1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-26 02:25:00 -05:00
linux/drivers/target/target_core_user.c
Linus Torvalds cf393195c3 Merge branch 'idr-4.11' of git://git.infradead.org/users/willy/linux-dax
Pull IDR rewrite from Matthew Wilcox:
 "The most significant part of the following is the patch to rewrite the
  IDR & IDA to be clients of the radix tree. But there's much more,
  including an enhancement of the IDA to be significantly more space
  efficient, an IDR & IDA test suite, some improvements to the IDR API
  (and driver changes to take advantage of those improvements), several
  improvements to the radix tree test suite and RCU annotations.

  The IDR & IDA rewrite had a good spin in linux-next and Andrew's tree
  for most of the last cycle. Coupled with the IDR test suite, I feel
  pretty confident that any remaining bugs are quite hard to hit. 0-day
  did a great job of watching my git tree and pointing out problems; as
  it hit them, I added new test-cases to be sure not to be caught the
  same way twice"

Willy goes on to expand a bit on the IDR rewrite rationale:
 "The radix tree and the IDR use very similar data structures.

  Merging the two codebases lets us share the memory allocation pools,
  and results in a net deletion of 500 lines of code. It also opens up
  the possibility of exposing more of the features of the radix tree to
  users of the IDR (and I have some interesting patches along those
  lines waiting for 4.12)

  It also shrinks the size of the 'struct idr' from 40 bytes to 24 which
  will shrink a fair few data structures that embed an IDR"

* 'idr-4.11' of git://git.infradead.org/users/willy/linux-dax: (32 commits)
  radix tree test suite: Add config option for map shift
  idr: Add missing __rcu annotations
  radix-tree: Fix __rcu annotations
  radix-tree: Add rcu_dereference and rcu_assign_pointer calls
  radix tree test suite: Run iteration tests for longer
  radix tree test suite: Fix split/join memory leaks
  radix tree test suite: Fix leaks in regression2.c
  radix tree test suite: Fix leaky tests
  radix tree test suite: Enable address sanitizer
  radix_tree_iter_resume: Fix out of bounds error
  radix-tree: Store a pointer to the root in each node
  radix-tree: Chain preallocated nodes through ->parent
  radix tree test suite: Dial down verbosity with -v
  radix tree test suite: Introduce kmalloc_verbose
  idr: Return the deleted entry from idr_remove
  radix tree test suite: Build separate binaries for some tests
  ida: Use exceptional entries for small IDAs
  ida: Move ida_bitmap to a percpu variable
  Reimplement IDR and IDA using the radix tree
  radix-tree: Add radix_tree_iter_delete
  ...
2017-02-28 20:29:41 -08:00

1208 lines
30 KiB
C

/*
* Copyright (C) 2013 Shaohua Li <shli@kernel.org>
* Copyright (C) 2014 Red Hat, Inc.
* Copyright (C) 2015 Arrikto, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/idr.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/parser.h>
#include <linux/vmalloc.h>
#include <linux/uio_driver.h>
#include <linux/stringify.h>
#include <linux/bitops.h>
#include <linux/highmem.h>
#include <net/genetlink.h>
#include <scsi/scsi_common.h>
#include <scsi/scsi_proto.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include <target/target_core_backend.h>
#include <linux/target_core_user.h>
/*
* Define a shared-memory interface for LIO to pass SCSI commands and
* data to userspace for processing. This is to allow backends that
* are too complex for in-kernel support to be possible.
*
* It uses the UIO framework to do a lot of the device-creation and
* introspection work for us.
*
* See the .h file for how the ring is laid out. Note that while the
* command ring is defined, the particulars of the data area are
* not. Offset values in the command entry point to other locations
* internal to the mmap()ed area. There is separate space outside the
* command ring for data buffers. This leaves maximum flexibility for
* moving buffer allocations, or even page flipping or other
* allocation techniques, without altering the command ring layout.
*
* SECURITY:
* The user process must be assumed to be malicious. There's no way to
* prevent it breaking the command ring protocol if it wants, but in
* order to prevent other issues we must only ever read *data* from
* the shared memory area, not offsets or sizes. This applies to
* command ring entries as well as the mailbox. Extra code needed for
* this may have a 'UAM' comment.
*/
#define TCMU_TIME_OUT (30 * MSEC_PER_SEC)
#define DATA_BLOCK_BITS 256
#define DATA_BLOCK_SIZE 4096
#define CMDR_SIZE (16 * 4096)
#define DATA_SIZE (DATA_BLOCK_BITS * DATA_BLOCK_SIZE)
#define TCMU_RING_SIZE (CMDR_SIZE + DATA_SIZE)
static struct device *tcmu_root_device;
struct tcmu_hba {
u32 host_id;
};
#define TCMU_CONFIG_LEN 256
struct tcmu_dev {
struct se_device se_dev;
char *name;
struct se_hba *hba;
#define TCMU_DEV_BIT_OPEN 0
#define TCMU_DEV_BIT_BROKEN 1
unsigned long flags;
struct uio_info uio_info;
struct tcmu_mailbox *mb_addr;
size_t dev_size;
u32 cmdr_size;
u32 cmdr_last_cleaned;
/* Offset of data area from start of mb */
/* Must add data_off and mb_addr to get the address */
size_t data_off;
size_t data_size;
DECLARE_BITMAP(data_bitmap, DATA_BLOCK_BITS);
wait_queue_head_t wait_cmdr;
/* TODO should this be a mutex? */
spinlock_t cmdr_lock;
struct idr commands;
spinlock_t commands_lock;
struct timer_list timeout;
char dev_config[TCMU_CONFIG_LEN];
};
#define TCMU_DEV(_se_dev) container_of(_se_dev, struct tcmu_dev, se_dev)
#define CMDR_OFF sizeof(struct tcmu_mailbox)
struct tcmu_cmd {
struct se_cmd *se_cmd;
struct tcmu_dev *tcmu_dev;
uint16_t cmd_id;
/* Can't use se_cmd when cleaning up expired cmds, because if
cmd has been completed then accessing se_cmd is off limits */
DECLARE_BITMAP(data_bitmap, DATA_BLOCK_BITS);
unsigned long deadline;
#define TCMU_CMD_BIT_EXPIRED 0
unsigned long flags;
};
static struct kmem_cache *tcmu_cmd_cache;
/* multicast group */
enum tcmu_multicast_groups {
TCMU_MCGRP_CONFIG,
};
static const struct genl_multicast_group tcmu_mcgrps[] = {
[TCMU_MCGRP_CONFIG] = { .name = "config", },
};
/* Our generic netlink family */
static struct genl_family tcmu_genl_family __ro_after_init = {
.module = THIS_MODULE,
.hdrsize = 0,
.name = "TCM-USER",
.version = 1,
.maxattr = TCMU_ATTR_MAX,
.mcgrps = tcmu_mcgrps,
.n_mcgrps = ARRAY_SIZE(tcmu_mcgrps),
.netnsok = true,
};
static struct tcmu_cmd *tcmu_alloc_cmd(struct se_cmd *se_cmd)
{
struct se_device *se_dev = se_cmd->se_dev;
struct tcmu_dev *udev = TCMU_DEV(se_dev);
struct tcmu_cmd *tcmu_cmd;
int cmd_id;
tcmu_cmd = kmem_cache_zalloc(tcmu_cmd_cache, GFP_KERNEL);
if (!tcmu_cmd)
return NULL;
tcmu_cmd->se_cmd = se_cmd;
tcmu_cmd->tcmu_dev = udev;
tcmu_cmd->deadline = jiffies + msecs_to_jiffies(TCMU_TIME_OUT);
idr_preload(GFP_KERNEL);
spin_lock_irq(&udev->commands_lock);
cmd_id = idr_alloc(&udev->commands, tcmu_cmd, 0,
USHRT_MAX, GFP_NOWAIT);
spin_unlock_irq(&udev->commands_lock);
idr_preload_end();
if (cmd_id < 0) {
kmem_cache_free(tcmu_cmd_cache, tcmu_cmd);
return NULL;
}
tcmu_cmd->cmd_id = cmd_id;
return tcmu_cmd;
}
static inline void tcmu_flush_dcache_range(void *vaddr, size_t size)
{
unsigned long offset = offset_in_page(vaddr);
size = round_up(size+offset, PAGE_SIZE);
vaddr -= offset;
while (size) {
flush_dcache_page(virt_to_page(vaddr));
size -= PAGE_SIZE;
}
}
/*
* Some ring helper functions. We don't assume size is a power of 2 so
* we can't use circ_buf.h.
*/
static inline size_t spc_used(size_t head, size_t tail, size_t size)
{
int diff = head - tail;
if (diff >= 0)
return diff;
else
return size + diff;
}
static inline size_t spc_free(size_t head, size_t tail, size_t size)
{
/* Keep 1 byte unused or we can't tell full from empty */
return (size - spc_used(head, tail, size) - 1);
}
static inline size_t head_to_end(size_t head, size_t size)
{
return size - head;
}
static inline void new_iov(struct iovec **iov, int *iov_cnt,
struct tcmu_dev *udev)
{
struct iovec *iovec;
if (*iov_cnt != 0)
(*iov)++;
(*iov_cnt)++;
iovec = *iov;
memset(iovec, 0, sizeof(struct iovec));
}
#define UPDATE_HEAD(head, used, size) smp_store_release(&head, ((head % size) + used) % size)
/* offset is relative to mb_addr */
static inline size_t get_block_offset(struct tcmu_dev *dev,
int block, int remaining)
{
return dev->data_off + block * DATA_BLOCK_SIZE +
DATA_BLOCK_SIZE - remaining;
}
static inline size_t iov_tail(struct tcmu_dev *udev, struct iovec *iov)
{
return (size_t)iov->iov_base + iov->iov_len;
}
static void alloc_and_scatter_data_area(struct tcmu_dev *udev,
struct scatterlist *data_sg, unsigned int data_nents,
struct iovec **iov, int *iov_cnt, bool copy_data)
{
int i, block;
int block_remaining = 0;
void *from, *to;
size_t copy_bytes, to_offset;
struct scatterlist *sg;
for_each_sg(data_sg, sg, data_nents, i) {
int sg_remaining = sg->length;
from = kmap_atomic(sg_page(sg)) + sg->offset;
while (sg_remaining > 0) {
if (block_remaining == 0) {
block = find_first_zero_bit(udev->data_bitmap,
DATA_BLOCK_BITS);
block_remaining = DATA_BLOCK_SIZE;
set_bit(block, udev->data_bitmap);
}
copy_bytes = min_t(size_t, sg_remaining,
block_remaining);
to_offset = get_block_offset(udev, block,
block_remaining);
to = (void *)udev->mb_addr + to_offset;
if (*iov_cnt != 0 &&
to_offset == iov_tail(udev, *iov)) {
(*iov)->iov_len += copy_bytes;
} else {
new_iov(iov, iov_cnt, udev);
(*iov)->iov_base = (void __user *) to_offset;
(*iov)->iov_len = copy_bytes;
}
if (copy_data) {
memcpy(to, from + sg->length - sg_remaining,
copy_bytes);
tcmu_flush_dcache_range(to, copy_bytes);
}
sg_remaining -= copy_bytes;
block_remaining -= copy_bytes;
}
kunmap_atomic(from - sg->offset);
}
}
static void free_data_area(struct tcmu_dev *udev, struct tcmu_cmd *cmd)
{
bitmap_xor(udev->data_bitmap, udev->data_bitmap, cmd->data_bitmap,
DATA_BLOCK_BITS);
}
static void gather_data_area(struct tcmu_dev *udev, unsigned long *cmd_bitmap,
struct scatterlist *data_sg, unsigned int data_nents)
{
int i, block;
int block_remaining = 0;
void *from, *to;
size_t copy_bytes, from_offset;
struct scatterlist *sg;
for_each_sg(data_sg, sg, data_nents, i) {
int sg_remaining = sg->length;
to = kmap_atomic(sg_page(sg)) + sg->offset;
while (sg_remaining > 0) {
if (block_remaining == 0) {
block = find_first_bit(cmd_bitmap,
DATA_BLOCK_BITS);
block_remaining = DATA_BLOCK_SIZE;
clear_bit(block, cmd_bitmap);
}
copy_bytes = min_t(size_t, sg_remaining,
block_remaining);
from_offset = get_block_offset(udev, block,
block_remaining);
from = (void *) udev->mb_addr + from_offset;
tcmu_flush_dcache_range(from, copy_bytes);
memcpy(to + sg->length - sg_remaining, from,
copy_bytes);
sg_remaining -= copy_bytes;
block_remaining -= copy_bytes;
}
kunmap_atomic(to - sg->offset);
}
}
static inline size_t spc_bitmap_free(unsigned long *bitmap)
{
return DATA_BLOCK_SIZE * (DATA_BLOCK_BITS -
bitmap_weight(bitmap, DATA_BLOCK_BITS));
}
/*
* We can't queue a command until we have space available on the cmd ring *and*
* space available on the data area.
*
* Called with ring lock held.
*/
static bool is_ring_space_avail(struct tcmu_dev *udev, size_t cmd_size, size_t data_needed)
{
struct tcmu_mailbox *mb = udev->mb_addr;
size_t space, cmd_needed;
u32 cmd_head;
tcmu_flush_dcache_range(mb, sizeof(*mb));
cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
/*
* If cmd end-of-ring space is too small then we need space for a NOP plus
* original cmd - cmds are internally contiguous.
*/
if (head_to_end(cmd_head, udev->cmdr_size) >= cmd_size)
cmd_needed = cmd_size;
else
cmd_needed = cmd_size + head_to_end(cmd_head, udev->cmdr_size);
space = spc_free(cmd_head, udev->cmdr_last_cleaned, udev->cmdr_size);
if (space < cmd_needed) {
pr_debug("no cmd space: %u %u %u\n", cmd_head,
udev->cmdr_last_cleaned, udev->cmdr_size);
return false;
}
space = spc_bitmap_free(udev->data_bitmap);
if (space < data_needed) {
pr_debug("no data space: only %zu available, but ask for %zu\n",
space, data_needed);
return false;
}
return true;
}
static sense_reason_t
tcmu_queue_cmd_ring(struct tcmu_cmd *tcmu_cmd)
{
struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
size_t base_command_size, command_size;
struct tcmu_mailbox *mb;
struct tcmu_cmd_entry *entry;
struct iovec *iov;
int iov_cnt;
uint32_t cmd_head;
uint64_t cdb_off;
bool copy_to_data_area;
size_t data_length;
DECLARE_BITMAP(old_bitmap, DATA_BLOCK_BITS);
if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags))
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
/*
* Must be a certain minimum size for response sense info, but
* also may be larger if the iov array is large.
*
* We prepare way too many iovs for potential uses here, because it's
* expensive to tell how many regions are freed in the bitmap
*/
base_command_size = max(offsetof(struct tcmu_cmd_entry,
req.iov[se_cmd->t_bidi_data_nents +
se_cmd->t_data_nents]),
sizeof(struct tcmu_cmd_entry));
command_size = base_command_size
+ round_up(scsi_command_size(se_cmd->t_task_cdb), TCMU_OP_ALIGN_SIZE);
WARN_ON(command_size & (TCMU_OP_ALIGN_SIZE-1));
spin_lock_irq(&udev->cmdr_lock);
mb = udev->mb_addr;
cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
data_length = se_cmd->data_length;
if (se_cmd->se_cmd_flags & SCF_BIDI) {
BUG_ON(!(se_cmd->t_bidi_data_sg && se_cmd->t_bidi_data_nents));
data_length += se_cmd->t_bidi_data_sg->length;
}
if ((command_size > (udev->cmdr_size / 2)) ||
data_length > udev->data_size) {
pr_warn("TCMU: Request of size %zu/%zu is too big for %u/%zu "
"cmd ring/data area\n", command_size, data_length,
udev->cmdr_size, udev->data_size);
spin_unlock_irq(&udev->cmdr_lock);
return TCM_INVALID_CDB_FIELD;
}
while (!is_ring_space_avail(udev, command_size, data_length)) {
int ret;
DEFINE_WAIT(__wait);
prepare_to_wait(&udev->wait_cmdr, &__wait, TASK_INTERRUPTIBLE);
pr_debug("sleeping for ring space\n");
spin_unlock_irq(&udev->cmdr_lock);
ret = schedule_timeout(msecs_to_jiffies(TCMU_TIME_OUT));
finish_wait(&udev->wait_cmdr, &__wait);
if (!ret) {
pr_warn("tcmu: command timed out\n");
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
}
spin_lock_irq(&udev->cmdr_lock);
/* We dropped cmdr_lock, cmd_head is stale */
cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
}
/* Insert a PAD if end-of-ring space is too small */
if (head_to_end(cmd_head, udev->cmdr_size) < command_size) {
size_t pad_size = head_to_end(cmd_head, udev->cmdr_size);
entry = (void *) mb + CMDR_OFF + cmd_head;
tcmu_flush_dcache_range(entry, sizeof(*entry));
tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_PAD);
tcmu_hdr_set_len(&entry->hdr.len_op, pad_size);
entry->hdr.cmd_id = 0; /* not used for PAD */
entry->hdr.kflags = 0;
entry->hdr.uflags = 0;
UPDATE_HEAD(mb->cmd_head, pad_size, udev->cmdr_size);
cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
WARN_ON(cmd_head != 0);
}
entry = (void *) mb + CMDR_OFF + cmd_head;
tcmu_flush_dcache_range(entry, sizeof(*entry));
tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_CMD);
tcmu_hdr_set_len(&entry->hdr.len_op, command_size);
entry->hdr.cmd_id = tcmu_cmd->cmd_id;
entry->hdr.kflags = 0;
entry->hdr.uflags = 0;
bitmap_copy(old_bitmap, udev->data_bitmap, DATA_BLOCK_BITS);
/* Handle allocating space from the data area */
iov = &entry->req.iov[0];
iov_cnt = 0;
copy_to_data_area = (se_cmd->data_direction == DMA_TO_DEVICE
|| se_cmd->se_cmd_flags & SCF_BIDI);
alloc_and_scatter_data_area(udev, se_cmd->t_data_sg,
se_cmd->t_data_nents, &iov, &iov_cnt, copy_to_data_area);
entry->req.iov_cnt = iov_cnt;
entry->req.iov_dif_cnt = 0;
/* Handle BIDI commands */
iov_cnt = 0;
alloc_and_scatter_data_area(udev, se_cmd->t_bidi_data_sg,
se_cmd->t_bidi_data_nents, &iov, &iov_cnt, false);
entry->req.iov_bidi_cnt = iov_cnt;
/* cmd's data_bitmap is what changed in process */
bitmap_xor(tcmu_cmd->data_bitmap, old_bitmap, udev->data_bitmap,
DATA_BLOCK_BITS);
/* All offsets relative to mb_addr, not start of entry! */
cdb_off = CMDR_OFF + cmd_head + base_command_size;
memcpy((void *) mb + cdb_off, se_cmd->t_task_cdb, scsi_command_size(se_cmd->t_task_cdb));
entry->req.cdb_off = cdb_off;
tcmu_flush_dcache_range(entry, sizeof(*entry));
UPDATE_HEAD(mb->cmd_head, command_size, udev->cmdr_size);
tcmu_flush_dcache_range(mb, sizeof(*mb));
spin_unlock_irq(&udev->cmdr_lock);
/* TODO: only if FLUSH and FUA? */
uio_event_notify(&udev->uio_info);
mod_timer(&udev->timeout,
round_jiffies_up(jiffies + msecs_to_jiffies(TCMU_TIME_OUT)));
return TCM_NO_SENSE;
}
static sense_reason_t
tcmu_queue_cmd(struct se_cmd *se_cmd)
{
struct se_device *se_dev = se_cmd->se_dev;
struct tcmu_dev *udev = TCMU_DEV(se_dev);
struct tcmu_cmd *tcmu_cmd;
sense_reason_t ret;
tcmu_cmd = tcmu_alloc_cmd(se_cmd);
if (!tcmu_cmd)
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
ret = tcmu_queue_cmd_ring(tcmu_cmd);
if (ret != TCM_NO_SENSE) {
pr_err("TCMU: Could not queue command\n");
spin_lock_irq(&udev->commands_lock);
idr_remove(&udev->commands, tcmu_cmd->cmd_id);
spin_unlock_irq(&udev->commands_lock);
kmem_cache_free(tcmu_cmd_cache, tcmu_cmd);
}
return ret;
}
static void tcmu_handle_completion(struct tcmu_cmd *cmd, struct tcmu_cmd_entry *entry)
{
struct se_cmd *se_cmd = cmd->se_cmd;
struct tcmu_dev *udev = cmd->tcmu_dev;
if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) {
/*
* cmd has been completed already from timeout, just reclaim
* data area space and free cmd
*/
free_data_area(udev, cmd);
kmem_cache_free(tcmu_cmd_cache, cmd);
return;
}
if (entry->hdr.uflags & TCMU_UFLAG_UNKNOWN_OP) {
free_data_area(udev, cmd);
pr_warn("TCMU: Userspace set UNKNOWN_OP flag on se_cmd %p\n",
cmd->se_cmd);
entry->rsp.scsi_status = SAM_STAT_CHECK_CONDITION;
} else if (entry->rsp.scsi_status == SAM_STAT_CHECK_CONDITION) {
memcpy(se_cmd->sense_buffer, entry->rsp.sense_buffer,
se_cmd->scsi_sense_length);
free_data_area(udev, cmd);
} else if (se_cmd->se_cmd_flags & SCF_BIDI) {
DECLARE_BITMAP(bitmap, DATA_BLOCK_BITS);
/* Get Data-In buffer before clean up */
bitmap_copy(bitmap, cmd->data_bitmap, DATA_BLOCK_BITS);
gather_data_area(udev, bitmap,
se_cmd->t_bidi_data_sg, se_cmd->t_bidi_data_nents);
free_data_area(udev, cmd);
} else if (se_cmd->data_direction == DMA_FROM_DEVICE) {
DECLARE_BITMAP(bitmap, DATA_BLOCK_BITS);
bitmap_copy(bitmap, cmd->data_bitmap, DATA_BLOCK_BITS);
gather_data_area(udev, bitmap,
se_cmd->t_data_sg, se_cmd->t_data_nents);
free_data_area(udev, cmd);
} else if (se_cmd->data_direction == DMA_TO_DEVICE) {
free_data_area(udev, cmd);
} else if (se_cmd->data_direction != DMA_NONE) {
pr_warn("TCMU: data direction was %d!\n",
se_cmd->data_direction);
}
target_complete_cmd(cmd->se_cmd, entry->rsp.scsi_status);
cmd->se_cmd = NULL;
kmem_cache_free(tcmu_cmd_cache, cmd);
}
static unsigned int tcmu_handle_completions(struct tcmu_dev *udev)
{
struct tcmu_mailbox *mb;
unsigned long flags;
int handled = 0;
if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) {
pr_err("ring broken, not handling completions\n");
return 0;
}
spin_lock_irqsave(&udev->cmdr_lock, flags);
mb = udev->mb_addr;
tcmu_flush_dcache_range(mb, sizeof(*mb));
while (udev->cmdr_last_cleaned != ACCESS_ONCE(mb->cmd_tail)) {
struct tcmu_cmd_entry *entry = (void *) mb + CMDR_OFF + udev->cmdr_last_cleaned;
struct tcmu_cmd *cmd;
tcmu_flush_dcache_range(entry, sizeof(*entry));
if (tcmu_hdr_get_op(entry->hdr.len_op) == TCMU_OP_PAD) {
UPDATE_HEAD(udev->cmdr_last_cleaned,
tcmu_hdr_get_len(entry->hdr.len_op),
udev->cmdr_size);
continue;
}
WARN_ON(tcmu_hdr_get_op(entry->hdr.len_op) != TCMU_OP_CMD);
spin_lock(&udev->commands_lock);
cmd = idr_remove(&udev->commands, entry->hdr.cmd_id);
spin_unlock(&udev->commands_lock);
if (!cmd) {
pr_err("cmd_id not found, ring is broken\n");
set_bit(TCMU_DEV_BIT_BROKEN, &udev->flags);
break;
}
tcmu_handle_completion(cmd, entry);
UPDATE_HEAD(udev->cmdr_last_cleaned,
tcmu_hdr_get_len(entry->hdr.len_op),
udev->cmdr_size);
handled++;
}
if (mb->cmd_tail == mb->cmd_head)
del_timer(&udev->timeout); /* no more pending cmds */
spin_unlock_irqrestore(&udev->cmdr_lock, flags);
wake_up(&udev->wait_cmdr);
return handled;
}
static int tcmu_check_expired_cmd(int id, void *p, void *data)
{
struct tcmu_cmd *cmd = p;
if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags))
return 0;
if (!time_after(jiffies, cmd->deadline))
return 0;
set_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags);
target_complete_cmd(cmd->se_cmd, SAM_STAT_CHECK_CONDITION);
cmd->se_cmd = NULL;
return 0;
}
static void tcmu_device_timedout(unsigned long data)
{
struct tcmu_dev *udev = (struct tcmu_dev *)data;
unsigned long flags;
int handled;
handled = tcmu_handle_completions(udev);
pr_warn("%d completions handled from timeout\n", handled);
spin_lock_irqsave(&udev->commands_lock, flags);
idr_for_each(&udev->commands, tcmu_check_expired_cmd, NULL);
spin_unlock_irqrestore(&udev->commands_lock, flags);
/*
* We don't need to wakeup threads on wait_cmdr since they have their
* own timeout.
*/
}
static int tcmu_attach_hba(struct se_hba *hba, u32 host_id)
{
struct tcmu_hba *tcmu_hba;
tcmu_hba = kzalloc(sizeof(struct tcmu_hba), GFP_KERNEL);
if (!tcmu_hba)
return -ENOMEM;
tcmu_hba->host_id = host_id;
hba->hba_ptr = tcmu_hba;
return 0;
}
static void tcmu_detach_hba(struct se_hba *hba)
{
kfree(hba->hba_ptr);
hba->hba_ptr = NULL;
}
static struct se_device *tcmu_alloc_device(struct se_hba *hba, const char *name)
{
struct tcmu_dev *udev;
udev = kzalloc(sizeof(struct tcmu_dev), GFP_KERNEL);
if (!udev)
return NULL;
udev->name = kstrdup(name, GFP_KERNEL);
if (!udev->name) {
kfree(udev);
return NULL;
}
udev->hba = hba;
init_waitqueue_head(&udev->wait_cmdr);
spin_lock_init(&udev->cmdr_lock);
idr_init(&udev->commands);
spin_lock_init(&udev->commands_lock);
setup_timer(&udev->timeout, tcmu_device_timedout,
(unsigned long)udev);
return &udev->se_dev;
}
static int tcmu_irqcontrol(struct uio_info *info, s32 irq_on)
{
struct tcmu_dev *tcmu_dev = container_of(info, struct tcmu_dev, uio_info);
tcmu_handle_completions(tcmu_dev);
return 0;
}
/*
* mmap code from uio.c. Copied here because we want to hook mmap()
* and this stuff must come along.
*/
static int tcmu_find_mem_index(struct vm_area_struct *vma)
{
struct tcmu_dev *udev = vma->vm_private_data;
struct uio_info *info = &udev->uio_info;
if (vma->vm_pgoff < MAX_UIO_MAPS) {
if (info->mem[vma->vm_pgoff].size == 0)
return -1;
return (int)vma->vm_pgoff;
}
return -1;
}
static int tcmu_vma_fault(struct vm_fault *vmf)
{
struct tcmu_dev *udev = vmf->vma->vm_private_data;
struct uio_info *info = &udev->uio_info;
struct page *page;
unsigned long offset;
void *addr;
int mi = tcmu_find_mem_index(vmf->vma);
if (mi < 0)
return VM_FAULT_SIGBUS;
/*
* We need to subtract mi because userspace uses offset = N*PAGE_SIZE
* to use mem[N].
*/
offset = (vmf->pgoff - mi) << PAGE_SHIFT;
addr = (void *)(unsigned long)info->mem[mi].addr + offset;
if (info->mem[mi].memtype == UIO_MEM_LOGICAL)
page = virt_to_page(addr);
else
page = vmalloc_to_page(addr);
get_page(page);
vmf->page = page;
return 0;
}
static const struct vm_operations_struct tcmu_vm_ops = {
.fault = tcmu_vma_fault,
};
static int tcmu_mmap(struct uio_info *info, struct vm_area_struct *vma)
{
struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_ops = &tcmu_vm_ops;
vma->vm_private_data = udev;
/* Ensure the mmap is exactly the right size */
if (vma_pages(vma) != (TCMU_RING_SIZE >> PAGE_SHIFT))
return -EINVAL;
return 0;
}
static int tcmu_open(struct uio_info *info, struct inode *inode)
{
struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
/* O_EXCL not supported for char devs, so fake it? */
if (test_and_set_bit(TCMU_DEV_BIT_OPEN, &udev->flags))
return -EBUSY;
pr_debug("open\n");
return 0;
}
static int tcmu_release(struct uio_info *info, struct inode *inode)
{
struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
clear_bit(TCMU_DEV_BIT_OPEN, &udev->flags);
pr_debug("close\n");
return 0;
}
static int tcmu_netlink_event(enum tcmu_genl_cmd cmd, const char *name, int minor)
{
struct sk_buff *skb;
void *msg_header;
int ret = -ENOMEM;
skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return ret;
msg_header = genlmsg_put(skb, 0, 0, &tcmu_genl_family, 0, cmd);
if (!msg_header)
goto free_skb;
ret = nla_put_string(skb, TCMU_ATTR_DEVICE, name);
if (ret < 0)
goto free_skb;
ret = nla_put_u32(skb, TCMU_ATTR_MINOR, minor);
if (ret < 0)
goto free_skb;
genlmsg_end(skb, msg_header);
ret = genlmsg_multicast_allns(&tcmu_genl_family, skb, 0,
TCMU_MCGRP_CONFIG, GFP_KERNEL);
/* We don't care if no one is listening */
if (ret == -ESRCH)
ret = 0;
return ret;
free_skb:
nlmsg_free(skb);
return ret;
}
static int tcmu_configure_device(struct se_device *dev)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
struct tcmu_hba *hba = udev->hba->hba_ptr;
struct uio_info *info;
struct tcmu_mailbox *mb;
size_t size;
size_t used;
int ret = 0;
char *str;
info = &udev->uio_info;
size = snprintf(NULL, 0, "tcm-user/%u/%s/%s", hba->host_id, udev->name,
udev->dev_config);
size += 1; /* for \0 */
str = kmalloc(size, GFP_KERNEL);
if (!str)
return -ENOMEM;
used = snprintf(str, size, "tcm-user/%u/%s", hba->host_id, udev->name);
if (udev->dev_config[0])
snprintf(str + used, size - used, "/%s", udev->dev_config);
info->name = str;
udev->mb_addr = vzalloc(TCMU_RING_SIZE);
if (!udev->mb_addr) {
ret = -ENOMEM;
goto err_vzalloc;
}
/* mailbox fits in first part of CMDR space */
udev->cmdr_size = CMDR_SIZE - CMDR_OFF;
udev->data_off = CMDR_SIZE;
udev->data_size = TCMU_RING_SIZE - CMDR_SIZE;
mb = udev->mb_addr;
mb->version = TCMU_MAILBOX_VERSION;
mb->flags = TCMU_MAILBOX_FLAG_CAP_OOOC;
mb->cmdr_off = CMDR_OFF;
mb->cmdr_size = udev->cmdr_size;
WARN_ON(!PAGE_ALIGNED(udev->data_off));
WARN_ON(udev->data_size % PAGE_SIZE);
WARN_ON(udev->data_size % DATA_BLOCK_SIZE);
info->version = __stringify(TCMU_MAILBOX_VERSION);
info->mem[0].name = "tcm-user command & data buffer";
info->mem[0].addr = (phys_addr_t)(uintptr_t)udev->mb_addr;
info->mem[0].size = TCMU_RING_SIZE;
info->mem[0].memtype = UIO_MEM_VIRTUAL;
info->irqcontrol = tcmu_irqcontrol;
info->irq = UIO_IRQ_CUSTOM;
info->mmap = tcmu_mmap;
info->open = tcmu_open;
info->release = tcmu_release;
ret = uio_register_device(tcmu_root_device, info);
if (ret)
goto err_register;
/* User can set hw_block_size before enable the device */
if (dev->dev_attrib.hw_block_size == 0)
dev->dev_attrib.hw_block_size = 512;
/* Other attributes can be configured in userspace */
dev->dev_attrib.hw_max_sectors = 128;
dev->dev_attrib.hw_queue_depth = 128;
ret = tcmu_netlink_event(TCMU_CMD_ADDED_DEVICE, udev->uio_info.name,
udev->uio_info.uio_dev->minor);
if (ret)
goto err_netlink;
return 0;
err_netlink:
uio_unregister_device(&udev->uio_info);
err_register:
vfree(udev->mb_addr);
err_vzalloc:
kfree(info->name);
return ret;
}
static int tcmu_check_and_free_pending_cmd(struct tcmu_cmd *cmd)
{
if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) {
kmem_cache_free(tcmu_cmd_cache, cmd);
return 0;
}
return -EINVAL;
}
static void tcmu_dev_call_rcu(struct rcu_head *p)
{
struct se_device *dev = container_of(p, struct se_device, rcu_head);
struct tcmu_dev *udev = TCMU_DEV(dev);
kfree(udev);
}
static void tcmu_free_device(struct se_device *dev)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
struct tcmu_cmd *cmd;
bool all_expired = true;
int i;
del_timer_sync(&udev->timeout);
vfree(udev->mb_addr);
/* Upper layer should drain all requests before calling this */
spin_lock_irq(&udev->commands_lock);
idr_for_each_entry(&udev->commands, cmd, i) {
if (tcmu_check_and_free_pending_cmd(cmd) != 0)
all_expired = false;
}
idr_destroy(&udev->commands);
spin_unlock_irq(&udev->commands_lock);
WARN_ON(!all_expired);
/* Device was configured */
if (udev->uio_info.uio_dev) {
tcmu_netlink_event(TCMU_CMD_REMOVED_DEVICE, udev->uio_info.name,
udev->uio_info.uio_dev->minor);
uio_unregister_device(&udev->uio_info);
kfree(udev->uio_info.name);
kfree(udev->name);
}
call_rcu(&dev->rcu_head, tcmu_dev_call_rcu);
}
enum {
Opt_dev_config, Opt_dev_size, Opt_hw_block_size, Opt_err,
};
static match_table_t tokens = {
{Opt_dev_config, "dev_config=%s"},
{Opt_dev_size, "dev_size=%u"},
{Opt_hw_block_size, "hw_block_size=%u"},
{Opt_err, NULL}
};
static ssize_t tcmu_set_configfs_dev_params(struct se_device *dev,
const char *page, ssize_t count)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
char *orig, *ptr, *opts, *arg_p;
substring_t args[MAX_OPT_ARGS];
int ret = 0, token;
unsigned long tmp_ul;
opts = kstrdup(page, GFP_KERNEL);
if (!opts)
return -ENOMEM;
orig = opts;
while ((ptr = strsep(&opts, ",\n")) != NULL) {
if (!*ptr)
continue;
token = match_token(ptr, tokens, args);
switch (token) {
case Opt_dev_config:
if (match_strlcpy(udev->dev_config, &args[0],
TCMU_CONFIG_LEN) == 0) {
ret = -EINVAL;
break;
}
pr_debug("TCMU: Referencing Path: %s\n", udev->dev_config);
break;
case Opt_dev_size:
arg_p = match_strdup(&args[0]);
if (!arg_p) {
ret = -ENOMEM;
break;
}
ret = kstrtoul(arg_p, 0, (unsigned long *) &udev->dev_size);
kfree(arg_p);
if (ret < 0)
pr_err("kstrtoul() failed for dev_size=\n");
break;
case Opt_hw_block_size:
arg_p = match_strdup(&args[0]);
if (!arg_p) {
ret = -ENOMEM;
break;
}
ret = kstrtoul(arg_p, 0, &tmp_ul);
kfree(arg_p);
if (ret < 0) {
pr_err("kstrtoul() failed for hw_block_size=\n");
break;
}
if (!tmp_ul) {
pr_err("hw_block_size must be nonzero\n");
break;
}
dev->dev_attrib.hw_block_size = tmp_ul;
break;
default:
break;
}
}
kfree(orig);
return (!ret) ? count : ret;
}
static ssize_t tcmu_show_configfs_dev_params(struct se_device *dev, char *b)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
ssize_t bl = 0;
bl = sprintf(b + bl, "Config: %s ",
udev->dev_config[0] ? udev->dev_config : "NULL");
bl += sprintf(b + bl, "Size: %zu\n", udev->dev_size);
return bl;
}
static sector_t tcmu_get_blocks(struct se_device *dev)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
return div_u64(udev->dev_size - dev->dev_attrib.block_size,
dev->dev_attrib.block_size);
}
static sense_reason_t
tcmu_parse_cdb(struct se_cmd *cmd)
{
return passthrough_parse_cdb(cmd, tcmu_queue_cmd);
}
static const struct target_backend_ops tcmu_ops = {
.name = "user",
.owner = THIS_MODULE,
.transport_flags = TRANSPORT_FLAG_PASSTHROUGH,
.attach_hba = tcmu_attach_hba,
.detach_hba = tcmu_detach_hba,
.alloc_device = tcmu_alloc_device,
.configure_device = tcmu_configure_device,
.free_device = tcmu_free_device,
.parse_cdb = tcmu_parse_cdb,
.set_configfs_dev_params = tcmu_set_configfs_dev_params,
.show_configfs_dev_params = tcmu_show_configfs_dev_params,
.get_device_type = sbc_get_device_type,
.get_blocks = tcmu_get_blocks,
.tb_dev_attrib_attrs = passthrough_attrib_attrs,
};
static int __init tcmu_module_init(void)
{
int ret;
BUILD_BUG_ON((sizeof(struct tcmu_cmd_entry) % TCMU_OP_ALIGN_SIZE) != 0);
tcmu_cmd_cache = kmem_cache_create("tcmu_cmd_cache",
sizeof(struct tcmu_cmd),
__alignof__(struct tcmu_cmd),
0, NULL);
if (!tcmu_cmd_cache)
return -ENOMEM;
tcmu_root_device = root_device_register("tcm_user");
if (IS_ERR(tcmu_root_device)) {
ret = PTR_ERR(tcmu_root_device);
goto out_free_cache;
}
ret = genl_register_family(&tcmu_genl_family);
if (ret < 0) {
goto out_unreg_device;
}
ret = transport_backend_register(&tcmu_ops);
if (ret)
goto out_unreg_genl;
return 0;
out_unreg_genl:
genl_unregister_family(&tcmu_genl_family);
out_unreg_device:
root_device_unregister(tcmu_root_device);
out_free_cache:
kmem_cache_destroy(tcmu_cmd_cache);
return ret;
}
static void __exit tcmu_module_exit(void)
{
target_backend_unregister(&tcmu_ops);
genl_unregister_family(&tcmu_genl_family);
root_device_unregister(tcmu_root_device);
kmem_cache_destroy(tcmu_cmd_cache);
}
MODULE_DESCRIPTION("TCM USER subsystem plugin");
MODULE_AUTHOR("Shaohua Li <shli@kernel.org>");
MODULE_AUTHOR("Andy Grover <agrover@redhat.com>");
MODULE_LICENSE("GPL");
module_init(tcmu_module_init);
module_exit(tcmu_module_exit);