1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/drivers/dma/fsl-edma-common.c
Angelo Dureghello 8678c71c17 dmaengine: fsl-edma: fix wrong tcd endianness for big-endian cpu
Due to recent fixes in m68k arch-specific I/O accessor macros, this
driver is not working anymore for ColdFire. Fix wrong tcd endianness
removing additional swaps, since edma_writex() functions should already
take care of any eventual swap if needed.

Note, i could only test the change in ColdFire mcf54415 and Vybrid
vf50 / Colibri where i don't see any issue. So, every feedback and
test for all other SoCs involved is really appreciated.

Signed-off-by: Angelo Dureghello <angelo.dureghello@timesys.com>
Reported-by: kbuild test robot <lkp@intel.com>
Link: https://lore.kernel.org/r/20200701225205.1674463-1-angelo.dureghello@timesys.com
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-07-06 14:49:22 +05:30

718 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0+
//
// Copyright (c) 2013-2014 Freescale Semiconductor, Inc
// Copyright (c) 2017 Sysam, Angelo Dureghello <angelo@sysam.it>
#include <linux/dmapool.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/dma-mapping.h>
#include "fsl-edma-common.h"
#define EDMA_CR 0x00
#define EDMA_ES 0x04
#define EDMA_ERQ 0x0C
#define EDMA_EEI 0x14
#define EDMA_SERQ 0x1B
#define EDMA_CERQ 0x1A
#define EDMA_SEEI 0x19
#define EDMA_CEEI 0x18
#define EDMA_CINT 0x1F
#define EDMA_CERR 0x1E
#define EDMA_SSRT 0x1D
#define EDMA_CDNE 0x1C
#define EDMA_INTR 0x24
#define EDMA_ERR 0x2C
#define EDMA64_ERQH 0x08
#define EDMA64_EEIH 0x10
#define EDMA64_SERQ 0x18
#define EDMA64_CERQ 0x19
#define EDMA64_SEEI 0x1a
#define EDMA64_CEEI 0x1b
#define EDMA64_CINT 0x1c
#define EDMA64_CERR 0x1d
#define EDMA64_SSRT 0x1e
#define EDMA64_CDNE 0x1f
#define EDMA64_INTH 0x20
#define EDMA64_INTL 0x24
#define EDMA64_ERRH 0x28
#define EDMA64_ERRL 0x2c
#define EDMA_TCD 0x1000
static void fsl_edma_enable_request(struct fsl_edma_chan *fsl_chan)
{
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
if (fsl_chan->edma->drvdata->version == v1) {
edma_writeb(fsl_chan->edma, EDMA_SEEI_SEEI(ch), regs->seei);
edma_writeb(fsl_chan->edma, ch, regs->serq);
} else {
/* ColdFire is big endian, and accesses natively
* big endian I/O peripherals
*/
iowrite8(EDMA_SEEI_SEEI(ch), regs->seei);
iowrite8(ch, regs->serq);
}
}
void fsl_edma_disable_request(struct fsl_edma_chan *fsl_chan)
{
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
if (fsl_chan->edma->drvdata->version == v1) {
edma_writeb(fsl_chan->edma, ch, regs->cerq);
edma_writeb(fsl_chan->edma, EDMA_CEEI_CEEI(ch), regs->ceei);
} else {
/* ColdFire is big endian, and accesses natively
* big endian I/O peripherals
*/
iowrite8(ch, regs->cerq);
iowrite8(EDMA_CEEI_CEEI(ch), regs->ceei);
}
}
EXPORT_SYMBOL_GPL(fsl_edma_disable_request);
static void mux_configure8(struct fsl_edma_chan *fsl_chan, void __iomem *addr,
u32 off, u32 slot, bool enable)
{
u8 val8;
if (enable)
val8 = EDMAMUX_CHCFG_ENBL | slot;
else
val8 = EDMAMUX_CHCFG_DIS;
iowrite8(val8, addr + off);
}
static void mux_configure32(struct fsl_edma_chan *fsl_chan, void __iomem *addr,
u32 off, u32 slot, bool enable)
{
u32 val;
if (enable)
val = EDMAMUX_CHCFG_ENBL << 24 | slot;
else
val = EDMAMUX_CHCFG_DIS;
iowrite32(val, addr + off * 4);
}
void fsl_edma_chan_mux(struct fsl_edma_chan *fsl_chan,
unsigned int slot, bool enable)
{
u32 ch = fsl_chan->vchan.chan.chan_id;
void __iomem *muxaddr;
unsigned int chans_per_mux, ch_off;
int endian_diff[4] = {3, 1, -1, -3};
u32 dmamux_nr = fsl_chan->edma->drvdata->dmamuxs;
chans_per_mux = fsl_chan->edma->n_chans / dmamux_nr;
ch_off = fsl_chan->vchan.chan.chan_id % chans_per_mux;
if (fsl_chan->edma->drvdata->mux_swap)
ch_off += endian_diff[ch_off % 4];
muxaddr = fsl_chan->edma->muxbase[ch / chans_per_mux];
slot = EDMAMUX_CHCFG_SOURCE(slot);
if (fsl_chan->edma->drvdata->version == v3)
mux_configure32(fsl_chan, muxaddr, ch_off, slot, enable);
else
mux_configure8(fsl_chan, muxaddr, ch_off, slot, enable);
}
EXPORT_SYMBOL_GPL(fsl_edma_chan_mux);
static unsigned int fsl_edma_get_tcd_attr(enum dma_slave_buswidth addr_width)
{
switch (addr_width) {
case 1:
return EDMA_TCD_ATTR_SSIZE_8BIT | EDMA_TCD_ATTR_DSIZE_8BIT;
case 2:
return EDMA_TCD_ATTR_SSIZE_16BIT | EDMA_TCD_ATTR_DSIZE_16BIT;
case 4:
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
case 8:
return EDMA_TCD_ATTR_SSIZE_64BIT | EDMA_TCD_ATTR_DSIZE_64BIT;
default:
return EDMA_TCD_ATTR_SSIZE_32BIT | EDMA_TCD_ATTR_DSIZE_32BIT;
}
}
void fsl_edma_free_desc(struct virt_dma_desc *vdesc)
{
struct fsl_edma_desc *fsl_desc;
int i;
fsl_desc = to_fsl_edma_desc(vdesc);
for (i = 0; i < fsl_desc->n_tcds; i++)
dma_pool_free(fsl_desc->echan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
}
EXPORT_SYMBOL_GPL(fsl_edma_free_desc);
int fsl_edma_terminate_all(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma_disable_request(fsl_chan);
fsl_chan->edesc = NULL;
fsl_chan->idle = true;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_terminate_all);
int fsl_edma_pause(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma_disable_request(fsl_chan);
fsl_chan->status = DMA_PAUSED;
fsl_chan->idle = true;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_pause);
int fsl_edma_resume(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (fsl_chan->edesc) {
fsl_edma_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
fsl_chan->idle = false;
}
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_resume);
static void fsl_edma_unprep_slave_dma(struct fsl_edma_chan *fsl_chan)
{
if (fsl_chan->dma_dir != DMA_NONE)
dma_unmap_resource(fsl_chan->vchan.chan.device->dev,
fsl_chan->dma_dev_addr,
fsl_chan->dma_dev_size,
fsl_chan->dma_dir, 0);
fsl_chan->dma_dir = DMA_NONE;
}
static bool fsl_edma_prep_slave_dma(struct fsl_edma_chan *fsl_chan,
enum dma_transfer_direction dir)
{
struct device *dev = fsl_chan->vchan.chan.device->dev;
enum dma_data_direction dma_dir;
phys_addr_t addr = 0;
u32 size = 0;
switch (dir) {
case DMA_MEM_TO_DEV:
dma_dir = DMA_FROM_DEVICE;
addr = fsl_chan->cfg.dst_addr;
size = fsl_chan->cfg.dst_maxburst;
break;
case DMA_DEV_TO_MEM:
dma_dir = DMA_TO_DEVICE;
addr = fsl_chan->cfg.src_addr;
size = fsl_chan->cfg.src_maxburst;
break;
default:
dma_dir = DMA_NONE;
break;
}
/* Already mapped for this config? */
if (fsl_chan->dma_dir == dma_dir)
return true;
fsl_edma_unprep_slave_dma(fsl_chan);
fsl_chan->dma_dev_addr = dma_map_resource(dev, addr, size, dma_dir, 0);
if (dma_mapping_error(dev, fsl_chan->dma_dev_addr))
return false;
fsl_chan->dma_dev_size = size;
fsl_chan->dma_dir = dma_dir;
return true;
}
int fsl_edma_slave_config(struct dma_chan *chan,
struct dma_slave_config *cfg)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
memcpy(&fsl_chan->cfg, cfg, sizeof(*cfg));
fsl_edma_unprep_slave_dma(fsl_chan);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_slave_config);
static size_t fsl_edma_desc_residue(struct fsl_edma_chan *fsl_chan,
struct virt_dma_desc *vdesc, bool in_progress)
{
struct fsl_edma_desc *edesc = fsl_chan->edesc;
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
enum dma_transfer_direction dir = edesc->dirn;
dma_addr_t cur_addr, dma_addr;
size_t len, size;
int i;
/* calculate the total size in this desc */
for (len = i = 0; i < fsl_chan->edesc->n_tcds; i++)
len += le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (!in_progress)
return len;
if (dir == DMA_MEM_TO_DEV)
cur_addr = edma_readl(fsl_chan->edma, &regs->tcd[ch].saddr);
else
cur_addr = edma_readl(fsl_chan->edma, &regs->tcd[ch].daddr);
/* figure out the finished and calculate the residue */
for (i = 0; i < fsl_chan->edesc->n_tcds; i++) {
size = le32_to_cpu(edesc->tcd[i].vtcd->nbytes)
* le16_to_cpu(edesc->tcd[i].vtcd->biter);
if (dir == DMA_MEM_TO_DEV)
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->saddr);
else
dma_addr = le32_to_cpu(edesc->tcd[i].vtcd->daddr);
len -= size;
if (cur_addr >= dma_addr && cur_addr < dma_addr + size) {
len += dma_addr + size - cur_addr;
break;
}
}
return len;
}
enum dma_status fsl_edma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie, struct dma_tx_state *txstate)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct virt_dma_desc *vdesc;
enum dma_status status;
unsigned long flags;
status = dma_cookie_status(chan, cookie, txstate);
if (status == DMA_COMPLETE)
return status;
if (!txstate)
return fsl_chan->status;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
vdesc = vchan_find_desc(&fsl_chan->vchan, cookie);
if (fsl_chan->edesc && cookie == fsl_chan->edesc->vdesc.tx.cookie)
txstate->residue =
fsl_edma_desc_residue(fsl_chan, vdesc, true);
else if (vdesc)
txstate->residue =
fsl_edma_desc_residue(fsl_chan, vdesc, false);
else
txstate->residue = 0;
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
return fsl_chan->status;
}
EXPORT_SYMBOL_GPL(fsl_edma_tx_status);
static void fsl_edma_set_tcd_regs(struct fsl_edma_chan *fsl_chan,
struct fsl_edma_hw_tcd *tcd)
{
struct fsl_edma_engine *edma = fsl_chan->edma;
struct edma_regs *regs = &fsl_chan->edma->regs;
u32 ch = fsl_chan->vchan.chan.chan_id;
/*
* TCD parameters are stored in struct fsl_edma_hw_tcd in little
* endian format. However, we need to load the TCD registers in
* big- or little-endian obeying the eDMA engine model endian,
* and this is performed from specific edma_write functions
*/
edma_writew(edma, 0, &regs->tcd[ch].csr);
edma_writel(edma, (s32)tcd->saddr, &regs->tcd[ch].saddr);
edma_writel(edma, (s32)tcd->daddr, &regs->tcd[ch].daddr);
edma_writew(edma, (s16)tcd->attr, &regs->tcd[ch].attr);
edma_writew(edma, tcd->soff, &regs->tcd[ch].soff);
edma_writel(edma, (s32)tcd->nbytes, &regs->tcd[ch].nbytes);
edma_writel(edma, (s32)tcd->slast, &regs->tcd[ch].slast);
edma_writew(edma, (s16)tcd->citer, &regs->tcd[ch].citer);
edma_writew(edma, (s16)tcd->biter, &regs->tcd[ch].biter);
edma_writew(edma, (s16)tcd->doff, &regs->tcd[ch].doff);
edma_writel(edma, (s32)tcd->dlast_sga,
&regs->tcd[ch].dlast_sga);
edma_writew(edma, (s16)tcd->csr, &regs->tcd[ch].csr);
}
static inline
void fsl_edma_fill_tcd(struct fsl_edma_hw_tcd *tcd, u32 src, u32 dst,
u16 attr, u16 soff, u32 nbytes, u32 slast, u16 citer,
u16 biter, u16 doff, u32 dlast_sga, bool major_int,
bool disable_req, bool enable_sg)
{
u16 csr = 0;
/*
* eDMA hardware SGs require the TCDs to be stored in little
* endian format irrespective of the register endian model.
* So we put the value in little endian in memory, waiting
* for fsl_edma_set_tcd_regs doing the swap.
*/
tcd->saddr = cpu_to_le32(src);
tcd->daddr = cpu_to_le32(dst);
tcd->attr = cpu_to_le16(attr);
tcd->soff = cpu_to_le16(soff);
tcd->nbytes = cpu_to_le32(nbytes);
tcd->slast = cpu_to_le32(slast);
tcd->citer = cpu_to_le16(EDMA_TCD_CITER_CITER(citer));
tcd->doff = cpu_to_le16(doff);
tcd->dlast_sga = cpu_to_le32(dlast_sga);
tcd->biter = cpu_to_le16(EDMA_TCD_BITER_BITER(biter));
if (major_int)
csr |= EDMA_TCD_CSR_INT_MAJOR;
if (disable_req)
csr |= EDMA_TCD_CSR_D_REQ;
if (enable_sg)
csr |= EDMA_TCD_CSR_E_SG;
tcd->csr = cpu_to_le16(csr);
}
static struct fsl_edma_desc *fsl_edma_alloc_desc(struct fsl_edma_chan *fsl_chan,
int sg_len)
{
struct fsl_edma_desc *fsl_desc;
int i;
fsl_desc = kzalloc(struct_size(fsl_desc, tcd, sg_len), GFP_NOWAIT);
if (!fsl_desc)
return NULL;
fsl_desc->echan = fsl_chan;
fsl_desc->n_tcds = sg_len;
for (i = 0; i < sg_len; i++) {
fsl_desc->tcd[i].vtcd = dma_pool_alloc(fsl_chan->tcd_pool,
GFP_NOWAIT, &fsl_desc->tcd[i].ptcd);
if (!fsl_desc->tcd[i].vtcd)
goto err;
}
return fsl_desc;
err:
while (--i >= 0)
dma_pool_free(fsl_chan->tcd_pool, fsl_desc->tcd[i].vtcd,
fsl_desc->tcd[i].ptcd);
kfree(fsl_desc);
return NULL;
}
struct dma_async_tx_descriptor *fsl_edma_prep_dma_cyclic(
struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
size_t period_len, enum dma_transfer_direction direction,
unsigned long flags)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
dma_addr_t dma_buf_next;
int sg_len, i;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
if (!is_slave_direction(direction))
return NULL;
if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
return NULL;
sg_len = buf_len / period_len;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = true;
fsl_desc->dirn = direction;
dma_buf_next = dma_addr;
if (direction == DMA_MEM_TO_DEV) {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
nbytes = fsl_chan->cfg.dst_addr_width *
fsl_chan->cfg.dst_maxburst;
} else {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
nbytes = fsl_chan->cfg.src_addr_width *
fsl_chan->cfg.src_maxburst;
}
iter = period_len / nbytes;
for (i = 0; i < sg_len; i++) {
if (dma_buf_next >= dma_addr + buf_len)
dma_buf_next = dma_addr;
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (direction == DMA_MEM_TO_DEV) {
src_addr = dma_buf_next;
dst_addr = fsl_chan->dma_dev_addr;
soff = fsl_chan->cfg.dst_addr_width;
doff = 0;
} else {
src_addr = fsl_chan->dma_dev_addr;
dst_addr = dma_buf_next;
soff = 0;
doff = fsl_chan->cfg.src_addr_width;
}
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr, dst_addr,
fsl_chan->attr, soff, nbytes, 0, iter,
iter, doff, last_sg, true, false, true);
dma_buf_next += period_len;
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
EXPORT_SYMBOL_GPL(fsl_edma_prep_dma_cyclic);
struct dma_async_tx_descriptor *fsl_edma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
struct fsl_edma_desc *fsl_desc;
struct scatterlist *sg;
u32 src_addr, dst_addr, last_sg, nbytes;
u16 soff, doff, iter;
int i;
if (!is_slave_direction(direction))
return NULL;
if (!fsl_edma_prep_slave_dma(fsl_chan, direction))
return NULL;
fsl_desc = fsl_edma_alloc_desc(fsl_chan, sg_len);
if (!fsl_desc)
return NULL;
fsl_desc->iscyclic = false;
fsl_desc->dirn = direction;
if (direction == DMA_MEM_TO_DEV) {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.dst_addr_width);
nbytes = fsl_chan->cfg.dst_addr_width *
fsl_chan->cfg.dst_maxburst;
} else {
fsl_chan->attr =
fsl_edma_get_tcd_attr(fsl_chan->cfg.src_addr_width);
nbytes = fsl_chan->cfg.src_addr_width *
fsl_chan->cfg.src_maxburst;
}
for_each_sg(sgl, sg, sg_len, i) {
/* get next sg's physical address */
last_sg = fsl_desc->tcd[(i + 1) % sg_len].ptcd;
if (direction == DMA_MEM_TO_DEV) {
src_addr = sg_dma_address(sg);
dst_addr = fsl_chan->dma_dev_addr;
soff = fsl_chan->cfg.dst_addr_width;
doff = 0;
} else {
src_addr = fsl_chan->dma_dev_addr;
dst_addr = sg_dma_address(sg);
soff = 0;
doff = fsl_chan->cfg.src_addr_width;
}
iter = sg_dma_len(sg) / nbytes;
if (i < sg_len - 1) {
last_sg = fsl_desc->tcd[(i + 1)].ptcd;
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->attr, soff,
nbytes, 0, iter, iter, doff, last_sg,
false, false, true);
} else {
last_sg = 0;
fsl_edma_fill_tcd(fsl_desc->tcd[i].vtcd, src_addr,
dst_addr, fsl_chan->attr, soff,
nbytes, 0, iter, iter, doff, last_sg,
true, true, false);
}
}
return vchan_tx_prep(&fsl_chan->vchan, &fsl_desc->vdesc, flags);
}
EXPORT_SYMBOL_GPL(fsl_edma_prep_slave_sg);
void fsl_edma_xfer_desc(struct fsl_edma_chan *fsl_chan)
{
struct virt_dma_desc *vdesc;
lockdep_assert_held(&fsl_chan->vchan.lock);
vdesc = vchan_next_desc(&fsl_chan->vchan);
if (!vdesc)
return;
fsl_chan->edesc = to_fsl_edma_desc(vdesc);
fsl_edma_set_tcd_regs(fsl_chan, fsl_chan->edesc->tcd[0].vtcd);
fsl_edma_enable_request(fsl_chan);
fsl_chan->status = DMA_IN_PROGRESS;
fsl_chan->idle = false;
}
EXPORT_SYMBOL_GPL(fsl_edma_xfer_desc);
void fsl_edma_issue_pending(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
if (unlikely(fsl_chan->pm_state != RUNNING)) {
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
/* cannot submit due to suspend */
return;
}
if (vchan_issue_pending(&fsl_chan->vchan) && !fsl_chan->edesc)
fsl_edma_xfer_desc(fsl_chan);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
}
EXPORT_SYMBOL_GPL(fsl_edma_issue_pending);
int fsl_edma_alloc_chan_resources(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
fsl_chan->tcd_pool = dma_pool_create("tcd_pool", chan->device->dev,
sizeof(struct fsl_edma_hw_tcd),
32, 0);
return 0;
}
EXPORT_SYMBOL_GPL(fsl_edma_alloc_chan_resources);
void fsl_edma_free_chan_resources(struct dma_chan *chan)
{
struct fsl_edma_chan *fsl_chan = to_fsl_edma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&fsl_chan->vchan.lock, flags);
fsl_edma_disable_request(fsl_chan);
fsl_edma_chan_mux(fsl_chan, 0, false);
fsl_chan->edesc = NULL;
vchan_get_all_descriptors(&fsl_chan->vchan, &head);
fsl_edma_unprep_slave_dma(fsl_chan);
spin_unlock_irqrestore(&fsl_chan->vchan.lock, flags);
vchan_dma_desc_free_list(&fsl_chan->vchan, &head);
dma_pool_destroy(fsl_chan->tcd_pool);
fsl_chan->tcd_pool = NULL;
}
EXPORT_SYMBOL_GPL(fsl_edma_free_chan_resources);
void fsl_edma_cleanup_vchan(struct dma_device *dmadev)
{
struct fsl_edma_chan *chan, *_chan;
list_for_each_entry_safe(chan, _chan,
&dmadev->channels, vchan.chan.device_node) {
list_del(&chan->vchan.chan.device_node);
tasklet_kill(&chan->vchan.task);
}
}
EXPORT_SYMBOL_GPL(fsl_edma_cleanup_vchan);
/*
* On the 32 channels Vybrid/mpc577x edma version (here called "v1"),
* register offsets are different compared to ColdFire mcf5441x 64 channels
* edma (here called "v2").
*
* This function sets up register offsets as per proper declared version
* so must be called in xxx_edma_probe() just after setting the
* edma "version" and "membase" appropriately.
*/
void fsl_edma_setup_regs(struct fsl_edma_engine *edma)
{
edma->regs.cr = edma->membase + EDMA_CR;
edma->regs.es = edma->membase + EDMA_ES;
edma->regs.erql = edma->membase + EDMA_ERQ;
edma->regs.eeil = edma->membase + EDMA_EEI;
edma->regs.serq = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_SERQ : EDMA_SERQ);
edma->regs.cerq = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_CERQ : EDMA_CERQ);
edma->regs.seei = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_SEEI : EDMA_SEEI);
edma->regs.ceei = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_CEEI : EDMA_CEEI);
edma->regs.cint = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_CINT : EDMA_CINT);
edma->regs.cerr = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_CERR : EDMA_CERR);
edma->regs.ssrt = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_SSRT : EDMA_SSRT);
edma->regs.cdne = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_CDNE : EDMA_CDNE);
edma->regs.intl = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_INTL : EDMA_INTR);
edma->regs.errl = edma->membase + ((edma->drvdata->version == v2) ?
EDMA64_ERRL : EDMA_ERR);
if (edma->drvdata->version == v2) {
edma->regs.erqh = edma->membase + EDMA64_ERQH;
edma->regs.eeih = edma->membase + EDMA64_EEIH;
edma->regs.errh = edma->membase + EDMA64_ERRH;
edma->regs.inth = edma->membase + EDMA64_INTH;
}
edma->regs.tcd = edma->membase + EDMA_TCD;
}
EXPORT_SYMBOL_GPL(fsl_edma_setup_regs);
MODULE_LICENSE("GPL v2");