mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-23 00:20:52 -05:00
10d83d7781
Teach folio_walk_start() to recognize special pmd/pud mappings, and fail them properly as it means there's no folio backing them. [peterx@redhat.com: remove some stale comments, per David] Link: https://lkml.kernel.org/r/20240829202237.2640288-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20240826204353.2228736-7-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: David Hildenbrand <david@redhat.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@linux.ibm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Gavin Shan <gshan@redhat.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Niklas Schnelle <schnelle@linux.ibm.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Ryan Roberts <ryan.roberts@arm.com> Cc: Sean Christopherson <seanjc@google.com> Cc: Sven Schnelle <svens@linux.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
858 lines
23 KiB
C
858 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/pagewalk.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
|
|
/*
|
|
* We want to know the real level where a entry is located ignoring any
|
|
* folding of levels which may be happening. For example if p4d is folded then
|
|
* a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
|
|
*/
|
|
static int real_depth(int depth)
|
|
{
|
|
if (depth == 3 && PTRS_PER_PMD == 1)
|
|
depth = 2;
|
|
if (depth == 2 && PTRS_PER_PUD == 1)
|
|
depth = 1;
|
|
if (depth == 1 && PTRS_PER_P4D == 1)
|
|
depth = 0;
|
|
return depth;
|
|
}
|
|
|
|
static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
|
|
unsigned long end, struct mm_walk *walk)
|
|
{
|
|
const struct mm_walk_ops *ops = walk->ops;
|
|
int err = 0;
|
|
|
|
for (;;) {
|
|
err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
|
|
if (err)
|
|
break;
|
|
if (addr >= end - PAGE_SIZE)
|
|
break;
|
|
addr += PAGE_SIZE;
|
|
pte++;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
pte_t *pte;
|
|
int err = 0;
|
|
spinlock_t *ptl;
|
|
|
|
if (walk->no_vma) {
|
|
/*
|
|
* pte_offset_map() might apply user-specific validation.
|
|
* Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
|
|
* fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
|
|
* and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
|
|
*/
|
|
if (walk->mm == &init_mm || addr >= TASK_SIZE)
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
else
|
|
pte = pte_offset_map(pmd, addr);
|
|
if (pte) {
|
|
err = walk_pte_range_inner(pte, addr, end, walk);
|
|
if (walk->mm != &init_mm && addr < TASK_SIZE)
|
|
pte_unmap(pte);
|
|
}
|
|
} else {
|
|
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
|
if (pte) {
|
|
err = walk_pte_range_inner(pte, addr, end, walk);
|
|
pte_unmap_unlock(pte, ptl);
|
|
}
|
|
}
|
|
if (!pte)
|
|
walk->action = ACTION_AGAIN;
|
|
return err;
|
|
}
|
|
|
|
static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
const struct mm_walk_ops *ops = walk->ops;
|
|
int err = 0;
|
|
int depth = real_depth(3);
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
again:
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none(*pmd)) {
|
|
if (ops->pte_hole)
|
|
err = ops->pte_hole(addr, next, depth, walk);
|
|
if (err)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
walk->action = ACTION_SUBTREE;
|
|
|
|
/*
|
|
* This implies that each ->pmd_entry() handler
|
|
* needs to know about pmd_trans_huge() pmds
|
|
*/
|
|
if (ops->pmd_entry)
|
|
err = ops->pmd_entry(pmd, addr, next, walk);
|
|
if (err)
|
|
break;
|
|
|
|
if (walk->action == ACTION_AGAIN)
|
|
goto again;
|
|
|
|
/*
|
|
* Check this here so we only break down trans_huge
|
|
* pages when we _need_ to
|
|
*/
|
|
if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
|
|
walk->action == ACTION_CONTINUE ||
|
|
!(ops->pte_entry))
|
|
continue;
|
|
|
|
if (walk->vma)
|
|
split_huge_pmd(walk->vma, pmd, addr);
|
|
|
|
err = walk_pte_range(pmd, addr, next, walk);
|
|
if (err)
|
|
break;
|
|
|
|
if (walk->action == ACTION_AGAIN)
|
|
goto again;
|
|
|
|
} while (pmd++, addr = next, addr != end);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
const struct mm_walk_ops *ops = walk->ops;
|
|
int err = 0;
|
|
int depth = real_depth(2);
|
|
|
|
pud = pud_offset(p4d, addr);
|
|
do {
|
|
again:
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none(*pud)) {
|
|
if (ops->pte_hole)
|
|
err = ops->pte_hole(addr, next, depth, walk);
|
|
if (err)
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
walk->action = ACTION_SUBTREE;
|
|
|
|
if (ops->pud_entry)
|
|
err = ops->pud_entry(pud, addr, next, walk);
|
|
if (err)
|
|
break;
|
|
|
|
if (walk->action == ACTION_AGAIN)
|
|
goto again;
|
|
|
|
if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
|
|
walk->action == ACTION_CONTINUE ||
|
|
!(ops->pmd_entry || ops->pte_entry))
|
|
continue;
|
|
|
|
if (walk->vma)
|
|
split_huge_pud(walk->vma, pud, addr);
|
|
if (pud_none(*pud))
|
|
goto again;
|
|
|
|
err = walk_pmd_range(pud, addr, next, walk);
|
|
if (err)
|
|
break;
|
|
} while (pud++, addr = next, addr != end);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
p4d_t *p4d;
|
|
unsigned long next;
|
|
const struct mm_walk_ops *ops = walk->ops;
|
|
int err = 0;
|
|
int depth = real_depth(1);
|
|
|
|
p4d = p4d_offset(pgd, addr);
|
|
do {
|
|
next = p4d_addr_end(addr, end);
|
|
if (p4d_none_or_clear_bad(p4d)) {
|
|
if (ops->pte_hole)
|
|
err = ops->pte_hole(addr, next, depth, walk);
|
|
if (err)
|
|
break;
|
|
continue;
|
|
}
|
|
if (ops->p4d_entry) {
|
|
err = ops->p4d_entry(p4d, addr, next, walk);
|
|
if (err)
|
|
break;
|
|
}
|
|
if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
|
|
err = walk_pud_range(p4d, addr, next, walk);
|
|
if (err)
|
|
break;
|
|
} while (p4d++, addr = next, addr != end);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int walk_pgd_range(unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
const struct mm_walk_ops *ops = walk->ops;
|
|
int err = 0;
|
|
|
|
if (walk->pgd)
|
|
pgd = walk->pgd + pgd_index(addr);
|
|
else
|
|
pgd = pgd_offset(walk->mm, addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd)) {
|
|
if (ops->pte_hole)
|
|
err = ops->pte_hole(addr, next, 0, walk);
|
|
if (err)
|
|
break;
|
|
continue;
|
|
}
|
|
if (ops->pgd_entry) {
|
|
err = ops->pgd_entry(pgd, addr, next, walk);
|
|
if (err)
|
|
break;
|
|
}
|
|
if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
|
|
err = walk_p4d_range(pgd, addr, next, walk);
|
|
if (err)
|
|
break;
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
|
|
return boundary < end ? boundary : end;
|
|
}
|
|
|
|
static int walk_hugetlb_range(unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct vm_area_struct *vma = walk->vma;
|
|
struct hstate *h = hstate_vma(vma);
|
|
unsigned long next;
|
|
unsigned long hmask = huge_page_mask(h);
|
|
unsigned long sz = huge_page_size(h);
|
|
pte_t *pte;
|
|
const struct mm_walk_ops *ops = walk->ops;
|
|
int err = 0;
|
|
|
|
hugetlb_vma_lock_read(vma);
|
|
do {
|
|
next = hugetlb_entry_end(h, addr, end);
|
|
pte = hugetlb_walk(vma, addr & hmask, sz);
|
|
if (pte)
|
|
err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
|
|
else if (ops->pte_hole)
|
|
err = ops->pte_hole(addr, next, -1, walk);
|
|
if (err)
|
|
break;
|
|
} while (addr = next, addr != end);
|
|
hugetlb_vma_unlock_read(vma);
|
|
|
|
return err;
|
|
}
|
|
|
|
#else /* CONFIG_HUGETLB_PAGE */
|
|
static int walk_hugetlb_range(unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_HUGETLB_PAGE */
|
|
|
|
/*
|
|
* Decide whether we really walk over the current vma on [@start, @end)
|
|
* or skip it via the returned value. Return 0 if we do walk over the
|
|
* current vma, and return 1 if we skip the vma. Negative values means
|
|
* error, where we abort the current walk.
|
|
*/
|
|
static int walk_page_test(unsigned long start, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct vm_area_struct *vma = walk->vma;
|
|
const struct mm_walk_ops *ops = walk->ops;
|
|
|
|
if (ops->test_walk)
|
|
return ops->test_walk(start, end, walk);
|
|
|
|
/*
|
|
* vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
|
|
* range, so we don't walk over it as we do for normal vmas. However,
|
|
* Some callers are interested in handling hole range and they don't
|
|
* want to just ignore any single address range. Such users certainly
|
|
* define their ->pte_hole() callbacks, so let's delegate them to handle
|
|
* vma(VM_PFNMAP).
|
|
*/
|
|
if (vma->vm_flags & VM_PFNMAP) {
|
|
int err = 1;
|
|
if (ops->pte_hole)
|
|
err = ops->pte_hole(start, end, -1, walk);
|
|
return err ? err : 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __walk_page_range(unsigned long start, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
int err = 0;
|
|
struct vm_area_struct *vma = walk->vma;
|
|
const struct mm_walk_ops *ops = walk->ops;
|
|
|
|
if (ops->pre_vma) {
|
|
err = ops->pre_vma(start, end, walk);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma)) {
|
|
if (ops->hugetlb_entry)
|
|
err = walk_hugetlb_range(start, end, walk);
|
|
} else
|
|
err = walk_pgd_range(start, end, walk);
|
|
|
|
if (ops->post_vma)
|
|
ops->post_vma(walk);
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline void process_mm_walk_lock(struct mm_struct *mm,
|
|
enum page_walk_lock walk_lock)
|
|
{
|
|
if (walk_lock == PGWALK_RDLOCK)
|
|
mmap_assert_locked(mm);
|
|
else
|
|
mmap_assert_write_locked(mm);
|
|
}
|
|
|
|
static inline void process_vma_walk_lock(struct vm_area_struct *vma,
|
|
enum page_walk_lock walk_lock)
|
|
{
|
|
#ifdef CONFIG_PER_VMA_LOCK
|
|
switch (walk_lock) {
|
|
case PGWALK_WRLOCK:
|
|
vma_start_write(vma);
|
|
break;
|
|
case PGWALK_WRLOCK_VERIFY:
|
|
vma_assert_write_locked(vma);
|
|
break;
|
|
case PGWALK_RDLOCK:
|
|
/* PGWALK_RDLOCK is handled by process_mm_walk_lock */
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* walk_page_range - walk page table with caller specific callbacks
|
|
* @mm: mm_struct representing the target process of page table walk
|
|
* @start: start address of the virtual address range
|
|
* @end: end address of the virtual address range
|
|
* @ops: operation to call during the walk
|
|
* @private: private data for callbacks' usage
|
|
*
|
|
* Recursively walk the page table tree of the process represented by @mm
|
|
* within the virtual address range [@start, @end). During walking, we can do
|
|
* some caller-specific works for each entry, by setting up pmd_entry(),
|
|
* pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
|
|
* callbacks, the associated entries/pages are just ignored.
|
|
* The return values of these callbacks are commonly defined like below:
|
|
*
|
|
* - 0 : succeeded to handle the current entry, and if you don't reach the
|
|
* end address yet, continue to walk.
|
|
* - >0 : succeeded to handle the current entry, and return to the caller
|
|
* with caller specific value.
|
|
* - <0 : failed to handle the current entry, and return to the caller
|
|
* with error code.
|
|
*
|
|
* Before starting to walk page table, some callers want to check whether
|
|
* they really want to walk over the current vma, typically by checking
|
|
* its vm_flags. walk_page_test() and @ops->test_walk() are used for this
|
|
* purpose.
|
|
*
|
|
* If operations need to be staged before and committed after a vma is walked,
|
|
* there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
|
|
* since it is intended to handle commit-type operations, can't return any
|
|
* errors.
|
|
*
|
|
* struct mm_walk keeps current values of some common data like vma and pmd,
|
|
* which are useful for the access from callbacks. If you want to pass some
|
|
* caller-specific data to callbacks, @private should be helpful.
|
|
*
|
|
* Locking:
|
|
* Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
|
|
* because these function traverse vma list and/or access to vma's data.
|
|
*/
|
|
int walk_page_range(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, const struct mm_walk_ops *ops,
|
|
void *private)
|
|
{
|
|
int err = 0;
|
|
unsigned long next;
|
|
struct vm_area_struct *vma;
|
|
struct mm_walk walk = {
|
|
.ops = ops,
|
|
.mm = mm,
|
|
.private = private,
|
|
};
|
|
|
|
if (start >= end)
|
|
return -EINVAL;
|
|
|
|
if (!walk.mm)
|
|
return -EINVAL;
|
|
|
|
process_mm_walk_lock(walk.mm, ops->walk_lock);
|
|
|
|
vma = find_vma(walk.mm, start);
|
|
do {
|
|
if (!vma) { /* after the last vma */
|
|
walk.vma = NULL;
|
|
next = end;
|
|
if (ops->pte_hole)
|
|
err = ops->pte_hole(start, next, -1, &walk);
|
|
} else if (start < vma->vm_start) { /* outside vma */
|
|
walk.vma = NULL;
|
|
next = min(end, vma->vm_start);
|
|
if (ops->pte_hole)
|
|
err = ops->pte_hole(start, next, -1, &walk);
|
|
} else { /* inside vma */
|
|
process_vma_walk_lock(vma, ops->walk_lock);
|
|
walk.vma = vma;
|
|
next = min(end, vma->vm_end);
|
|
vma = find_vma(mm, vma->vm_end);
|
|
|
|
err = walk_page_test(start, next, &walk);
|
|
if (err > 0) {
|
|
/*
|
|
* positive return values are purely for
|
|
* controlling the pagewalk, so should never
|
|
* be passed to the callers.
|
|
*/
|
|
err = 0;
|
|
continue;
|
|
}
|
|
if (err < 0)
|
|
break;
|
|
err = __walk_page_range(start, next, &walk);
|
|
}
|
|
if (err)
|
|
break;
|
|
} while (start = next, start < end);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* walk_page_range_novma - walk a range of pagetables not backed by a vma
|
|
* @mm: mm_struct representing the target process of page table walk
|
|
* @start: start address of the virtual address range
|
|
* @end: end address of the virtual address range
|
|
* @ops: operation to call during the walk
|
|
* @pgd: pgd to walk if different from mm->pgd
|
|
* @private: private data for callbacks' usage
|
|
*
|
|
* Similar to walk_page_range() but can walk any page tables even if they are
|
|
* not backed by VMAs. Because 'unusual' entries may be walked this function
|
|
* will also not lock the PTEs for the pte_entry() callback. This is useful for
|
|
* walking the kernel pages tables or page tables for firmware.
|
|
*
|
|
* Note: Be careful to walk the kernel pages tables, the caller may be need to
|
|
* take other effective approache (mmap lock may be insufficient) to prevent
|
|
* the intermediate kernel page tables belonging to the specified address range
|
|
* from being freed (e.g. memory hot-remove).
|
|
*/
|
|
int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, const struct mm_walk_ops *ops,
|
|
pgd_t *pgd,
|
|
void *private)
|
|
{
|
|
struct mm_walk walk = {
|
|
.ops = ops,
|
|
.mm = mm,
|
|
.pgd = pgd,
|
|
.private = private,
|
|
.no_vma = true
|
|
};
|
|
|
|
if (start >= end || !walk.mm)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* 1) For walking the user virtual address space:
|
|
*
|
|
* The mmap lock protects the page walker from changes to the page
|
|
* tables during the walk. However a read lock is insufficient to
|
|
* protect those areas which don't have a VMA as munmap() detaches
|
|
* the VMAs before downgrading to a read lock and actually tearing
|
|
* down PTEs/page tables. In which case, the mmap write lock should
|
|
* be hold.
|
|
*
|
|
* 2) For walking the kernel virtual address space:
|
|
*
|
|
* The kernel intermediate page tables usually do not be freed, so
|
|
* the mmap map read lock is sufficient. But there are some exceptions.
|
|
* E.g. memory hot-remove. In which case, the mmap lock is insufficient
|
|
* to prevent the intermediate kernel pages tables belonging to the
|
|
* specified address range from being freed. The caller should take
|
|
* other actions to prevent this race.
|
|
*/
|
|
if (mm == &init_mm)
|
|
mmap_assert_locked(walk.mm);
|
|
else
|
|
mmap_assert_write_locked(walk.mm);
|
|
|
|
return walk_pgd_range(start, end, &walk);
|
|
}
|
|
|
|
int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, const struct mm_walk_ops *ops,
|
|
void *private)
|
|
{
|
|
struct mm_walk walk = {
|
|
.ops = ops,
|
|
.mm = vma->vm_mm,
|
|
.vma = vma,
|
|
.private = private,
|
|
};
|
|
|
|
if (start >= end || !walk.mm)
|
|
return -EINVAL;
|
|
if (start < vma->vm_start || end > vma->vm_end)
|
|
return -EINVAL;
|
|
|
|
process_mm_walk_lock(walk.mm, ops->walk_lock);
|
|
process_vma_walk_lock(vma, ops->walk_lock);
|
|
return __walk_page_range(start, end, &walk);
|
|
}
|
|
|
|
int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
|
|
void *private)
|
|
{
|
|
struct mm_walk walk = {
|
|
.ops = ops,
|
|
.mm = vma->vm_mm,
|
|
.vma = vma,
|
|
.private = private,
|
|
};
|
|
|
|
if (!walk.mm)
|
|
return -EINVAL;
|
|
|
|
process_mm_walk_lock(walk.mm, ops->walk_lock);
|
|
process_vma_walk_lock(vma, ops->walk_lock);
|
|
return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
|
|
}
|
|
|
|
/**
|
|
* walk_page_mapping - walk all memory areas mapped into a struct address_space.
|
|
* @mapping: Pointer to the struct address_space
|
|
* @first_index: First page offset in the address_space
|
|
* @nr: Number of incremental page offsets to cover
|
|
* @ops: operation to call during the walk
|
|
* @private: private data for callbacks' usage
|
|
*
|
|
* This function walks all memory areas mapped into a struct address_space.
|
|
* The walk is limited to only the given page-size index range, but if
|
|
* the index boundaries cross a huge page-table entry, that entry will be
|
|
* included.
|
|
*
|
|
* Also see walk_page_range() for additional information.
|
|
*
|
|
* Locking:
|
|
* This function can't require that the struct mm_struct::mmap_lock is held,
|
|
* since @mapping may be mapped by multiple processes. Instead
|
|
* @mapping->i_mmap_rwsem must be held. This might have implications in the
|
|
* callbacks, and it's up tho the caller to ensure that the
|
|
* struct mm_struct::mmap_lock is not needed.
|
|
*
|
|
* Also this means that a caller can't rely on the struct
|
|
* vm_area_struct::vm_flags to be constant across a call,
|
|
* except for immutable flags. Callers requiring this shouldn't use
|
|
* this function.
|
|
*
|
|
* Return: 0 on success, negative error code on failure, positive number on
|
|
* caller defined premature termination.
|
|
*/
|
|
int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
|
|
pgoff_t nr, const struct mm_walk_ops *ops,
|
|
void *private)
|
|
{
|
|
struct mm_walk walk = {
|
|
.ops = ops,
|
|
.private = private,
|
|
};
|
|
struct vm_area_struct *vma;
|
|
pgoff_t vba, vea, cba, cea;
|
|
unsigned long start_addr, end_addr;
|
|
int err = 0;
|
|
|
|
lockdep_assert_held(&mapping->i_mmap_rwsem);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
|
|
first_index + nr - 1) {
|
|
/* Clip to the vma */
|
|
vba = vma->vm_pgoff;
|
|
vea = vba + vma_pages(vma);
|
|
cba = first_index;
|
|
cba = max(cba, vba);
|
|
cea = first_index + nr;
|
|
cea = min(cea, vea);
|
|
|
|
start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
|
|
end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
|
|
if (start_addr >= end_addr)
|
|
continue;
|
|
|
|
walk.vma = vma;
|
|
walk.mm = vma->vm_mm;
|
|
|
|
err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
|
|
if (err > 0) {
|
|
err = 0;
|
|
break;
|
|
} else if (err < 0)
|
|
break;
|
|
|
|
err = __walk_page_range(start_addr, end_addr, &walk);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* folio_walk_start - walk the page tables to a folio
|
|
* @fw: filled with information on success.
|
|
* @vma: the VMA.
|
|
* @addr: the virtual address to use for the page table walk.
|
|
* @flags: flags modifying which folios to walk to.
|
|
*
|
|
* Walk the page tables using @addr in a given @vma to a mapped folio and
|
|
* return the folio, making sure that the page table entry referenced by
|
|
* @addr cannot change until folio_walk_end() was called.
|
|
*
|
|
* As default, this function returns only folios that are not special (e.g., not
|
|
* the zeropage) and never returns folios that are supposed to be ignored by the
|
|
* VM as documented by vm_normal_page(). If requested, zeropages will be
|
|
* returned as well.
|
|
*
|
|
* As default, this function only considers present page table entries.
|
|
* If requested, it will also consider migration entries.
|
|
*
|
|
* If this function returns NULL it might either indicate "there is nothing" or
|
|
* "there is nothing suitable".
|
|
*
|
|
* On success, @fw is filled and the function returns the folio while the PTL
|
|
* is still held and folio_walk_end() must be called to clean up,
|
|
* releasing any held locks. The returned folio must *not* be used after the
|
|
* call to folio_walk_end(), unless a short-term folio reference is taken before
|
|
* that call.
|
|
*
|
|
* @fw->page will correspond to the page that is effectively referenced by
|
|
* @addr. However, for migration entries and shared zeropages @fw->page is
|
|
* set to NULL. Note that large folios might be mapped by multiple page table
|
|
* entries, and this function will always only lookup a single entry as
|
|
* specified by @addr, which might or might not cover more than a single page of
|
|
* the returned folio.
|
|
*
|
|
* This function must *not* be used as a naive replacement for
|
|
* get_user_pages() / pin_user_pages(), especially not to perform DMA or
|
|
* to carelessly modify page content. This function may *only* be used to grab
|
|
* short-term folio references, never to grab long-term folio references.
|
|
*
|
|
* Using the page table entry pointers in @fw for reading or modifying the
|
|
* entry should be avoided where possible: however, there might be valid
|
|
* use cases.
|
|
*
|
|
* WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care.
|
|
* For example, PMD page table sharing might require prior unsharing. Also,
|
|
* logical hugetlb entries might span multiple physical page table entries,
|
|
* which *must* be modified in a single operation (set_huge_pte_at(),
|
|
* huge_ptep_set_*, ...). Note that the page table entry stored in @fw might
|
|
* not correspond to the first physical entry of a logical hugetlb entry.
|
|
*
|
|
* The mmap lock must be held in read mode.
|
|
*
|
|
* Return: folio pointer on success, otherwise NULL.
|
|
*/
|
|
struct folio *folio_walk_start(struct folio_walk *fw,
|
|
struct vm_area_struct *vma, unsigned long addr,
|
|
folio_walk_flags_t flags)
|
|
{
|
|
unsigned long entry_size;
|
|
bool expose_page = true;
|
|
struct page *page;
|
|
pud_t *pudp, pud;
|
|
pmd_t *pmdp, pmd;
|
|
pte_t *ptep, pte;
|
|
spinlock_t *ptl;
|
|
pgd_t *pgdp;
|
|
p4d_t *p4dp;
|
|
|
|
mmap_assert_locked(vma->vm_mm);
|
|
vma_pgtable_walk_begin(vma);
|
|
|
|
if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end))
|
|
goto not_found;
|
|
|
|
pgdp = pgd_offset(vma->vm_mm, addr);
|
|
if (pgd_none_or_clear_bad(pgdp))
|
|
goto not_found;
|
|
|
|
p4dp = p4d_offset(pgdp, addr);
|
|
if (p4d_none_or_clear_bad(p4dp))
|
|
goto not_found;
|
|
|
|
pudp = pud_offset(p4dp, addr);
|
|
pud = pudp_get(pudp);
|
|
if (pud_none(pud))
|
|
goto not_found;
|
|
if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && pud_leaf(pud)) {
|
|
ptl = pud_lock(vma->vm_mm, pudp);
|
|
pud = pudp_get(pudp);
|
|
|
|
entry_size = PUD_SIZE;
|
|
fw->level = FW_LEVEL_PUD;
|
|
fw->pudp = pudp;
|
|
fw->pud = pud;
|
|
|
|
if (!pud_present(pud) || pud_devmap(pud) || pud_special(pud)) {
|
|
spin_unlock(ptl);
|
|
goto not_found;
|
|
} else if (!pud_leaf(pud)) {
|
|
spin_unlock(ptl);
|
|
goto pmd_table;
|
|
}
|
|
/*
|
|
* TODO: vm_normal_page_pud() will be handy once we want to
|
|
* support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs.
|
|
*/
|
|
page = pud_page(pud);
|
|
goto found;
|
|
}
|
|
|
|
pmd_table:
|
|
VM_WARN_ON_ONCE(pud_leaf(*pudp));
|
|
pmdp = pmd_offset(pudp, addr);
|
|
pmd = pmdp_get_lockless(pmdp);
|
|
if (pmd_none(pmd))
|
|
goto not_found;
|
|
if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && pmd_leaf(pmd)) {
|
|
ptl = pmd_lock(vma->vm_mm, pmdp);
|
|
pmd = pmdp_get(pmdp);
|
|
|
|
entry_size = PMD_SIZE;
|
|
fw->level = FW_LEVEL_PMD;
|
|
fw->pmdp = pmdp;
|
|
fw->pmd = pmd;
|
|
|
|
if (pmd_none(pmd)) {
|
|
spin_unlock(ptl);
|
|
goto not_found;
|
|
} else if (!pmd_leaf(pmd)) {
|
|
spin_unlock(ptl);
|
|
goto pte_table;
|
|
} else if (pmd_present(pmd)) {
|
|
page = vm_normal_page_pmd(vma, addr, pmd);
|
|
if (page) {
|
|
goto found;
|
|
} else if ((flags & FW_ZEROPAGE) &&
|
|
is_huge_zero_pmd(pmd)) {
|
|
page = pfn_to_page(pmd_pfn(pmd));
|
|
expose_page = false;
|
|
goto found;
|
|
}
|
|
} else if ((flags & FW_MIGRATION) &&
|
|
is_pmd_migration_entry(pmd)) {
|
|
swp_entry_t entry = pmd_to_swp_entry(pmd);
|
|
|
|
page = pfn_swap_entry_to_page(entry);
|
|
expose_page = false;
|
|
goto found;
|
|
}
|
|
spin_unlock(ptl);
|
|
goto not_found;
|
|
}
|
|
|
|
pte_table:
|
|
VM_WARN_ON_ONCE(pmd_leaf(pmdp_get_lockless(pmdp)));
|
|
ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl);
|
|
if (!ptep)
|
|
goto not_found;
|
|
pte = ptep_get(ptep);
|
|
|
|
entry_size = PAGE_SIZE;
|
|
fw->level = FW_LEVEL_PTE;
|
|
fw->ptep = ptep;
|
|
fw->pte = pte;
|
|
|
|
if (pte_present(pte)) {
|
|
page = vm_normal_page(vma, addr, pte);
|
|
if (page)
|
|
goto found;
|
|
if ((flags & FW_ZEROPAGE) &&
|
|
is_zero_pfn(pte_pfn(pte))) {
|
|
page = pfn_to_page(pte_pfn(pte));
|
|
expose_page = false;
|
|
goto found;
|
|
}
|
|
} else if (!pte_none(pte)) {
|
|
swp_entry_t entry = pte_to_swp_entry(pte);
|
|
|
|
if ((flags & FW_MIGRATION) &&
|
|
is_migration_entry(entry)) {
|
|
page = pfn_swap_entry_to_page(entry);
|
|
expose_page = false;
|
|
goto found;
|
|
}
|
|
}
|
|
pte_unmap_unlock(ptep, ptl);
|
|
not_found:
|
|
vma_pgtable_walk_end(vma);
|
|
return NULL;
|
|
found:
|
|
if (expose_page)
|
|
/* Note: Offset from the mapped page, not the folio start. */
|
|
fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT);
|
|
else
|
|
fw->page = NULL;
|
|
fw->ptl = ptl;
|
|
return page_folio(page);
|
|
}
|