1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-26 02:25:00 -05:00
linux/drivers/iio/light/as73211.c
Christian Eggers 23e0618ca0 iio: light: as73211: Increase measurement timeout
We found some sensors which are much slower (20% at room temperature)
than nominal. According to the data sheet, up to 27% is possible. Now I
add 33% to the nominal time out, hopefully this is enough.

Signed-off-by: Christian Eggers <ceggers@arri.de>
Link: https://lore.kernel.org/r/20200909154439.10308-1-ceggers@arri.de
Fixes: 403e5586b5 ("iio: light: as73211: New driver")
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2020-09-13 10:37:46 +01:00

800 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Support for AMS AS73211 JENCOLOR(R) Digital XYZ Sensor
*
* Author: Christian Eggers <ceggers@arri.de>
*
* Copyright (c) 2020 ARRI Lighting
*
* Color light sensor with 16-bit channels for x, y, z and temperature);
* 7-bit I2C slave address 0x74 .. 0x77.
*
* Datasheet: https://ams.com/documents/20143/36005/AS73211_DS000556_3-01.pdf
*/
#include <linux/bitfield.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#define HZ_PER_KHZ 1000
#define AS73211_DRV_NAME "as73211"
/* AS73211 configuration registers */
#define AS73211_REG_OSR 0x0
#define AS73211_REG_AGEN 0x2
#define AS73211_REG_CREG1 0x6
#define AS73211_REG_CREG2 0x7
#define AS73211_REG_CREG3 0x8
/* AS73211 output register bank */
#define AS73211_OUT_OSR_STATUS 0
#define AS73211_OUT_TEMP 1
#define AS73211_OUT_MRES1 2
#define AS73211_OUT_MRES2 3
#define AS73211_OUT_MRES3 4
#define AS73211_OSR_SS BIT(7)
#define AS73211_OSR_PD BIT(6)
#define AS73211_OSR_SW_RES BIT(3)
#define AS73211_OSR_DOS_MASK GENMASK(2, 0)
#define AS73211_OSR_DOS_CONFIG FIELD_PREP(AS73211_OSR_DOS_MASK, 0x2)
#define AS73211_OSR_DOS_MEASURE FIELD_PREP(AS73211_OSR_DOS_MASK, 0x3)
#define AS73211_AGEN_DEVID_MASK GENMASK(7, 4)
#define AS73211_AGEN_DEVID(x) FIELD_PREP(AS73211_AGEN_DEVID_MASK, (x))
#define AS73211_AGEN_MUT_MASK GENMASK(3, 0)
#define AS73211_AGEN_MUT(x) FIELD_PREP(AS73211_AGEN_MUT_MASK, (x))
#define AS73211_CREG1_GAIN_MASK GENMASK(7, 4)
#define AS73211_CREG1_GAIN_1 11
#define AS73211_CREG1_TIME_MASK GENMASK(3, 0)
#define AS73211_CREG3_CCLK_MASK GENMASK(1, 0)
#define AS73211_OSR_STATUS_OUTCONVOF BIT(15)
#define AS73211_OSR_STATUS_MRESOF BIT(14)
#define AS73211_OSR_STATUS_ADCOF BIT(13)
#define AS73211_OSR_STATUS_LDATA BIT(12)
#define AS73211_OSR_STATUS_NDATA BIT(11)
#define AS73211_OSR_STATUS_NOTREADY BIT(10)
#define AS73211_SAMPLE_FREQ_BASE 1024000
#define AS73211_SAMPLE_TIME_NUM 15
#define AS73211_SAMPLE_TIME_MAX_MS BIT(AS73211_SAMPLE_TIME_NUM - 1)
/* Available sample frequencies are 1.024MHz multiplied by powers of two. */
static const int as73211_samp_freq_avail[] = {
AS73211_SAMPLE_FREQ_BASE * 1,
AS73211_SAMPLE_FREQ_BASE * 2,
AS73211_SAMPLE_FREQ_BASE * 4,
AS73211_SAMPLE_FREQ_BASE * 8,
};
static const int as73211_hardwaregain_avail[] = {
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
};
/**
* struct as73211_data - Instance data for one AS73211
* @client: I2C client.
* @osr: Cached Operational State Register.
* @creg1: Cached Configuration Register 1.
* @creg2: Cached Configuration Register 2.
* @creg3: Cached Configuration Register 3.
* @mutex: Keeps cached registers in sync with the device.
* @completion: Completion to wait for interrupt.
* @int_time_avail: Available integration times (depend on sampling frequency).
*/
struct as73211_data {
struct i2c_client *client;
u8 osr;
u8 creg1;
u8 creg2;
u8 creg3;
struct mutex mutex;
struct completion completion;
int int_time_avail[AS73211_SAMPLE_TIME_NUM * 2];
};
#define AS73211_COLOR_CHANNEL(_color, _si, _addr) { \
.type = IIO_INTENSITY, \
.modified = 1, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_type = \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_HARDWAREGAIN) | \
BIT(IIO_CHAN_INFO_INT_TIME), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_HARDWAREGAIN) | \
BIT(IIO_CHAN_INFO_INT_TIME), \
.channel2 = IIO_MOD_##_color, \
.address = _addr, \
.scan_index = _si, \
.scan_type = { \
.sign = 'u', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
}
#define AS73211_OFFSET_TEMP_INT (-66)
#define AS73211_OFFSET_TEMP_MICRO 900000
#define AS73211_SCALE_TEMP_INT 0
#define AS73211_SCALE_TEMP_MICRO 50000
#define AS73211_SCALE_X 277071108 /* nW/m^2 */
#define AS73211_SCALE_Y 298384270 /* nW/m^2 */
#define AS73211_SCALE_Z 160241927 /* nW/m^2 */
/* Channel order MUST match devices result register order */
#define AS73211_SCAN_INDEX_TEMP 0
#define AS73211_SCAN_INDEX_X 1
#define AS73211_SCAN_INDEX_Y 2
#define AS73211_SCAN_INDEX_Z 3
#define AS73211_SCAN_INDEX_TS 4
#define AS73211_SCAN_MASK_COLOR ( \
BIT(AS73211_SCAN_INDEX_X) | \
BIT(AS73211_SCAN_INDEX_Y) | \
BIT(AS73211_SCAN_INDEX_Z))
#define AS73211_SCAN_MASK_ALL ( \
BIT(AS73211_SCAN_INDEX_TEMP) | \
AS73211_SCAN_MASK_COLOR)
static const struct iio_chan_spec as73211_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE),
.address = AS73211_OUT_TEMP,
.scan_index = AS73211_SCAN_INDEX_TEMP,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
}
},
AS73211_COLOR_CHANNEL(X, AS73211_SCAN_INDEX_X, AS73211_OUT_MRES1),
AS73211_COLOR_CHANNEL(Y, AS73211_SCAN_INDEX_Y, AS73211_OUT_MRES2),
AS73211_COLOR_CHANNEL(Z, AS73211_SCAN_INDEX_Z, AS73211_OUT_MRES3),
IIO_CHAN_SOFT_TIMESTAMP(AS73211_SCAN_INDEX_TS),
};
static unsigned int as73211_integration_time_1024cyc(struct as73211_data *data)
{
/*
* Return integration time in units of 1024 clock cycles. Integration time
* in CREG1 is in powers of 2 (x 1024 cycles).
*/
return BIT(FIELD_GET(AS73211_CREG1_TIME_MASK, data->creg1));
}
static unsigned int as73211_integration_time_us(struct as73211_data *data,
unsigned int integration_time_1024cyc)
{
/*
* f_samp is configured in CREG3 in powers of 2 (x 1.024 MHz)
* t_cycl is configured in CREG1 in powers of 2 (x 1024 cycles)
* t_int_us = 1 / (f_samp) * t_cycl * US_PER_SEC
* = 1 / (2^CREG3_CCLK * 1,024,000) * 2^CREG1_CYCLES * 1,024 * US_PER_SEC
* = 2^(-CREG3_CCLK) * 2^CREG1_CYCLES * 1,000
* In order to get rid of negative exponents, we extend the "fraction"
* by 2^3 (CREG3_CCLK,max = 3)
* t_int_us = 2^(3-CREG3_CCLK) * 2^CREG1_CYCLES * 125
*/
return BIT(3 - FIELD_GET(AS73211_CREG3_CCLK_MASK, data->creg3)) *
integration_time_1024cyc * 125;
}
static void as73211_integration_time_calc_avail(struct as73211_data *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(data->int_time_avail) / 2; i++) {
unsigned int time_us = as73211_integration_time_us(data, BIT(i));
data->int_time_avail[i * 2 + 0] = time_us / USEC_PER_SEC;
data->int_time_avail[i * 2 + 1] = time_us % USEC_PER_SEC;
}
}
static unsigned int as73211_gain(struct as73211_data *data)
{
/* gain can be calculated from CREG1 as 2^(11 - CREG1_GAIN) */
return BIT(AS73211_CREG1_GAIN_1 - FIELD_GET(AS73211_CREG1_GAIN_MASK, data->creg1));
}
/* must be called with as73211_data::mutex held. */
static int as73211_req_data(struct as73211_data *data)
{
unsigned int time_us = as73211_integration_time_us(data,
as73211_integration_time_1024cyc(data));
struct device *dev = &data->client->dev;
union i2c_smbus_data smbus_data;
u16 osr_status;
int ret;
if (data->client->irq)
reinit_completion(&data->completion);
/*
* During measurement, there should be no traffic on the i2c bus as the
* electrical noise would disturb the measurement process.
*/
i2c_lock_bus(data->client->adapter, I2C_LOCK_SEGMENT);
data->osr &= ~AS73211_OSR_DOS_MASK;
data->osr |= AS73211_OSR_DOS_MEASURE | AS73211_OSR_SS;
smbus_data.byte = data->osr;
ret = __i2c_smbus_xfer(data->client->adapter, data->client->addr,
data->client->flags, I2C_SMBUS_WRITE,
AS73211_REG_OSR, I2C_SMBUS_BYTE_DATA, &smbus_data);
if (ret < 0) {
i2c_unlock_bus(data->client->adapter, I2C_LOCK_SEGMENT);
return ret;
}
/*
* Reset AS73211_OSR_SS (is self clearing) in order to avoid unintentional
* triggering of further measurements later.
*/
data->osr &= ~AS73211_OSR_SS;
/*
* Add 33% extra margin for the timeout. fclk,min = fclk,typ - 27%.
*/
time_us += time_us / 3;
if (data->client->irq) {
ret = wait_for_completion_timeout(&data->completion, usecs_to_jiffies(time_us));
if (!ret) {
dev_err(dev, "timeout waiting for READY IRQ\n");
i2c_unlock_bus(data->client->adapter, I2C_LOCK_SEGMENT);
return -ETIMEDOUT;
}
} else {
/* Wait integration time */
usleep_range(time_us, 2 * time_us);
}
i2c_unlock_bus(data->client->adapter, I2C_LOCK_SEGMENT);
ret = i2c_smbus_read_word_data(data->client, AS73211_OUT_OSR_STATUS);
if (ret < 0)
return ret;
osr_status = ret;
if (osr_status != (AS73211_OSR_DOS_MEASURE | AS73211_OSR_STATUS_NDATA)) {
if (osr_status & AS73211_OSR_SS) {
dev_err(dev, "%s() Measurement has not stopped\n", __func__);
return -ETIME;
}
if (osr_status & AS73211_OSR_STATUS_NOTREADY) {
dev_err(dev, "%s() Data is not ready\n", __func__);
return -ENODATA;
}
if (!(osr_status & AS73211_OSR_STATUS_NDATA)) {
dev_err(dev, "%s() No new data available\n", __func__);
return -ENODATA;
}
if (osr_status & AS73211_OSR_STATUS_LDATA) {
dev_err(dev, "%s() Result buffer overrun\n", __func__);
return -ENOBUFS;
}
if (osr_status & AS73211_OSR_STATUS_ADCOF) {
dev_err(dev, "%s() ADC overflow\n", __func__);
return -EOVERFLOW;
}
if (osr_status & AS73211_OSR_STATUS_MRESOF) {
dev_err(dev, "%s() Measurement result overflow\n", __func__);
return -EOVERFLOW;
}
if (osr_status & AS73211_OSR_STATUS_OUTCONVOF) {
dev_err(dev, "%s() Timer overflow\n", __func__);
return -EOVERFLOW;
}
dev_err(dev, "%s() Unexpected status value\n", __func__);
return -EIO;
}
return 0;
}
static int as73211_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct as73211_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW: {
int ret;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret < 0)
return ret;
ret = as73211_req_data(data);
if (ret < 0) {
iio_device_release_direct_mode(indio_dev);
return ret;
}
ret = i2c_smbus_read_word_data(data->client, chan->address);
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
}
case IIO_CHAN_INFO_OFFSET:
*val = AS73211_OFFSET_TEMP_INT;
*val2 = AS73211_OFFSET_TEMP_MICRO;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_TEMP:
*val = AS73211_SCALE_TEMP_INT;
*val2 = AS73211_SCALE_TEMP_MICRO;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_INTENSITY: {
unsigned int scale;
switch (chan->channel2) {
case IIO_MOD_X:
scale = AS73211_SCALE_X;
break;
case IIO_MOD_Y:
scale = AS73211_SCALE_Y;
break;
case IIO_MOD_Z:
scale = AS73211_SCALE_Z;
break;
default:
return -EINVAL;
}
scale /= as73211_gain(data);
scale /= as73211_integration_time_1024cyc(data);
*val = scale;
return IIO_VAL_INT;
default:
return -EINVAL;
}}
case IIO_CHAN_INFO_SAMP_FREQ:
/* f_samp is configured in CREG3 in powers of 2 (x 1.024 MHz) */
*val = BIT(FIELD_GET(AS73211_CREG3_CCLK_MASK, data->creg3)) *
AS73211_SAMPLE_FREQ_BASE;
return IIO_VAL_INT;
case IIO_CHAN_INFO_HARDWAREGAIN:
*val = as73211_gain(data);
return IIO_VAL_INT;
case IIO_CHAN_INFO_INT_TIME: {
unsigned int time_us;
mutex_lock(&data->mutex);
time_us = as73211_integration_time_us(data, as73211_integration_time_1024cyc(data));
mutex_unlock(&data->mutex);
*val = time_us / USEC_PER_SEC;
*val2 = time_us % USEC_PER_SEC;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}}
}
static int as73211_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
const int **vals, int *type, int *length, long mask)
{
struct as73211_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*length = ARRAY_SIZE(as73211_samp_freq_avail);
*vals = as73211_samp_freq_avail;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_HARDWAREGAIN:
*length = ARRAY_SIZE(as73211_hardwaregain_avail);
*vals = as73211_hardwaregain_avail;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_INT_TIME:
*length = ARRAY_SIZE(data->int_time_avail);
*vals = data->int_time_avail;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int _as73211_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan __always_unused,
int val, int val2, long mask)
{
struct as73211_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ: {
int reg_bits, freq_kHz = val / HZ_PER_KHZ; /* 1024, 2048, ... */
/* val must be 1024 * 2^x */
if (val < 0 || (freq_kHz * HZ_PER_KHZ) != val ||
!is_power_of_2(freq_kHz) || val2)
return -EINVAL;
/* f_samp is configured in CREG3 in powers of 2 (x 1.024 MHz (=2^10)) */
reg_bits = ilog2(freq_kHz) - 10;
if (!FIELD_FIT(AS73211_CREG3_CCLK_MASK, reg_bits))
return -EINVAL;
data->creg3 &= ~AS73211_CREG3_CCLK_MASK;
data->creg3 |= FIELD_PREP(AS73211_CREG3_CCLK_MASK, reg_bits);
as73211_integration_time_calc_avail(data);
ret = i2c_smbus_write_byte_data(data->client, AS73211_REG_CREG3, data->creg3);
if (ret < 0)
return ret;
return 0;
}
case IIO_CHAN_INFO_HARDWAREGAIN: {
unsigned int reg_bits;
if (val < 0 || !is_power_of_2(val) || val2)
return -EINVAL;
/* gain can be calculated from CREG1 as 2^(11 - CREG1_GAIN) */
reg_bits = AS73211_CREG1_GAIN_1 - ilog2(val);
if (!FIELD_FIT(AS73211_CREG1_GAIN_MASK, reg_bits))
return -EINVAL;
data->creg1 &= ~AS73211_CREG1_GAIN_MASK;
data->creg1 |= FIELD_PREP(AS73211_CREG1_GAIN_MASK, reg_bits);
ret = i2c_smbus_write_byte_data(data->client, AS73211_REG_CREG1, data->creg1);
if (ret < 0)
return ret;
return 0;
}
case IIO_CHAN_INFO_INT_TIME: {
int val_us = val * USEC_PER_SEC + val2;
int time_ms;
int reg_bits;
/* f_samp is configured in CREG3 in powers of 2 (x 1.024 MHz) */
int f_samp_1_024mhz = BIT(FIELD_GET(AS73211_CREG3_CCLK_MASK, data->creg3));
/*
* time_ms = time_us * US_PER_MS * f_samp_1_024mhz / MHZ_PER_HZ
* = time_us * f_samp_1_024mhz / 1000
*/
time_ms = (val_us * f_samp_1_024mhz) / 1000; /* 1 ms, 2 ms, ... (power of two) */
if (time_ms < 0 || !is_power_of_2(time_ms) || time_ms > AS73211_SAMPLE_TIME_MAX_MS)
return -EINVAL;
reg_bits = ilog2(time_ms);
if (!FIELD_FIT(AS73211_CREG1_TIME_MASK, reg_bits))
return -EINVAL; /* not possible due to previous tests */
data->creg1 &= ~AS73211_CREG1_TIME_MASK;
data->creg1 |= FIELD_PREP(AS73211_CREG1_TIME_MASK, reg_bits);
ret = i2c_smbus_write_byte_data(data->client, AS73211_REG_CREG1, data->creg1);
if (ret < 0)
return ret;
return 0;
default:
return -EINVAL;
}}
}
static int as73211_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct as73211_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = iio_device_claim_direct_mode(indio_dev);
if (ret < 0)
goto error_unlock;
/* Need to switch to config mode ... */
if ((data->osr & AS73211_OSR_DOS_MASK) != AS73211_OSR_DOS_CONFIG) {
data->osr &= ~AS73211_OSR_DOS_MASK;
data->osr |= AS73211_OSR_DOS_CONFIG;
ret = i2c_smbus_write_byte_data(data->client, AS73211_REG_OSR, data->osr);
if (ret < 0)
goto error_release;
}
ret = _as73211_write_raw(indio_dev, chan, val, val2, mask);
error_release:
iio_device_release_direct_mode(indio_dev);
error_unlock:
mutex_unlock(&data->mutex);
return ret;
}
static irqreturn_t as73211_ready_handler(int irq __always_unused, void *priv)
{
struct as73211_data *data = iio_priv(priv);
complete(&data->completion);
return IRQ_HANDLED;
}
static irqreturn_t as73211_trigger_handler(int irq __always_unused, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct as73211_data *data = iio_priv(indio_dev);
struct {
__le16 chan[4];
s64 ts __aligned(8);
} scan;
int data_result, ret;
mutex_lock(&data->mutex);
data_result = as73211_req_data(data);
if (data_result < 0 && data_result != -EOVERFLOW)
goto done; /* don't push any data for errors other than EOVERFLOW */
if (*indio_dev->active_scan_mask == AS73211_SCAN_MASK_ALL) {
/* Optimization for reading all (color + temperature) channels */
u8 addr = as73211_channels[0].address;
struct i2c_msg msgs[] = {
{
.addr = data->client->addr,
.flags = 0,
.len = 1,
.buf = &addr,
},
{
.addr = data->client->addr,
.flags = I2C_M_RD,
.len = sizeof(scan.chan),
.buf = (u8 *)&scan.chan,
},
};
ret = i2c_transfer(data->client->adapter, msgs, ARRAY_SIZE(msgs));
if (ret < 0)
goto done;
} else {
/* Optimization for reading only color channels */
/* AS73211 starts reading at address 2 */
ret = i2c_master_recv(data->client,
(char *)&scan.chan[1], 3 * sizeof(scan.chan[1]));
if (ret < 0)
goto done;
}
if (data_result) {
/*
* Saturate all channels (in case of overflows). Temperature channel
* is not affected by overflows.
*/
scan.chan[1] = cpu_to_le16(U16_MAX);
scan.chan[2] = cpu_to_le16(U16_MAX);
scan.chan[3] = cpu_to_le16(U16_MAX);
}
iio_push_to_buffers_with_timestamp(indio_dev, &scan, iio_get_time_ns(indio_dev));
done:
mutex_unlock(&data->mutex);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static const struct iio_info as73211_info = {
.read_raw = as73211_read_raw,
.read_avail = as73211_read_avail,
.write_raw = as73211_write_raw,
};
static int as73211_power(struct iio_dev *indio_dev, bool state)
{
struct as73211_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
if (state)
data->osr &= ~AS73211_OSR_PD;
else
data->osr |= AS73211_OSR_PD;
ret = i2c_smbus_write_byte_data(data->client, AS73211_REG_OSR, data->osr);
mutex_unlock(&data->mutex);
if (ret < 0)
return ret;
return 0;
}
static void as73211_power_disable(void *data)
{
struct iio_dev *indio_dev = data;
as73211_power(indio_dev, false);
}
static int as73211_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct as73211_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
mutex_init(&data->mutex);
init_completion(&data->completion);
indio_dev->info = &as73211_info;
indio_dev->name = AS73211_DRV_NAME;
indio_dev->channels = as73211_channels;
indio_dev->num_channels = ARRAY_SIZE(as73211_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
ret = i2c_smbus_read_byte_data(data->client, AS73211_REG_OSR);
if (ret < 0)
return ret;
data->osr = ret;
/* reset device */
data->osr |= AS73211_OSR_SW_RES;
ret = i2c_smbus_write_byte_data(data->client, AS73211_REG_OSR, data->osr);
if (ret < 0)
return ret;
ret = i2c_smbus_read_byte_data(data->client, AS73211_REG_OSR);
if (ret < 0)
return ret;
data->osr = ret;
/*
* Reading AGEN is only possible after reset (AGEN is not available if
* device is in measurement mode).
*/
ret = i2c_smbus_read_byte_data(data->client, AS73211_REG_AGEN);
if (ret < 0)
return ret;
/* At the time of writing this driver, only DEVID 2 and MUT 1 are known. */
if ((ret & AS73211_AGEN_DEVID_MASK) != AS73211_AGEN_DEVID(2) ||
(ret & AS73211_AGEN_MUT_MASK) != AS73211_AGEN_MUT(1))
return -ENODEV;
ret = i2c_smbus_read_byte_data(data->client, AS73211_REG_CREG1);
if (ret < 0)
return ret;
data->creg1 = ret;
ret = i2c_smbus_read_byte_data(data->client, AS73211_REG_CREG2);
if (ret < 0)
return ret;
data->creg2 = ret;
ret = i2c_smbus_read_byte_data(data->client, AS73211_REG_CREG3);
if (ret < 0)
return ret;
data->creg3 = ret;
as73211_integration_time_calc_avail(data);
ret = as73211_power(indio_dev, true);
if (ret < 0)
return ret;
ret = devm_add_action_or_reset(dev, as73211_power_disable, indio_dev);
if (ret)
return ret;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, as73211_trigger_handler, NULL);
if (ret)
return ret;
if (client->irq) {
ret = devm_request_threaded_irq(&client->dev, client->irq,
NULL,
as73211_ready_handler,
IRQF_ONESHOT,
client->name, indio_dev);
if (ret)
return ret;
}
return devm_iio_device_register(dev, indio_dev);
}
static int __maybe_unused as73211_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
return as73211_power(indio_dev, false);
}
static int __maybe_unused as73211_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
return as73211_power(indio_dev, true);
}
static SIMPLE_DEV_PM_OPS(as73211_pm_ops, as73211_suspend, as73211_resume);
static const struct of_device_id as73211_of_match[] = {
{ .compatible = "ams,as73211" },
{ }
};
MODULE_DEVICE_TABLE(of, as73211_of_match);
static const struct i2c_device_id as73211_id[] = {
{ "as73211", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, as73211_id);
static struct i2c_driver as73211_driver = {
.driver = {
.name = AS73211_DRV_NAME,
.of_match_table = as73211_of_match,
.pm = &as73211_pm_ops,
},
.probe_new = as73211_probe,
.id_table = as73211_id,
};
module_i2c_driver(as73211_driver);
MODULE_AUTHOR("Christian Eggers <ceggers@arri.de>");
MODULE_DESCRIPTION("AS73211 XYZ True Color Sensor driver");
MODULE_LICENSE("GPL");