1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/drivers/dma/dmatest.c
Peter Ujfalusi adc0f941f9 dmaengine: dmatest: Use dmaengine_get_dma_device
By using the dmaengine_get_dma_device() to get the device for
dma_api use, the dmatest can support per channel coherency if it is
supported by the DMA controller.

Signed-off-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Link: https://lore.kernel.org/r/20201208090440.31792-11-peter.ujfalusi@ti.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-12-11 21:20:08 +05:30

1361 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* DMA Engine test module
*
* Copyright (C) 2007 Atmel Corporation
* Copyright (C) 2013 Intel Corporation
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/freezer.h>
#include <linux/init.h>
#include <linux/kthread.h>
#include <linux/sched/task.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/wait.h>
static unsigned int test_buf_size = 16384;
module_param(test_buf_size, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(test_buf_size, "Size of the memcpy test buffer");
static char test_device[32];
module_param_string(device, test_device, sizeof(test_device),
S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(device, "Bus ID of the DMA Engine to test (default: any)");
static unsigned int threads_per_chan = 1;
module_param(threads_per_chan, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(threads_per_chan,
"Number of threads to start per channel (default: 1)");
static unsigned int max_channels;
module_param(max_channels, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_channels,
"Maximum number of channels to use (default: all)");
static unsigned int iterations;
module_param(iterations, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(iterations,
"Iterations before stopping test (default: infinite)");
static unsigned int dmatest;
module_param(dmatest, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dmatest,
"dmatest 0-memcpy 1-memset (default: 0)");
static unsigned int xor_sources = 3;
module_param(xor_sources, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(xor_sources,
"Number of xor source buffers (default: 3)");
static unsigned int pq_sources = 3;
module_param(pq_sources, uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(pq_sources,
"Number of p+q source buffers (default: 3)");
static int timeout = 3000;
module_param(timeout, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(timeout, "Transfer Timeout in msec (default: 3000), "
"Pass -1 for infinite timeout");
static bool noverify;
module_param(noverify, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(noverify, "Disable data verification (default: verify)");
static bool norandom;
module_param(norandom, bool, 0644);
MODULE_PARM_DESC(norandom, "Disable random offset setup (default: random)");
static bool verbose;
module_param(verbose, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(verbose, "Enable \"success\" result messages (default: off)");
static int alignment = -1;
module_param(alignment, int, 0644);
MODULE_PARM_DESC(alignment, "Custom data address alignment taken as 2^(alignment) (default: not used (-1))");
static unsigned int transfer_size;
module_param(transfer_size, uint, 0644);
MODULE_PARM_DESC(transfer_size, "Optional custom transfer size in bytes (default: not used (0))");
static bool polled;
module_param(polled, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(polled, "Use polling for completion instead of interrupts");
/**
* struct dmatest_params - test parameters.
* @buf_size: size of the memcpy test buffer
* @channel: bus ID of the channel to test
* @device: bus ID of the DMA Engine to test
* @threads_per_chan: number of threads to start per channel
* @max_channels: maximum number of channels to use
* @iterations: iterations before stopping test
* @xor_sources: number of xor source buffers
* @pq_sources: number of p+q source buffers
* @timeout: transfer timeout in msec, -1 for infinite timeout
* @noverify: disable data verification
* @norandom: disable random offset setup
* @alignment: custom data address alignment taken as 2^alignment
* @transfer_size: custom transfer size in bytes
* @polled: use polling for completion instead of interrupts
*/
struct dmatest_params {
unsigned int buf_size;
char channel[20];
char device[32];
unsigned int threads_per_chan;
unsigned int max_channels;
unsigned int iterations;
unsigned int xor_sources;
unsigned int pq_sources;
int timeout;
bool noverify;
bool norandom;
int alignment;
unsigned int transfer_size;
bool polled;
};
/**
* struct dmatest_info - test information.
* @params: test parameters
* @channels: channels under test
* @nr_channels: number of channels under test
* @lock: access protection to the fields of this structure
* @did_init: module has been initialized completely
* @last_error: test has faced configuration issues
*/
static struct dmatest_info {
/* Test parameters */
struct dmatest_params params;
/* Internal state */
struct list_head channels;
unsigned int nr_channels;
int last_error;
struct mutex lock;
bool did_init;
} test_info = {
.channels = LIST_HEAD_INIT(test_info.channels),
.lock = __MUTEX_INITIALIZER(test_info.lock),
};
static int dmatest_run_set(const char *val, const struct kernel_param *kp);
static int dmatest_run_get(char *val, const struct kernel_param *kp);
static const struct kernel_param_ops run_ops = {
.set = dmatest_run_set,
.get = dmatest_run_get,
};
static bool dmatest_run;
module_param_cb(run, &run_ops, &dmatest_run, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(run, "Run the test (default: false)");
static int dmatest_chan_set(const char *val, const struct kernel_param *kp);
static int dmatest_chan_get(char *val, const struct kernel_param *kp);
static const struct kernel_param_ops multi_chan_ops = {
.set = dmatest_chan_set,
.get = dmatest_chan_get,
};
static char test_channel[20];
static struct kparam_string newchan_kps = {
.string = test_channel,
.maxlen = 20,
};
module_param_cb(channel, &multi_chan_ops, &newchan_kps, 0644);
MODULE_PARM_DESC(channel, "Bus ID of the channel to test (default: any)");
static int dmatest_test_list_get(char *val, const struct kernel_param *kp);
static const struct kernel_param_ops test_list_ops = {
.get = dmatest_test_list_get,
};
module_param_cb(test_list, &test_list_ops, NULL, 0444);
MODULE_PARM_DESC(test_list, "Print current test list");
/* Maximum amount of mismatched bytes in buffer to print */
#define MAX_ERROR_COUNT 32
/*
* Initialization patterns. All bytes in the source buffer has bit 7
* set, all bytes in the destination buffer has bit 7 cleared.
*
* Bit 6 is set for all bytes which are to be copied by the DMA
* engine. Bit 5 is set for all bytes which are to be overwritten by
* the DMA engine.
*
* The remaining bits are the inverse of a counter which increments by
* one for each byte address.
*/
#define PATTERN_SRC 0x80
#define PATTERN_DST 0x00
#define PATTERN_COPY 0x40
#define PATTERN_OVERWRITE 0x20
#define PATTERN_COUNT_MASK 0x1f
#define PATTERN_MEMSET_IDX 0x01
/* Fixed point arithmetic ops */
#define FIXPT_SHIFT 8
#define FIXPNT_MASK 0xFF
#define FIXPT_TO_INT(a) ((a) >> FIXPT_SHIFT)
#define INT_TO_FIXPT(a) ((a) << FIXPT_SHIFT)
#define FIXPT_GET_FRAC(a) ((((a) & FIXPNT_MASK) * 100) >> FIXPT_SHIFT)
/* poor man's completion - we want to use wait_event_freezable() on it */
struct dmatest_done {
bool done;
wait_queue_head_t *wait;
};
struct dmatest_data {
u8 **raw;
u8 **aligned;
unsigned int cnt;
unsigned int off;
};
struct dmatest_thread {
struct list_head node;
struct dmatest_info *info;
struct task_struct *task;
struct dma_chan *chan;
struct dmatest_data src;
struct dmatest_data dst;
enum dma_transaction_type type;
wait_queue_head_t done_wait;
struct dmatest_done test_done;
bool done;
bool pending;
};
struct dmatest_chan {
struct list_head node;
struct dma_chan *chan;
struct list_head threads;
};
static DECLARE_WAIT_QUEUE_HEAD(thread_wait);
static bool wait;
static bool is_threaded_test_run(struct dmatest_info *info)
{
struct dmatest_chan *dtc;
list_for_each_entry(dtc, &info->channels, node) {
struct dmatest_thread *thread;
list_for_each_entry(thread, &dtc->threads, node) {
if (!thread->done && !thread->pending)
return true;
}
}
return false;
}
static bool is_threaded_test_pending(struct dmatest_info *info)
{
struct dmatest_chan *dtc;
list_for_each_entry(dtc, &info->channels, node) {
struct dmatest_thread *thread;
list_for_each_entry(thread, &dtc->threads, node) {
if (thread->pending)
return true;
}
}
return false;
}
static int dmatest_wait_get(char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
struct dmatest_params *params = &info->params;
if (params->iterations)
wait_event(thread_wait, !is_threaded_test_run(info));
wait = true;
return param_get_bool(val, kp);
}
static const struct kernel_param_ops wait_ops = {
.get = dmatest_wait_get,
.set = param_set_bool,
};
module_param_cb(wait, &wait_ops, &wait, S_IRUGO);
MODULE_PARM_DESC(wait, "Wait for tests to complete (default: false)");
static bool dmatest_match_channel(struct dmatest_params *params,
struct dma_chan *chan)
{
if (params->channel[0] == '\0')
return true;
return strcmp(dma_chan_name(chan), params->channel) == 0;
}
static bool dmatest_match_device(struct dmatest_params *params,
struct dma_device *device)
{
if (params->device[0] == '\0')
return true;
return strcmp(dev_name(device->dev), params->device) == 0;
}
static unsigned long dmatest_random(void)
{
unsigned long buf;
prandom_bytes(&buf, sizeof(buf));
return buf;
}
static inline u8 gen_inv_idx(u8 index, bool is_memset)
{
u8 val = is_memset ? PATTERN_MEMSET_IDX : index;
return ~val & PATTERN_COUNT_MASK;
}
static inline u8 gen_src_value(u8 index, bool is_memset)
{
return PATTERN_SRC | gen_inv_idx(index, is_memset);
}
static inline u8 gen_dst_value(u8 index, bool is_memset)
{
return PATTERN_DST | gen_inv_idx(index, is_memset);
}
static void dmatest_init_srcs(u8 **bufs, unsigned int start, unsigned int len,
unsigned int buf_size, bool is_memset)
{
unsigned int i;
u8 *buf;
for (; (buf = *bufs); bufs++) {
for (i = 0; i < start; i++)
buf[i] = gen_src_value(i, is_memset);
for ( ; i < start + len; i++)
buf[i] = gen_src_value(i, is_memset) | PATTERN_COPY;
for ( ; i < buf_size; i++)
buf[i] = gen_src_value(i, is_memset);
buf++;
}
}
static void dmatest_init_dsts(u8 **bufs, unsigned int start, unsigned int len,
unsigned int buf_size, bool is_memset)
{
unsigned int i;
u8 *buf;
for (; (buf = *bufs); bufs++) {
for (i = 0; i < start; i++)
buf[i] = gen_dst_value(i, is_memset);
for ( ; i < start + len; i++)
buf[i] = gen_dst_value(i, is_memset) |
PATTERN_OVERWRITE;
for ( ; i < buf_size; i++)
buf[i] = gen_dst_value(i, is_memset);
}
}
static void dmatest_mismatch(u8 actual, u8 pattern, unsigned int index,
unsigned int counter, bool is_srcbuf, bool is_memset)
{
u8 diff = actual ^ pattern;
u8 expected = pattern | gen_inv_idx(counter, is_memset);
const char *thread_name = current->comm;
if (is_srcbuf)
pr_warn("%s: srcbuf[0x%x] overwritten! Expected %02x, got %02x\n",
thread_name, index, expected, actual);
else if ((pattern & PATTERN_COPY)
&& (diff & (PATTERN_COPY | PATTERN_OVERWRITE)))
pr_warn("%s: dstbuf[0x%x] not copied! Expected %02x, got %02x\n",
thread_name, index, expected, actual);
else if (diff & PATTERN_SRC)
pr_warn("%s: dstbuf[0x%x] was copied! Expected %02x, got %02x\n",
thread_name, index, expected, actual);
else
pr_warn("%s: dstbuf[0x%x] mismatch! Expected %02x, got %02x\n",
thread_name, index, expected, actual);
}
static unsigned int dmatest_verify(u8 **bufs, unsigned int start,
unsigned int end, unsigned int counter, u8 pattern,
bool is_srcbuf, bool is_memset)
{
unsigned int i;
unsigned int error_count = 0;
u8 actual;
u8 expected;
u8 *buf;
unsigned int counter_orig = counter;
for (; (buf = *bufs); bufs++) {
counter = counter_orig;
for (i = start; i < end; i++) {
actual = buf[i];
expected = pattern | gen_inv_idx(counter, is_memset);
if (actual != expected) {
if (error_count < MAX_ERROR_COUNT)
dmatest_mismatch(actual, pattern, i,
counter, is_srcbuf,
is_memset);
error_count++;
}
counter++;
}
}
if (error_count > MAX_ERROR_COUNT)
pr_warn("%s: %u errors suppressed\n",
current->comm, error_count - MAX_ERROR_COUNT);
return error_count;
}
static void dmatest_callback(void *arg)
{
struct dmatest_done *done = arg;
struct dmatest_thread *thread =
container_of(done, struct dmatest_thread, test_done);
if (!thread->done) {
done->done = true;
wake_up_all(done->wait);
} else {
/*
* If thread->done, it means that this callback occurred
* after the parent thread has cleaned up. This can
* happen in the case that driver doesn't implement
* the terminate_all() functionality and a dma operation
* did not occur within the timeout period
*/
WARN(1, "dmatest: Kernel memory may be corrupted!!\n");
}
}
static unsigned int min_odd(unsigned int x, unsigned int y)
{
unsigned int val = min(x, y);
return val % 2 ? val : val - 1;
}
static void result(const char *err, unsigned int n, unsigned int src_off,
unsigned int dst_off, unsigned int len, unsigned long data)
{
if (IS_ERR_VALUE(data)) {
pr_info("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%ld)\n",
current->comm, n, err, src_off, dst_off, len, data);
} else {
pr_info("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%lu)\n",
current->comm, n, err, src_off, dst_off, len, data);
}
}
static void dbg_result(const char *err, unsigned int n, unsigned int src_off,
unsigned int dst_off, unsigned int len,
unsigned long data)
{
pr_debug("%s: result #%u: '%s' with src_off=0x%x dst_off=0x%x len=0x%x (%lu)\n",
current->comm, n, err, src_off, dst_off, len, data);
}
#define verbose_result(err, n, src_off, dst_off, len, data) ({ \
if (verbose) \
result(err, n, src_off, dst_off, len, data); \
else \
dbg_result(err, n, src_off, dst_off, len, data);\
})
static unsigned long long dmatest_persec(s64 runtime, unsigned int val)
{
unsigned long long per_sec = 1000000;
if (runtime <= 0)
return 0;
/* drop precision until runtime is 32-bits */
while (runtime > UINT_MAX) {
runtime >>= 1;
per_sec <<= 1;
}
per_sec *= val;
per_sec = INT_TO_FIXPT(per_sec);
do_div(per_sec, runtime);
return per_sec;
}
static unsigned long long dmatest_KBs(s64 runtime, unsigned long long len)
{
return FIXPT_TO_INT(dmatest_persec(runtime, len >> 10));
}
static void __dmatest_free_test_data(struct dmatest_data *d, unsigned int cnt)
{
unsigned int i;
for (i = 0; i < cnt; i++)
kfree(d->raw[i]);
kfree(d->aligned);
kfree(d->raw);
}
static void dmatest_free_test_data(struct dmatest_data *d)
{
__dmatest_free_test_data(d, d->cnt);
}
static int dmatest_alloc_test_data(struct dmatest_data *d,
unsigned int buf_size, u8 align)
{
unsigned int i = 0;
d->raw = kcalloc(d->cnt + 1, sizeof(u8 *), GFP_KERNEL);
if (!d->raw)
return -ENOMEM;
d->aligned = kcalloc(d->cnt + 1, sizeof(u8 *), GFP_KERNEL);
if (!d->aligned)
goto err;
for (i = 0; i < d->cnt; i++) {
d->raw[i] = kmalloc(buf_size + align, GFP_KERNEL);
if (!d->raw[i])
goto err;
/* align to alignment restriction */
if (align)
d->aligned[i] = PTR_ALIGN(d->raw[i], align);
else
d->aligned[i] = d->raw[i];
}
return 0;
err:
__dmatest_free_test_data(d, i);
return -ENOMEM;
}
/*
* This function repeatedly tests DMA transfers of various lengths and
* offsets for a given operation type until it is told to exit by
* kthread_stop(). There may be multiple threads running this function
* in parallel for a single channel, and there may be multiple channels
* being tested in parallel.
*
* Before each test, the source and destination buffer is initialized
* with a known pattern. This pattern is different depending on
* whether it's in an area which is supposed to be copied or
* overwritten, and different in the source and destination buffers.
* So if the DMA engine doesn't copy exactly what we tell it to copy,
* we'll notice.
*/
static int dmatest_func(void *data)
{
struct dmatest_thread *thread = data;
struct dmatest_done *done = &thread->test_done;
struct dmatest_info *info;
struct dmatest_params *params;
struct dma_chan *chan;
struct dma_device *dev;
struct device *dma_dev;
unsigned int error_count;
unsigned int failed_tests = 0;
unsigned int total_tests = 0;
dma_cookie_t cookie;
enum dma_status status;
enum dma_ctrl_flags flags;
u8 *pq_coefs = NULL;
int ret;
unsigned int buf_size;
struct dmatest_data *src;
struct dmatest_data *dst;
int i;
ktime_t ktime, start, diff;
ktime_t filltime = 0;
ktime_t comparetime = 0;
s64 runtime = 0;
unsigned long long total_len = 0;
unsigned long long iops = 0;
u8 align = 0;
bool is_memset = false;
dma_addr_t *srcs;
dma_addr_t *dma_pq;
set_freezable();
ret = -ENOMEM;
smp_rmb();
thread->pending = false;
info = thread->info;
params = &info->params;
chan = thread->chan;
dev = chan->device;
dma_dev = dmaengine_get_dma_device(chan);
src = &thread->src;
dst = &thread->dst;
if (thread->type == DMA_MEMCPY) {
align = params->alignment < 0 ? dev->copy_align :
params->alignment;
src->cnt = dst->cnt = 1;
} else if (thread->type == DMA_MEMSET) {
align = params->alignment < 0 ? dev->fill_align :
params->alignment;
src->cnt = dst->cnt = 1;
is_memset = true;
} else if (thread->type == DMA_XOR) {
/* force odd to ensure dst = src */
src->cnt = min_odd(params->xor_sources | 1, dev->max_xor);
dst->cnt = 1;
align = params->alignment < 0 ? dev->xor_align :
params->alignment;
} else if (thread->type == DMA_PQ) {
/* force odd to ensure dst = src */
src->cnt = min_odd(params->pq_sources | 1, dma_maxpq(dev, 0));
dst->cnt = 2;
align = params->alignment < 0 ? dev->pq_align :
params->alignment;
pq_coefs = kmalloc(params->pq_sources + 1, GFP_KERNEL);
if (!pq_coefs)
goto err_thread_type;
for (i = 0; i < src->cnt; i++)
pq_coefs[i] = 1;
} else
goto err_thread_type;
/* Check if buffer count fits into map count variable (u8) */
if ((src->cnt + dst->cnt) >= 255) {
pr_err("too many buffers (%d of 255 supported)\n",
src->cnt + dst->cnt);
goto err_free_coefs;
}
buf_size = params->buf_size;
if (1 << align > buf_size) {
pr_err("%u-byte buffer too small for %d-byte alignment\n",
buf_size, 1 << align);
goto err_free_coefs;
}
if (dmatest_alloc_test_data(src, buf_size, align) < 0)
goto err_free_coefs;
if (dmatest_alloc_test_data(dst, buf_size, align) < 0)
goto err_src;
set_user_nice(current, 10);
srcs = kcalloc(src->cnt, sizeof(dma_addr_t), GFP_KERNEL);
if (!srcs)
goto err_dst;
dma_pq = kcalloc(dst->cnt, sizeof(dma_addr_t), GFP_KERNEL);
if (!dma_pq)
goto err_srcs_array;
/*
* src and dst buffers are freed by ourselves below
*/
if (params->polled)
flags = DMA_CTRL_ACK;
else
flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
ktime = ktime_get();
while (!(kthread_should_stop() ||
(params->iterations && total_tests >= params->iterations))) {
struct dma_async_tx_descriptor *tx = NULL;
struct dmaengine_unmap_data *um;
dma_addr_t *dsts;
unsigned int len;
total_tests++;
if (params->transfer_size) {
if (params->transfer_size >= buf_size) {
pr_err("%u-byte transfer size must be lower than %u-buffer size\n",
params->transfer_size, buf_size);
break;
}
len = params->transfer_size;
} else if (params->norandom) {
len = buf_size;
} else {
len = dmatest_random() % buf_size + 1;
}
/* Do not alter transfer size explicitly defined by user */
if (!params->transfer_size) {
len = (len >> align) << align;
if (!len)
len = 1 << align;
}
total_len += len;
if (params->norandom) {
src->off = 0;
dst->off = 0;
} else {
src->off = dmatest_random() % (buf_size - len + 1);
dst->off = dmatest_random() % (buf_size - len + 1);
src->off = (src->off >> align) << align;
dst->off = (dst->off >> align) << align;
}
if (!params->noverify) {
start = ktime_get();
dmatest_init_srcs(src->aligned, src->off, len,
buf_size, is_memset);
dmatest_init_dsts(dst->aligned, dst->off, len,
buf_size, is_memset);
diff = ktime_sub(ktime_get(), start);
filltime = ktime_add(filltime, diff);
}
um = dmaengine_get_unmap_data(dma_dev, src->cnt + dst->cnt,
GFP_KERNEL);
if (!um) {
failed_tests++;
result("unmap data NULL", total_tests,
src->off, dst->off, len, ret);
continue;
}
um->len = buf_size;
for (i = 0; i < src->cnt; i++) {
void *buf = src->aligned[i];
struct page *pg = virt_to_page(buf);
unsigned long pg_off = offset_in_page(buf);
um->addr[i] = dma_map_page(dma_dev, pg, pg_off,
um->len, DMA_TO_DEVICE);
srcs[i] = um->addr[i] + src->off;
ret = dma_mapping_error(dma_dev, um->addr[i]);
if (ret) {
result("src mapping error", total_tests,
src->off, dst->off, len, ret);
goto error_unmap_continue;
}
um->to_cnt++;
}
/* map with DMA_BIDIRECTIONAL to force writeback/invalidate */
dsts = &um->addr[src->cnt];
for (i = 0; i < dst->cnt; i++) {
void *buf = dst->aligned[i];
struct page *pg = virt_to_page(buf);
unsigned long pg_off = offset_in_page(buf);
dsts[i] = dma_map_page(dma_dev, pg, pg_off, um->len,
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(dma_dev, dsts[i]);
if (ret) {
result("dst mapping error", total_tests,
src->off, dst->off, len, ret);
goto error_unmap_continue;
}
um->bidi_cnt++;
}
if (thread->type == DMA_MEMCPY)
tx = dev->device_prep_dma_memcpy(chan,
dsts[0] + dst->off,
srcs[0], len, flags);
else if (thread->type == DMA_MEMSET)
tx = dev->device_prep_dma_memset(chan,
dsts[0] + dst->off,
*(src->aligned[0] + src->off),
len, flags);
else if (thread->type == DMA_XOR)
tx = dev->device_prep_dma_xor(chan,
dsts[0] + dst->off,
srcs, src->cnt,
len, flags);
else if (thread->type == DMA_PQ) {
for (i = 0; i < dst->cnt; i++)
dma_pq[i] = dsts[i] + dst->off;
tx = dev->device_prep_dma_pq(chan, dma_pq, srcs,
src->cnt, pq_coefs,
len, flags);
}
if (!tx) {
result("prep error", total_tests, src->off,
dst->off, len, ret);
msleep(100);
goto error_unmap_continue;
}
done->done = false;
if (!params->polled) {
tx->callback = dmatest_callback;
tx->callback_param = done;
}
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) {
result("submit error", total_tests, src->off,
dst->off, len, ret);
msleep(100);
goto error_unmap_continue;
}
if (params->polled) {
status = dma_sync_wait(chan, cookie);
dmaengine_terminate_sync(chan);
if (status == DMA_COMPLETE)
done->done = true;
} else {
dma_async_issue_pending(chan);
wait_event_freezable_timeout(thread->done_wait,
done->done,
msecs_to_jiffies(params->timeout));
status = dma_async_is_tx_complete(chan, cookie, NULL,
NULL);
}
if (!done->done) {
result("test timed out", total_tests, src->off, dst->off,
len, 0);
goto error_unmap_continue;
} else if (status != DMA_COMPLETE &&
!(dma_has_cap(DMA_COMPLETION_NO_ORDER,
dev->cap_mask) &&
status == DMA_OUT_OF_ORDER)) {
result(status == DMA_ERROR ?
"completion error status" :
"completion busy status", total_tests, src->off,
dst->off, len, ret);
goto error_unmap_continue;
}
dmaengine_unmap_put(um);
if (params->noverify) {
verbose_result("test passed", total_tests, src->off,
dst->off, len, 0);
continue;
}
start = ktime_get();
pr_debug("%s: verifying source buffer...\n", current->comm);
error_count = dmatest_verify(src->aligned, 0, src->off,
0, PATTERN_SRC, true, is_memset);
error_count += dmatest_verify(src->aligned, src->off,
src->off + len, src->off,
PATTERN_SRC | PATTERN_COPY, true, is_memset);
error_count += dmatest_verify(src->aligned, src->off + len,
buf_size, src->off + len,
PATTERN_SRC, true, is_memset);
pr_debug("%s: verifying dest buffer...\n", current->comm);
error_count += dmatest_verify(dst->aligned, 0, dst->off,
0, PATTERN_DST, false, is_memset);
error_count += dmatest_verify(dst->aligned, dst->off,
dst->off + len, src->off,
PATTERN_SRC | PATTERN_COPY, false, is_memset);
error_count += dmatest_verify(dst->aligned, dst->off + len,
buf_size, dst->off + len,
PATTERN_DST, false, is_memset);
diff = ktime_sub(ktime_get(), start);
comparetime = ktime_add(comparetime, diff);
if (error_count) {
result("data error", total_tests, src->off, dst->off,
len, error_count);
failed_tests++;
} else {
verbose_result("test passed", total_tests, src->off,
dst->off, len, 0);
}
continue;
error_unmap_continue:
dmaengine_unmap_put(um);
failed_tests++;
}
ktime = ktime_sub(ktime_get(), ktime);
ktime = ktime_sub(ktime, comparetime);
ktime = ktime_sub(ktime, filltime);
runtime = ktime_to_us(ktime);
ret = 0;
kfree(dma_pq);
err_srcs_array:
kfree(srcs);
err_dst:
dmatest_free_test_data(dst);
err_src:
dmatest_free_test_data(src);
err_free_coefs:
kfree(pq_coefs);
err_thread_type:
iops = dmatest_persec(runtime, total_tests);
pr_info("%s: summary %u tests, %u failures %llu.%02llu iops %llu KB/s (%d)\n",
current->comm, total_tests, failed_tests,
FIXPT_TO_INT(iops), FIXPT_GET_FRAC(iops),
dmatest_KBs(runtime, total_len), ret);
/* terminate all transfers on specified channels */
if (ret || failed_tests)
dmaengine_terminate_sync(chan);
thread->done = true;
wake_up(&thread_wait);
return ret;
}
static void dmatest_cleanup_channel(struct dmatest_chan *dtc)
{
struct dmatest_thread *thread;
struct dmatest_thread *_thread;
int ret;
list_for_each_entry_safe(thread, _thread, &dtc->threads, node) {
ret = kthread_stop(thread->task);
pr_debug("thread %s exited with status %d\n",
thread->task->comm, ret);
list_del(&thread->node);
put_task_struct(thread->task);
kfree(thread);
}
/* terminate all transfers on specified channels */
dmaengine_terminate_sync(dtc->chan);
kfree(dtc);
}
static int dmatest_add_threads(struct dmatest_info *info,
struct dmatest_chan *dtc, enum dma_transaction_type type)
{
struct dmatest_params *params = &info->params;
struct dmatest_thread *thread;
struct dma_chan *chan = dtc->chan;
char *op;
unsigned int i;
if (type == DMA_MEMCPY)
op = "copy";
else if (type == DMA_MEMSET)
op = "set";
else if (type == DMA_XOR)
op = "xor";
else if (type == DMA_PQ)
op = "pq";
else
return -EINVAL;
for (i = 0; i < params->threads_per_chan; i++) {
thread = kzalloc(sizeof(struct dmatest_thread), GFP_KERNEL);
if (!thread) {
pr_warn("No memory for %s-%s%u\n",
dma_chan_name(chan), op, i);
break;
}
thread->info = info;
thread->chan = dtc->chan;
thread->type = type;
thread->test_done.wait = &thread->done_wait;
init_waitqueue_head(&thread->done_wait);
smp_wmb();
thread->task = kthread_create(dmatest_func, thread, "%s-%s%u",
dma_chan_name(chan), op, i);
if (IS_ERR(thread->task)) {
pr_warn("Failed to create thread %s-%s%u\n",
dma_chan_name(chan), op, i);
kfree(thread);
break;
}
/* srcbuf and dstbuf are allocated by the thread itself */
get_task_struct(thread->task);
list_add_tail(&thread->node, &dtc->threads);
thread->pending = true;
}
return i;
}
static int dmatest_add_channel(struct dmatest_info *info,
struct dma_chan *chan)
{
struct dmatest_chan *dtc;
struct dma_device *dma_dev = chan->device;
unsigned int thread_count = 0;
int cnt;
dtc = kmalloc(sizeof(struct dmatest_chan), GFP_KERNEL);
if (!dtc) {
pr_warn("No memory for %s\n", dma_chan_name(chan));
return -ENOMEM;
}
dtc->chan = chan;
INIT_LIST_HEAD(&dtc->threads);
if (dma_has_cap(DMA_COMPLETION_NO_ORDER, dma_dev->cap_mask) &&
info->params.polled) {
info->params.polled = false;
pr_warn("DMA_COMPLETION_NO_ORDER, polled disabled\n");
}
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
if (dmatest == 0) {
cnt = dmatest_add_threads(info, dtc, DMA_MEMCPY);
thread_count += cnt > 0 ? cnt : 0;
}
}
if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask)) {
if (dmatest == 1) {
cnt = dmatest_add_threads(info, dtc, DMA_MEMSET);
thread_count += cnt > 0 ? cnt : 0;
}
}
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(info, dtc, DMA_XOR);
thread_count += cnt > 0 ? cnt : 0;
}
if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(info, dtc, DMA_PQ);
thread_count += cnt > 0 ? cnt : 0;
}
pr_info("Added %u threads using %s\n",
thread_count, dma_chan_name(chan));
list_add_tail(&dtc->node, &info->channels);
info->nr_channels++;
return 0;
}
static bool filter(struct dma_chan *chan, void *param)
{
return dmatest_match_channel(param, chan) && dmatest_match_device(param, chan->device);
}
static void request_channels(struct dmatest_info *info,
enum dma_transaction_type type)
{
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(type, mask);
for (;;) {
struct dmatest_params *params = &info->params;
struct dma_chan *chan;
chan = dma_request_channel(mask, filter, params);
if (chan) {
if (dmatest_add_channel(info, chan)) {
dma_release_channel(chan);
break; /* add_channel failed, punt */
}
} else
break; /* no more channels available */
if (params->max_channels &&
info->nr_channels >= params->max_channels)
break; /* we have all we need */
}
}
static void add_threaded_test(struct dmatest_info *info)
{
struct dmatest_params *params = &info->params;
/* Copy test parameters */
params->buf_size = test_buf_size;
strlcpy(params->channel, strim(test_channel), sizeof(params->channel));
strlcpy(params->device, strim(test_device), sizeof(params->device));
params->threads_per_chan = threads_per_chan;
params->max_channels = max_channels;
params->iterations = iterations;
params->xor_sources = xor_sources;
params->pq_sources = pq_sources;
params->timeout = timeout;
params->noverify = noverify;
params->norandom = norandom;
params->alignment = alignment;
params->transfer_size = transfer_size;
params->polled = polled;
request_channels(info, DMA_MEMCPY);
request_channels(info, DMA_MEMSET);
request_channels(info, DMA_XOR);
request_channels(info, DMA_PQ);
}
static void run_pending_tests(struct dmatest_info *info)
{
struct dmatest_chan *dtc;
unsigned int thread_count = 0;
list_for_each_entry(dtc, &info->channels, node) {
struct dmatest_thread *thread;
thread_count = 0;
list_for_each_entry(thread, &dtc->threads, node) {
wake_up_process(thread->task);
thread_count++;
}
pr_info("Started %u threads using %s\n",
thread_count, dma_chan_name(dtc->chan));
}
}
static void stop_threaded_test(struct dmatest_info *info)
{
struct dmatest_chan *dtc, *_dtc;
struct dma_chan *chan;
list_for_each_entry_safe(dtc, _dtc, &info->channels, node) {
list_del(&dtc->node);
chan = dtc->chan;
dmatest_cleanup_channel(dtc);
pr_debug("dropped channel %s\n", dma_chan_name(chan));
dma_release_channel(chan);
}
info->nr_channels = 0;
}
static void start_threaded_tests(struct dmatest_info *info)
{
/* we might be called early to set run=, defer running until all
* parameters have been evaluated
*/
if (!info->did_init)
return;
run_pending_tests(info);
}
static int dmatest_run_get(char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
mutex_lock(&info->lock);
if (is_threaded_test_run(info)) {
dmatest_run = true;
} else {
if (!is_threaded_test_pending(info))
stop_threaded_test(info);
dmatest_run = false;
}
mutex_unlock(&info->lock);
return param_get_bool(val, kp);
}
static int dmatest_run_set(const char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
int ret;
mutex_lock(&info->lock);
ret = param_set_bool(val, kp);
if (ret) {
mutex_unlock(&info->lock);
return ret;
} else if (dmatest_run) {
if (!is_threaded_test_pending(info)) {
/*
* We have nothing to run. This can be due to:
*/
ret = info->last_error;
if (ret) {
/* 1) Misconfiguration */
pr_err("Channel misconfigured, can't continue\n");
mutex_unlock(&info->lock);
return ret;
} else {
/* 2) We rely on defaults */
pr_info("No channels configured, continue with any\n");
if (!is_threaded_test_run(info))
stop_threaded_test(info);
add_threaded_test(info);
}
}
start_threaded_tests(info);
} else {
stop_threaded_test(info);
}
mutex_unlock(&info->lock);
return ret;
}
static int dmatest_chan_set(const char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
struct dmatest_chan *dtc;
char chan_reset_val[20];
int ret;
mutex_lock(&info->lock);
ret = param_set_copystring(val, kp);
if (ret) {
mutex_unlock(&info->lock);
return ret;
}
/*Clear any previously run threads */
if (!is_threaded_test_run(info) && !is_threaded_test_pending(info))
stop_threaded_test(info);
/* Reject channels that are already registered */
if (is_threaded_test_pending(info)) {
list_for_each_entry(dtc, &info->channels, node) {
if (strcmp(dma_chan_name(dtc->chan),
strim(test_channel)) == 0) {
dtc = list_last_entry(&info->channels,
struct dmatest_chan,
node);
strlcpy(chan_reset_val,
dma_chan_name(dtc->chan),
sizeof(chan_reset_val));
ret = -EBUSY;
goto add_chan_err;
}
}
}
add_threaded_test(info);
/* Check if channel was added successfully */
if (!list_empty(&info->channels)) {
/*
* if new channel was not successfully added, revert the
* "test_channel" string to the name of the last successfully
* added channel. exception for when users issues empty string
* to channel parameter.
*/
dtc = list_last_entry(&info->channels, struct dmatest_chan, node);
if ((strcmp(dma_chan_name(dtc->chan), strim(test_channel)) != 0)
&& (strcmp("", strim(test_channel)) != 0)) {
ret = -EINVAL;
strlcpy(chan_reset_val, dma_chan_name(dtc->chan),
sizeof(chan_reset_val));
goto add_chan_err;
}
} else {
/* Clear test_channel if no channels were added successfully */
strlcpy(chan_reset_val, "", sizeof(chan_reset_val));
ret = -EBUSY;
goto add_chan_err;
}
info->last_error = ret;
mutex_unlock(&info->lock);
return ret;
add_chan_err:
param_set_copystring(chan_reset_val, kp);
info->last_error = ret;
mutex_unlock(&info->lock);
return ret;
}
static int dmatest_chan_get(char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
mutex_lock(&info->lock);
if (!is_threaded_test_run(info) && !is_threaded_test_pending(info)) {
stop_threaded_test(info);
strlcpy(test_channel, "", sizeof(test_channel));
}
mutex_unlock(&info->lock);
return param_get_string(val, kp);
}
static int dmatest_test_list_get(char *val, const struct kernel_param *kp)
{
struct dmatest_info *info = &test_info;
struct dmatest_chan *dtc;
unsigned int thread_count = 0;
list_for_each_entry(dtc, &info->channels, node) {
struct dmatest_thread *thread;
thread_count = 0;
list_for_each_entry(thread, &dtc->threads, node) {
thread_count++;
}
pr_info("%u threads using %s\n",
thread_count, dma_chan_name(dtc->chan));
}
return 0;
}
static int __init dmatest_init(void)
{
struct dmatest_info *info = &test_info;
struct dmatest_params *params = &info->params;
if (dmatest_run) {
mutex_lock(&info->lock);
add_threaded_test(info);
run_pending_tests(info);
mutex_unlock(&info->lock);
}
if (params->iterations && wait)
wait_event(thread_wait, !is_threaded_test_run(info));
/* module parameters are stable, inittime tests are started,
* let userspace take over 'run' control
*/
info->did_init = true;
return 0;
}
/* when compiled-in wait for drivers to load first */
late_initcall(dmatest_init);
static void __exit dmatest_exit(void)
{
struct dmatest_info *info = &test_info;
mutex_lock(&info->lock);
stop_threaded_test(info);
mutex_unlock(&info->lock);
}
module_exit(dmatest_exit);
MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
MODULE_LICENSE("GPL v2");