
|
|
|
|
static inline void __run_posix_cpu_timers(struct task_struct *tsk)
|
|
{
|
|
if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
|
|
return;
|
|
|
|
/* Schedule task work to actually expire the timers */
|
|
tsk->posix_cputimers_work.scheduled = true;
|
|
task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
|
|
}
|
|
|
|
static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
|
|
unsigned long start)
|
|
{
|
|
bool ret = true;
|
|
|
|
/*
|
|
* On !RT kernels interrupts are disabled while collecting expired
|
|
* timers, so no tick can happen and the fast path check can be
|
|
* reenabled without further checks.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
|
|
tsk->posix_cputimers_work.scheduled = false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* On RT enabled kernels ticks can happen while the expired timers
|
|
* are collected under sighand lock. But any tick which observes
|
|
* the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
|
|
* checks. So reenabling the tick work has do be done carefully:
|
|
*
|
|
* Disable interrupts and run the fast path check if jiffies have
|
|
* advanced since the collecting of expired timers started. If
|
|
* jiffies have not advanced or the fast path check did not find
|
|
* newly expired timers, reenable the fast path check in the timer
|
|
* interrupt. If there are newly expired timers, return false and
|
|
* let the collection loop repeat.
|
|
*/
|
|
local_irq_disable();
|
|
if (start != jiffies && fastpath_timer_check(tsk))
|
|
ret = false;
|
|
else
|
|
tsk->posix_cputimers_work.scheduled = false;
|
|
local_irq_enable();
|
|
|
|
return ret;
|
|
}
|
|
#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
|
|
static inline void __run_posix_cpu_timers(struct task_struct *tsk)
|
|
{
|
|
lockdep_posixtimer_enter();
|
|
handle_posix_cpu_timers(tsk);
|
|
lockdep_posixtimer_exit();
|
|
}
|
|
|
|
static void posix_cpu_timer_wait_running(struct k_itimer *timr)
|
|
{
|
|
cpu_relax();
|
|
}
|
|
|
|
static void posix_cpu_timer_wait_running_nsleep(struct k_itimer *timr)
|
|
{
|
|
spin_unlock_irq(&timr->it_lock);
|
|
cpu_relax();
|
|
spin_lock_irq(&timr->it_lock);
|
|
}
|
|
|
|
static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
|
|
unsigned long start)
|
|
{
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
|
|
|
|
static void handle_posix_cpu_timers(struct task_struct *tsk)
|
|
{
|
|
struct k_itimer *timer, *next;
|
|
unsigned long flags, start;
|
|
LIST_HEAD(firing);
|
|
|
|
if (!lock_task_sighand(tsk, &flags))
|
|
return;
|
|
|
|
do {
|
|
/*
|
|
* On RT locking sighand lock does not disable interrupts,
|
|
* so this needs to be careful vs. ticks. Store the current
|
|
* jiffies value.
|
|
*/
|
|
start = READ_ONCE(jiffies);
|
|
barrier();
|
|
|
|
/*
|
|
* Here we take off tsk->signal->cpu_timers[N] and
|
|
* tsk->cpu_timers[N] all the timers that are firing, and
|
|
* put them on the firing list.
|
|
*/
|
|
check_thread_timers(tsk, &firing);
|
|
|
|
check_process_timers(tsk, &firing);
|
|
|
|
/*
|
|
* The above timer checks have updated the expiry cache and
|
|
* because nothing can have queued or modified timers after
|
|
* sighand lock was taken above it is guaranteed to be
|
|
* consistent. So the next timer interrupt fastpath check
|
|
* will find valid data.
|
|
*
|
|
* If timer expiry runs in the timer interrupt context then
|
|
* the loop is not relevant as timers will be directly
|
|
* expired in interrupt context. The stub function below
|
|
* returns always true which allows the compiler to
|
|
* optimize the loop out.
|
|
*
|
|
* If timer expiry is deferred to task work context then
|
|
* the following rules apply:
|
|
*
|
|
* - On !RT kernels no tick can have happened on this CPU
|
|
* after sighand lock was acquired because interrupts are
|
|
* disabled. So reenabling task work before dropping
|
|
* sighand lock and reenabling interrupts is race free.
|
|
*
|
|
* - On RT kernels ticks might have happened but the tick
|
|
* work ignored posix CPU timer handling because the
|
|
* CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
|
|
* must be done very carefully including a check whether
|
|
* ticks have happened since the start of the timer
|
|
* expiry checks. posix_cpu_timers_enable_work() takes
|
|
* care of that and eventually lets the expiry checks
|
|
* run again.
|
|
*/
|
|
} while (!posix_cpu_timers_enable_work(tsk, start));
|
|
|
|
/*
|
|
* We must release sighand lock before taking any timer's lock.
|
|
* There is a potential race with timer deletion here, as the
|
|
* siglock now protects our private firing list. We have set
|
|
* the firing flag in each timer, so that a deletion attempt
|
|
* that gets the timer lock before we do will give it up and
|
|
* spin until we've taken care of that timer below.
|
|
*/
|
|
unlock_task_sighand(tsk, &flags);
|
|
|
|
/*
|
|
* Now that all the timers on our list have the firing flag,
|
|
* no one will touch their list entries but us. We'll take
|
|
* each timer's lock before clearing its firing flag, so no
|
|
* timer call will interfere.
|
|
*/
|
|
list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
|
|
int cpu_firing;
|
|
|
|
/*
|
|
* spin_lock() is sufficient here even independent of the
|
|
* expiry context. If expiry happens in hard interrupt
|
|
* context it's obvious. For task work context it's safe
|
|
* because all other operations on timer::it_lock happen in
|
|
* task context (syscall or exit).
|
|
*/
|
|
spin_lock(&timer->it_lock);
|
|
list_del_init(&timer->it.cpu.elist);
|
|
cpu_firing = timer->it.cpu.firing;
|
|
timer->it.cpu.firing = 0;
|
|
/*
|
|
* The firing flag is -1 if we collided with a reset
|
|
* of the timer, which already reported this
|
|
* almost-firing as an overrun. So don't generate an event.
|
|
*/
|
|
if (likely(cpu_firing >= 0))
|
|
cpu_timer_fire(timer);
|
|
/* See posix_cpu_timer_wait_running() */
|
|
rcu_assign_pointer(timer->it.cpu.handling, NULL);
|
|
spin_unlock(&timer->it_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called from the timer interrupt handler. The irq handler has
|
|
* already updated our counts. We need to check if any timers fire now.
|
|
* Interrupts are disabled.
|
|
*/
|
|
void run_posix_cpu_timers(void)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
/*
|
|
* If the actual expiry is deferred to task work context and the
|
|
* work is already scheduled there is no point to do anything here.
|
|
*/
|
|
if (posix_cpu_timers_work_scheduled(tsk))
|
|
return;
|
|
|
|
/*
|
|
* The fast path checks that there are no expired thread or thread
|
|
* group timers. If that's so, just return.
|
|
*/
|
|
if (!fastpath_timer_check(tsk))
|
|
return;
|
|
|
|
__run_posix_cpu_timers(tsk);
|
|
}
|
|
|
|
/*
|
|
* Set one of the process-wide special case CPU timers or RLIMIT_CPU.
|
|
* The tsk->sighand->siglock must be held by the caller.
|
|
*/
|
|
void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
|
|
u64 *newval, u64 *oldval)
|
|
{
|
|
u64 now, *nextevt;
|
|
|
|
if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
|
|
return;
|
|
|
|
nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
|
|
now = cpu_clock_sample_group(clkid, tsk, true);
|
|
|
|
if (oldval) {
|
|
/*
|
|
* We are setting itimer. The *oldval is absolute and we update
|
|
* it to be relative, *newval argument is relative and we update
|
|
* it to be absolute.
|
|
*/
|
|
if (*oldval) {
|
|
if (*oldval <= now) {
|
|
/* Just about to fire. */
|
|
*oldval = TICK_NSEC;
|
|
} else {
|
|
*oldval -= now;
|
|
}
|
|
}
|
|
|
|
if (*newval)
|
|
*newval += now;
|
|
}
|
|
|
|
/*
|
|
* Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
|
|
* expiry cache is also used by RLIMIT_CPU!.
|
|
*/
|
|
if (*newval < *nextevt)
|
|
*nextevt = *newval;
|
|
|
|
tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
|
|
}
|
|
|
|
static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
|
|
const struct timespec64 *rqtp)
|
|
{
|
|
struct itimerspec64 it;
|
|
struct k_itimer timer;
|
|
u64 expires;
|
|
int error;
|
|
|
|
/*
|
|
* Set up a temporary timer and then wait for it to go off.
|
|
*/
|
|
memset(&timer, 0, sizeof timer);
|
|
spin_lock_init(&timer.it_lock);
|
|
timer.it_clock = which_clock;
|
|
timer.it_overrun = -1;
|
|
error = posix_cpu_timer_create(&timer);
|
|
timer.it_process = current;
|
|
|
|
if (!error) {
|
|
static struct itimerspec64 zero_it;
|
|
struct restart_block *restart;
|
|
|
|
memset(&it, 0, sizeof(it));
|
|
it.it_value = *rqtp;
|
|
|
|
spin_lock_irq(&timer.it_lock);
|
|
error = posix_cpu_timer_set(&timer, flags, &it, NULL);
|
|
if (error) {
|
|
spin_unlock_irq(&timer.it_lock);
|
|
return error;
|
|
}
|
|
|
|
while (!signal_pending(current)) {
|
|
if (!cpu_timer_getexpires(&timer.it.cpu)) {
|
|
/*
|
|
* Our timer fired and was reset, below
|
|
* deletion can not fail.
|
|
*/
|
|
posix_cpu_timer_del(&timer);
|
|
spin_unlock_irq(&timer.it_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Block until cpu_timer_fire (or a signal) wakes us.
|
|
*/
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
spin_unlock_irq(&timer.it_lock);
|
|
schedule();
|
|
spin_lock_irq(&timer.it_lock);
|
|
}
|
|
|
|
/*
|
|
* We were interrupted by a signal.
|
|
*/
|
|
expires = cpu_timer_getexpires(&timer.it.cpu);
|
|
error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
|
|
if (!error) {
|
|
/* Timer is now unarmed, deletion can not fail. */
|
|
posix_cpu_timer_del(&timer);
|
|
} else {
|
|
while (error == TIMER_RETRY) {
|
|
posix_cpu_timer_wait_running_nsleep(&timer);
|
|
error = posix_cpu_timer_del(&timer);
|
|
}
|
|
}
|
|
|
|
spin_unlock_irq(&timer.it_lock);
|
|
|
|
if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
|
|
/*
|
|
* It actually did fire already.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
error = -ERESTART_RESTARTBLOCK;
|
|
/*
|
|
* Report back to the user the time still remaining.
|
|
*/
|
|
restart = ¤t->restart_block;
|
|
restart->nanosleep.expires = expires;
|
|
if (restart->nanosleep.type != TT_NONE)
|
|
error = nanosleep_copyout(restart, &it.it_value);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
|
|
|
|
static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
|
|
const struct timespec64 *rqtp)
|
|
{
|
|
struct restart_block *restart_block = ¤t->restart_block;
|
|
int error;
|
|
|
|
/*
|
|
* Diagnose required errors first.
|
|
*/
|
|
if (CPUCLOCK_PERTHREAD(which_clock) &&
|
|
(CPUCLOCK_PID(which_clock) == 0 ||
|
|
CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
|
|
return -EINVAL;
|
|
|
|
error = do_cpu_nanosleep(which_clock, flags, rqtp);
|
|
|
|
if (error == -ERESTART_RESTARTBLOCK) {
|
|
|
|
if (flags & TIMER_ABSTIME)
|
|
return -ERESTARTNOHAND;
|
|
|
|
restart_block->nanosleep.clockid = which_clock;
|
|
set_restart_fn(restart_block, posix_cpu_nsleep_restart);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
|
|
{
|
|
clockid_t which_clock = restart_block->nanosleep.clockid;
|
|
struct timespec64 t;
|
|
|
|
t = ns_to_timespec64(restart_block->nanosleep.expires);
|
|
|
|
return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
|
|
}
|
|
|
|
#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
|
|
#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
|
|
|
|
static int process_cpu_clock_getres(const clockid_t which_clock,
|
|
struct timespec64 *tp)
|
|
{
|
|
return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
|
|
}
|
|
static int process_cpu_clock_get(const clockid_t which_clock,
|
|
struct timespec64 *tp)
|
|
{
|
|
return posix_cpu_clock_get(PROCESS_CLOCK, tp);
|
|
}
|
|
static int process_cpu_timer_create(struct k_itimer *timer)
|
|
{
|
|
timer->it_clock = PROCESS_CLOCK;
|
|
return posix_cpu_timer_create(timer);
|
|
}
|
|
static int process_cpu_nsleep(const clockid_t which_clock, int flags,
|
|
const struct timespec64 *rqtp)
|
|
{
|
|
return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
|
|
}
|
|
static int thread_cpu_clock_getres(const clockid_t which_clock,
|
|
struct timespec64 *tp)
|
|
{
|
|
return posix_cpu_clock_getres(THREAD_CLOCK, tp);
|
|
}
|
|
static int thread_cpu_clock_get(const clockid_t which_clock,
|
|
struct timespec64 *tp)
|
|
{
|
|
return posix_cpu_clock_get(THREAD_CLOCK, tp);
|
|
}
|
|
static int thread_cpu_timer_create(struct k_itimer *timer)
|
|
{
|
|
timer->it_clock = THREAD_CLOCK;
|
|
return posix_cpu_timer_create(timer);
|
|
}
|
|
|
|
const struct k_clock clock_posix_cpu = {
|
|
.clock_getres = posix_cpu_clock_getres,
|
|
.clock_set = posix_cpu_clock_set,
|
|
.clock_get_timespec = posix_cpu_clock_get,
|
|
.timer_create = posix_cpu_timer_create,
|
|
.nsleep = posix_cpu_nsleep,
|
|
.timer_set = posix_cpu_timer_set,
|
|
.timer_del = posix_cpu_timer_del,
|
|
.timer_get = posix_cpu_timer_get,
|
|
.timer_rearm = posix_cpu_timer_rearm,
|
|
.timer_wait_running = posix_cpu_timer_wait_running,
|
|
};
|
|
|
|
const struct k_clock clock_process = {
|
|
.clock_getres = process_cpu_clock_getres,
|
|
.clock_get_timespec = process_cpu_clock_get,
|
|
.timer_create = process_cpu_timer_create,
|
|
.nsleep = process_cpu_nsleep,
|
|
};
|
|
|
|
const struct k_clock clock_thread = {
|
|
.clock_getres = thread_cpu_clock_getres,
|
|
.clock_get_timespec = thread_cpu_clock_get,
|
|
.timer_create = thread_cpu_timer_create,
|
|
};
|