1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-23 08:35:19 -05:00
linux/drivers/iio/magnetometer/bmc150_magn.c
Uwe Kleine-König d04d46dd82 iio:magnetometer:mbc150: Make bmc150_magn_remove() return void
bmc150_magn_remove() always returns zero. Make it return no value which
makes it easier to see in the callers that there is no error to handle.

Also the return value of i2c driver remove callbacks is ignored anyway.
This prepares making i2c remove callbacks return void, too.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20220514133250.307955-1-u.kleine-koenig@pengutronix.de
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2022-06-11 14:35:27 +01:00

1084 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Bosch BMC150 three-axis magnetic field sensor driver
*
* Copyright (c) 2015, Intel Corporation.
*
* This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
*
* (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include "bmc150_magn.h"
#define BMC150_MAGN_DRV_NAME "bmc150_magn"
#define BMC150_MAGN_IRQ_NAME "bmc150_magn_event"
#define BMC150_MAGN_REG_CHIP_ID 0x40
#define BMC150_MAGN_CHIP_ID_VAL 0x32
#define BMC150_MAGN_REG_X_L 0x42
#define BMC150_MAGN_REG_X_M 0x43
#define BMC150_MAGN_REG_Y_L 0x44
#define BMC150_MAGN_REG_Y_M 0x45
#define BMC150_MAGN_SHIFT_XY_L 3
#define BMC150_MAGN_REG_Z_L 0x46
#define BMC150_MAGN_REG_Z_M 0x47
#define BMC150_MAGN_SHIFT_Z_L 1
#define BMC150_MAGN_REG_RHALL_L 0x48
#define BMC150_MAGN_REG_RHALL_M 0x49
#define BMC150_MAGN_SHIFT_RHALL_L 2
#define BMC150_MAGN_REG_INT_STATUS 0x4A
#define BMC150_MAGN_REG_POWER 0x4B
#define BMC150_MAGN_MASK_POWER_CTL BIT(0)
#define BMC150_MAGN_REG_OPMODE_ODR 0x4C
#define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1)
#define BMC150_MAGN_SHIFT_OPMODE 1
#define BMC150_MAGN_MODE_NORMAL 0x00
#define BMC150_MAGN_MODE_FORCED 0x01
#define BMC150_MAGN_MODE_SLEEP 0x03
#define BMC150_MAGN_MASK_ODR GENMASK(5, 3)
#define BMC150_MAGN_SHIFT_ODR 3
#define BMC150_MAGN_REG_INT 0x4D
#define BMC150_MAGN_REG_INT_DRDY 0x4E
#define BMC150_MAGN_MASK_DRDY_EN BIT(7)
#define BMC150_MAGN_SHIFT_DRDY_EN 7
#define BMC150_MAGN_MASK_DRDY_INT3 BIT(6)
#define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5)
#define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4)
#define BMC150_MAGN_MASK_DRDY_X_EN BIT(3)
#define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2)
#define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1)
#define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0)
#define BMC150_MAGN_REG_LOW_THRESH 0x4F
#define BMC150_MAGN_REG_HIGH_THRESH 0x50
#define BMC150_MAGN_REG_REP_XY 0x51
#define BMC150_MAGN_REG_REP_Z 0x52
#define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0)
#define BMC150_MAGN_REG_TRIM_START 0x5D
#define BMC150_MAGN_REG_TRIM_END 0x71
#define BMC150_MAGN_XY_OVERFLOW_VAL -4096
#define BMC150_MAGN_Z_OVERFLOW_VAL -16384
/* Time from SUSPEND to SLEEP */
#define BMC150_MAGN_START_UP_TIME_MS 3
#define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000
#define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
#define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
#define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
#define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
enum bmc150_magn_axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
RHALL,
AXIS_XYZ_MAX = RHALL,
AXIS_XYZR_MAX,
};
enum bmc150_magn_power_modes {
BMC150_MAGN_POWER_MODE_SUSPEND,
BMC150_MAGN_POWER_MODE_SLEEP,
BMC150_MAGN_POWER_MODE_NORMAL,
};
struct bmc150_magn_trim_regs {
s8 x1;
s8 y1;
__le16 reserved1;
u8 reserved2;
__le16 z4;
s8 x2;
s8 y2;
__le16 reserved3;
__le16 z2;
__le16 z1;
__le16 xyz1;
__le16 z3;
s8 xy2;
u8 xy1;
} __packed;
struct bmc150_magn_data {
struct device *dev;
/*
* 1. Protect this structure.
* 2. Serialize sequences that power on/off the device and access HW.
*/
struct mutex mutex;
struct regmap *regmap;
struct regulator_bulk_data regulators[2];
struct iio_mount_matrix orientation;
/* Ensure timestamp is naturally aligned */
struct {
s32 chans[3];
s64 timestamp __aligned(8);
} scan;
struct iio_trigger *dready_trig;
bool dready_trigger_on;
int max_odr;
int irq;
};
static const struct {
int freq;
u8 reg_val;
} bmc150_magn_samp_freq_table[] = { {2, 0x01},
{6, 0x02},
{8, 0x03},
{10, 0x00},
{15, 0x04},
{20, 0x05},
{25, 0x06},
{30, 0x07} };
enum bmc150_magn_presets {
LOW_POWER_PRESET,
REGULAR_PRESET,
ENHANCED_REGULAR_PRESET,
HIGH_ACCURACY_PRESET
};
static const struct bmc150_magn_preset {
u8 rep_xy;
u8 rep_z;
u8 odr;
} bmc150_magn_presets_table[] = {
[LOW_POWER_PRESET] = {3, 3, 10},
[REGULAR_PRESET] = {9, 15, 10},
[ENHANCED_REGULAR_PRESET] = {15, 27, 10},
[HIGH_ACCURACY_PRESET] = {47, 83, 20},
};
#define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case BMC150_MAGN_REG_POWER:
case BMC150_MAGN_REG_OPMODE_ODR:
case BMC150_MAGN_REG_INT:
case BMC150_MAGN_REG_INT_DRDY:
case BMC150_MAGN_REG_LOW_THRESH:
case BMC150_MAGN_REG_HIGH_THRESH:
case BMC150_MAGN_REG_REP_XY:
case BMC150_MAGN_REG_REP_Z:
return true;
default:
return false;
}
}
static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case BMC150_MAGN_REG_X_L:
case BMC150_MAGN_REG_X_M:
case BMC150_MAGN_REG_Y_L:
case BMC150_MAGN_REG_Y_M:
case BMC150_MAGN_REG_Z_L:
case BMC150_MAGN_REG_Z_M:
case BMC150_MAGN_REG_RHALL_L:
case BMC150_MAGN_REG_RHALL_M:
case BMC150_MAGN_REG_INT_STATUS:
return true;
default:
return false;
}
}
const struct regmap_config bmc150_magn_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = BMC150_MAGN_REG_TRIM_END,
.cache_type = REGCACHE_RBTREE,
.writeable_reg = bmc150_magn_is_writeable_reg,
.volatile_reg = bmc150_magn_is_volatile_reg,
};
EXPORT_SYMBOL_NS(bmc150_magn_regmap_config, IIO_BMC150_MAGN);
static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
enum bmc150_magn_power_modes mode,
bool state)
{
int ret;
switch (mode) {
case BMC150_MAGN_POWER_MODE_SUSPEND:
ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
BMC150_MAGN_MASK_POWER_CTL, !state);
if (ret < 0)
return ret;
usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
return 0;
case BMC150_MAGN_POWER_MODE_SLEEP:
return regmap_update_bits(data->regmap,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_OPMODE,
BMC150_MAGN_MODE_SLEEP <<
BMC150_MAGN_SHIFT_OPMODE);
case BMC150_MAGN_POWER_MODE_NORMAL:
return regmap_update_bits(data->regmap,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_OPMODE,
BMC150_MAGN_MODE_NORMAL <<
BMC150_MAGN_SHIFT_OPMODE);
}
return -EINVAL;
}
static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
{
#ifdef CONFIG_PM
int ret;
if (on) {
ret = pm_runtime_resume_and_get(data->dev);
} else {
pm_runtime_mark_last_busy(data->dev);
ret = pm_runtime_put_autosuspend(data->dev);
}
if (ret < 0) {
dev_err(data->dev,
"failed to change power state to %d\n", on);
return ret;
}
#endif
return 0;
}
static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
{
int ret, reg_val;
u8 i, odr_val;
ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
if (ret < 0)
return ret;
odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
*val = bmc150_magn_samp_freq_table[i].freq;
return 0;
}
return -EINVAL;
}
static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
{
int ret;
u8 i;
for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
if (bmc150_magn_samp_freq_table[i].freq == val) {
ret = regmap_update_bits(data->regmap,
BMC150_MAGN_REG_OPMODE_ODR,
BMC150_MAGN_MASK_ODR,
bmc150_magn_samp_freq_table[i].
reg_val <<
BMC150_MAGN_SHIFT_ODR);
if (ret < 0)
return ret;
return 0;
}
}
return -EINVAL;
}
static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
int rep_z, int odr)
{
int ret, reg_val, max_odr;
if (rep_xy <= 0) {
ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
&reg_val);
if (ret < 0)
return ret;
rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
}
if (rep_z <= 0) {
ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
&reg_val);
if (ret < 0)
return ret;
rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
}
if (odr <= 0) {
ret = bmc150_magn_get_odr(data, &odr);
if (ret < 0)
return ret;
}
/* the maximum selectable read-out frequency from datasheet */
max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
if (odr > max_odr) {
dev_err(data->dev,
"Can't set oversampling with sampling freq %d\n",
odr);
return -EINVAL;
}
data->max_odr = max_odr;
return 0;
}
static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
u16 rhall)
{
s16 val;
u16 xyz1 = le16_to_cpu(tregs->xyz1);
if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
return S32_MIN;
if (!rhall)
rhall = xyz1;
val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
((s32)val)) >> 7)) + (((s32)val) *
((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
(((s16)tregs->x1) << 3);
return (s32)val;
}
static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
u16 rhall)
{
s16 val;
u16 xyz1 = le16_to_cpu(tregs->xyz1);
if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
return S32_MIN;
if (!rhall)
rhall = xyz1;
val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
((s32)val)) >> 7)) + (((s32)val) *
((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
(((s16)tregs->y1) << 3);
return (s32)val;
}
static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
u16 rhall)
{
s32 val;
u16 xyz1 = le16_to_cpu(tregs->xyz1);
u16 z1 = le16_to_cpu(tregs->z1);
s16 z2 = le16_to_cpu(tregs->z2);
s16 z3 = le16_to_cpu(tregs->z3);
s16 z4 = le16_to_cpu(tregs->z4);
if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
return S32_MIN;
val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
return val;
}
static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
{
int ret;
__le16 values[AXIS_XYZR_MAX];
s16 raw_x, raw_y, raw_z;
u16 rhall;
struct bmc150_magn_trim_regs tregs;
ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
values, sizeof(values));
if (ret < 0)
return ret;
raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
&tregs, sizeof(tregs));
if (ret < 0)
return ret;
buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
return 0;
}
static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret, tmp;
s32 values[AXIS_XYZ_MAX];
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (iio_buffer_enabled(indio_dev))
return -EBUSY;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = bmc150_magn_read_xyz(data, values);
if (ret < 0) {
bmc150_magn_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
*val = values[chan->scan_index];
ret = bmc150_magn_set_power_state(data, false);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
mutex_unlock(&data->mutex);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
/*
* The API/driver performs an off-chip temperature
* compensation and outputs x/y/z magnetic field data in
* 16 LSB/uT to the upper application layer.
*/
*val = 0;
*val2 = 625;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = bmc150_magn_get_odr(data, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->channel2) {
case IIO_MOD_X:
case IIO_MOD_Y:
ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
&tmp);
if (ret < 0)
return ret;
*val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
return IIO_VAL_INT;
case IIO_MOD_Z:
ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
&tmp);
if (ret < 0)
return ret;
*val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
if (val > data->max_odr)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_odr(data, val);
mutex_unlock(&data->mutex);
return ret;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
switch (chan->channel2) {
case IIO_MOD_X:
case IIO_MOD_Y:
if (val < 1 || val > 511)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_max_odr(data, val, 0, 0);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = regmap_update_bits(data->regmap,
BMC150_MAGN_REG_REP_XY,
BMC150_MAGN_REG_REP_DATAMASK,
BMC150_MAGN_REPXY_TO_REGVAL
(val));
mutex_unlock(&data->mutex);
return ret;
case IIO_MOD_Z:
if (val < 1 || val > 256)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_max_odr(data, 0, val, 0);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = regmap_update_bits(data->regmap,
BMC150_MAGN_REG_REP_Z,
BMC150_MAGN_REG_REP_DATAMASK,
BMC150_MAGN_REPZ_TO_REGVAL
(val));
mutex_unlock(&data->mutex);
return ret;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct bmc150_magn_data *data = iio_priv(indio_dev);
size_t len = 0;
u8 i;
for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
break;
len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
bmc150_magn_samp_freq_table[i].freq);
}
/* replace last space with a newline */
buf[len - 1] = '\n';
return len;
}
static const struct iio_mount_matrix *
bmc150_magn_get_mount_matrix(const struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
return &data->orientation;
}
static const struct iio_chan_spec_ext_info bmc150_magn_ext_info[] = {
IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmc150_magn_get_mount_matrix),
{ }
};
static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
static struct attribute *bmc150_magn_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bmc150_magn_attrs_group = {
.attrs = bmc150_magn_attributes,
};
#define BMC150_MAGN_CHANNEL(_axis) { \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_SCALE), \
.scan_index = AXIS_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = 32, \
.storagebits = 32, \
.endianness = IIO_LE \
}, \
.ext_info = bmc150_magn_ext_info, \
}
static const struct iio_chan_spec bmc150_magn_channels[] = {
BMC150_MAGN_CHANNEL(X),
BMC150_MAGN_CHANNEL(Y),
BMC150_MAGN_CHANNEL(Z),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const struct iio_info bmc150_magn_info = {
.attrs = &bmc150_magn_attrs_group,
.read_raw = bmc150_magn_read_raw,
.write_raw = bmc150_magn_write_raw,
};
static const unsigned long bmc150_magn_scan_masks[] = {
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
0};
static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bmc150_magn_read_xyz(data, data->scan.chans);
if (ret < 0)
goto err;
iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
pf->timestamp);
err:
mutex_unlock(&data->mutex);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bmc150_magn_init(struct bmc150_magn_data *data)
{
int ret, chip_id;
struct bmc150_magn_preset preset;
ret = regulator_bulk_enable(ARRAY_SIZE(data->regulators),
data->regulators);
if (ret < 0) {
dev_err(data->dev, "Failed to enable regulators: %d\n", ret);
return ret;
}
/*
* 3ms power-on time according to datasheet, let's better
* be safe than sorry and set this delay to 5ms.
*/
msleep(5);
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
false);
if (ret < 0) {
dev_err(data->dev,
"Failed to bring up device from suspend mode\n");
goto err_regulator_disable;
}
ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
if (ret < 0) {
dev_err(data->dev, "Failed reading chip id\n");
goto err_poweroff;
}
if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
ret = -ENODEV;
goto err_poweroff;
}
dev_dbg(data->dev, "Chip id %x\n", chip_id);
preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
ret = bmc150_magn_set_odr(data, preset.odr);
if (ret < 0) {
dev_err(data->dev, "Failed to set ODR to %d\n",
preset.odr);
goto err_poweroff;
}
ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
if (ret < 0) {
dev_err(data->dev, "Failed to set REP XY to %d\n",
preset.rep_xy);
goto err_poweroff;
}
ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
if (ret < 0) {
dev_err(data->dev, "Failed to set REP Z to %d\n",
preset.rep_z);
goto err_poweroff;
}
ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
preset.odr);
if (ret < 0)
goto err_poweroff;
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
true);
if (ret < 0) {
dev_err(data->dev, "Failed to power on device\n");
goto err_poweroff;
}
return 0;
err_poweroff:
bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
err_regulator_disable:
regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
return ret;
}
static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
{
int tmp;
/*
* Data Ready (DRDY) is always cleared after
* readout of data registers ends.
*/
return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
}
static void bmc150_magn_trig_reen(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
if (!data->dready_trigger_on)
return;
mutex_lock(&data->mutex);
ret = bmc150_magn_reset_intr(data);
mutex_unlock(&data->mutex);
if (ret)
dev_err(data->dev, "Failed to reset interrupt\n");
}
static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret = 0;
mutex_lock(&data->mutex);
if (state == data->dready_trigger_on)
goto err_unlock;
ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
BMC150_MAGN_MASK_DRDY_EN,
state << BMC150_MAGN_SHIFT_DRDY_EN);
if (ret < 0)
goto err_unlock;
data->dready_trigger_on = state;
if (state) {
ret = bmc150_magn_reset_intr(data);
if (ret < 0)
goto err_unlock;
}
mutex_unlock(&data->mutex);
return 0;
err_unlock:
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
.set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
.reenable = bmc150_magn_trig_reen,
};
static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
return bmc150_magn_set_power_state(data, true);
}
static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
{
struct bmc150_magn_data *data = iio_priv(indio_dev);
return bmc150_magn_set_power_state(data, false);
}
static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
.preenable = bmc150_magn_buffer_preenable,
.postdisable = bmc150_magn_buffer_postdisable,
};
static const char *bmc150_magn_match_acpi_device(struct device *dev)
{
const struct acpi_device_id *id;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return NULL;
return dev_name(dev);
}
int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
int irq, const char *name)
{
struct bmc150_magn_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->regmap = regmap;
data->irq = irq;
data->dev = dev;
data->regulators[0].supply = "vdd";
data->regulators[1].supply = "vddio";
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(data->regulators),
data->regulators);
if (ret)
return dev_err_probe(dev, ret, "failed to get regulators\n");
ret = iio_read_mount_matrix(dev, &data->orientation);
if (ret)
return ret;
if (!name && ACPI_HANDLE(dev))
name = bmc150_magn_match_acpi_device(dev);
mutex_init(&data->mutex);
ret = bmc150_magn_init(data);
if (ret < 0)
return ret;
indio_dev->channels = bmc150_magn_channels;
indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
indio_dev->available_scan_masks = bmc150_magn_scan_masks;
indio_dev->name = name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmc150_magn_info;
if (irq > 0) {
data->dready_trig = devm_iio_trigger_alloc(dev,
"%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!data->dready_trig) {
ret = -ENOMEM;
dev_err(dev, "iio trigger alloc failed\n");
goto err_poweroff;
}
data->dready_trig->ops = &bmc150_magn_trigger_ops;
iio_trigger_set_drvdata(data->dready_trig, indio_dev);
ret = iio_trigger_register(data->dready_trig);
if (ret) {
dev_err(dev, "iio trigger register failed\n");
goto err_poweroff;
}
ret = request_threaded_irq(irq,
iio_trigger_generic_data_rdy_poll,
NULL,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
BMC150_MAGN_IRQ_NAME,
data->dready_trig);
if (ret < 0) {
dev_err(dev, "request irq %d failed\n", irq);
goto err_trigger_unregister;
}
}
ret = iio_triggered_buffer_setup(indio_dev,
iio_pollfunc_store_time,
bmc150_magn_trigger_handler,
&bmc150_magn_buffer_setup_ops);
if (ret < 0) {
dev_err(dev, "iio triggered buffer setup failed\n");
goto err_free_irq;
}
ret = pm_runtime_set_active(dev);
if (ret)
goto err_buffer_cleanup;
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev,
BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(dev);
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(dev, "unable to register iio device\n");
goto err_pm_cleanup;
}
dev_dbg(dev, "Registered device %s\n", name);
return 0;
err_pm_cleanup:
pm_runtime_dont_use_autosuspend(dev);
pm_runtime_disable(dev);
err_buffer_cleanup:
iio_triggered_buffer_cleanup(indio_dev);
err_free_irq:
if (irq > 0)
free_irq(irq, data->dready_trig);
err_trigger_unregister:
if (data->dready_trig)
iio_trigger_unregister(data->dready_trig);
err_poweroff:
bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
return ret;
}
EXPORT_SYMBOL_NS(bmc150_magn_probe, IIO_BMC150_MAGN);
void bmc150_magn_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_magn_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
iio_triggered_buffer_cleanup(indio_dev);
if (data->irq > 0)
free_irq(data->irq, data->dready_trig);
if (data->dready_trig)
iio_trigger_unregister(data->dready_trig);
mutex_lock(&data->mutex);
bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
mutex_unlock(&data->mutex);
regulator_bulk_disable(ARRAY_SIZE(data->regulators), data->regulators);
}
EXPORT_SYMBOL_NS(bmc150_magn_remove, IIO_BMC150_MAGN);
#ifdef CONFIG_PM
static int bmc150_magn_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
true);
mutex_unlock(&data->mutex);
if (ret < 0) {
dev_err(dev, "powering off device failed\n");
return ret;
}
return 0;
}
/*
* Should be called with data->mutex held.
*/
static int bmc150_magn_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_magn_data *data = iio_priv(indio_dev);
return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
true);
}
#endif
#ifdef CONFIG_PM_SLEEP
static int bmc150_magn_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
true);
mutex_unlock(&data->mutex);
return ret;
}
static int bmc150_magn_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmc150_magn_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
true);
mutex_unlock(&data->mutex);
return ret;
}
#endif
const struct dev_pm_ops bmc150_magn_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
bmc150_magn_runtime_resume, NULL)
};
EXPORT_SYMBOL_NS(bmc150_magn_pm_ops, IIO_BMC150_MAGN);
MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 magnetometer core driver");