mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-22 16:06:04 -05:00
c6fb88a527
This commit adds a workqueue dedicated for isochronous context processing. The workqueue is allocated per instance of fw_card structure to satisfy the following characteristics descending from 1394 OHCI specification: In 1394 OHCI specification, memory pages are reserved to each isochronous context dedicated to DMA transmission. It allows to operate these per-context pages concurrently. Software can schedule hardware interrupt for several isochronous context to the same cycle, thus WQ_UNBOUND is specified. Additionally, it is sleepable to operate the content of pages, thus WQ_BH is not used. The isochronous context delivers the packets with time stamp, thus WQ_HIGHPRI is specified for semi real-time data such as IEC 61883-1/6 protocol implemented by ALSA firewire stack. The isochronous context is not used by the implementation of SCSI over IEEE1394 protocol (sbp2), thus WQ_MEM_RECLAIM is not specified. It is useful for users to adjust cpu affinity of the workqueue depending on their work loads, thus WQ_SYS is specified to expose the attributes to user space. Tested-by: Edmund Raile <edmund.raile@protonmail.com> Link: https://lore.kernel.org/r/20240904125155.461886-2-o-takashi@sakamocchi.jp Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
787 lines
23 KiB
C
787 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
|
|
*/
|
|
|
|
#include <linux/bug.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/crc-itu-t.h>
|
|
#include <linux/device.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/firewire.h>
|
|
#include <linux/firewire-constants.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/kref.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/workqueue.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include "core.h"
|
|
#include <trace/events/firewire.h>
|
|
|
|
#define define_fw_printk_level(func, kern_level) \
|
|
void func(const struct fw_card *card, const char *fmt, ...) \
|
|
{ \
|
|
struct va_format vaf; \
|
|
va_list args; \
|
|
\
|
|
va_start(args, fmt); \
|
|
vaf.fmt = fmt; \
|
|
vaf.va = &args; \
|
|
printk(kern_level KBUILD_MODNAME " %s: %pV", \
|
|
dev_name(card->device), &vaf); \
|
|
va_end(args); \
|
|
}
|
|
define_fw_printk_level(fw_err, KERN_ERR);
|
|
define_fw_printk_level(fw_notice, KERN_NOTICE);
|
|
|
|
int fw_compute_block_crc(__be32 *block)
|
|
{
|
|
int length;
|
|
u16 crc;
|
|
|
|
length = (be32_to_cpu(block[0]) >> 16) & 0xff;
|
|
crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
|
|
*block |= cpu_to_be32(crc);
|
|
|
|
return length;
|
|
}
|
|
|
|
static DEFINE_MUTEX(card_mutex);
|
|
static LIST_HEAD(card_list);
|
|
|
|
static LIST_HEAD(descriptor_list);
|
|
static int descriptor_count;
|
|
|
|
static __be32 tmp_config_rom[256];
|
|
/* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
|
|
static size_t config_rom_length = 1 + 4 + 1 + 1;
|
|
|
|
#define BIB_CRC(v) ((v) << 0)
|
|
#define BIB_CRC_LENGTH(v) ((v) << 16)
|
|
#define BIB_INFO_LENGTH(v) ((v) << 24)
|
|
#define BIB_BUS_NAME 0x31333934 /* "1394" */
|
|
#define BIB_LINK_SPEED(v) ((v) << 0)
|
|
#define BIB_GENERATION(v) ((v) << 4)
|
|
#define BIB_MAX_ROM(v) ((v) << 8)
|
|
#define BIB_MAX_RECEIVE(v) ((v) << 12)
|
|
#define BIB_CYC_CLK_ACC(v) ((v) << 16)
|
|
#define BIB_PMC ((1) << 27)
|
|
#define BIB_BMC ((1) << 28)
|
|
#define BIB_ISC ((1) << 29)
|
|
#define BIB_CMC ((1) << 30)
|
|
#define BIB_IRMC ((1) << 31)
|
|
#define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
|
|
|
|
/*
|
|
* IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
|
|
* but we have to make it longer because there are many devices whose firmware
|
|
* is just too slow for that.
|
|
*/
|
|
#define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
|
|
|
|
#define CANON_OUI 0x000085
|
|
|
|
static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
|
|
{
|
|
struct fw_descriptor *desc;
|
|
int i, j, k, length;
|
|
|
|
/*
|
|
* Initialize contents of config rom buffer. On the OHCI
|
|
* controller, block reads to the config rom accesses the host
|
|
* memory, but quadlet read access the hardware bus info block
|
|
* registers. That's just crack, but it means we should make
|
|
* sure the contents of bus info block in host memory matches
|
|
* the version stored in the OHCI registers.
|
|
*/
|
|
|
|
config_rom[0] = cpu_to_be32(
|
|
BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
|
|
config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
|
|
config_rom[2] = cpu_to_be32(
|
|
BIB_LINK_SPEED(card->link_speed) |
|
|
BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
|
|
BIB_MAX_ROM(2) |
|
|
BIB_MAX_RECEIVE(card->max_receive) |
|
|
BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
|
|
config_rom[3] = cpu_to_be32(card->guid >> 32);
|
|
config_rom[4] = cpu_to_be32(card->guid);
|
|
|
|
/* Generate root directory. */
|
|
config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
|
|
i = 7;
|
|
j = 7 + descriptor_count;
|
|
|
|
/* Generate root directory entries for descriptors. */
|
|
list_for_each_entry (desc, &descriptor_list, link) {
|
|
if (desc->immediate > 0)
|
|
config_rom[i++] = cpu_to_be32(desc->immediate);
|
|
config_rom[i] = cpu_to_be32(desc->key | (j - i));
|
|
i++;
|
|
j += desc->length;
|
|
}
|
|
|
|
/* Update root directory length. */
|
|
config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
|
|
|
|
/* End of root directory, now copy in descriptors. */
|
|
list_for_each_entry (desc, &descriptor_list, link) {
|
|
for (k = 0; k < desc->length; k++)
|
|
config_rom[i + k] = cpu_to_be32(desc->data[k]);
|
|
i += desc->length;
|
|
}
|
|
|
|
/* Calculate CRCs for all blocks in the config rom. This
|
|
* assumes that CRC length and info length are identical for
|
|
* the bus info block, which is always the case for this
|
|
* implementation. */
|
|
for (i = 0; i < j; i += length + 1)
|
|
length = fw_compute_block_crc(config_rom + i);
|
|
|
|
WARN_ON(j != config_rom_length);
|
|
}
|
|
|
|
static void update_config_roms(void)
|
|
{
|
|
struct fw_card *card;
|
|
|
|
list_for_each_entry (card, &card_list, link) {
|
|
generate_config_rom(card, tmp_config_rom);
|
|
card->driver->set_config_rom(card, tmp_config_rom,
|
|
config_rom_length);
|
|
}
|
|
}
|
|
|
|
static size_t required_space(struct fw_descriptor *desc)
|
|
{
|
|
/* descriptor + entry into root dir + optional immediate entry */
|
|
return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
|
|
}
|
|
|
|
int fw_core_add_descriptor(struct fw_descriptor *desc)
|
|
{
|
|
size_t i;
|
|
|
|
/*
|
|
* Check descriptor is valid; the length of all blocks in the
|
|
* descriptor has to add up to exactly the length of the
|
|
* block.
|
|
*/
|
|
i = 0;
|
|
while (i < desc->length)
|
|
i += (desc->data[i] >> 16) + 1;
|
|
|
|
if (i != desc->length)
|
|
return -EINVAL;
|
|
|
|
guard(mutex)(&card_mutex);
|
|
|
|
if (config_rom_length + required_space(desc) > 256)
|
|
return -EBUSY;
|
|
|
|
list_add_tail(&desc->link, &descriptor_list);
|
|
config_rom_length += required_space(desc);
|
|
descriptor_count++;
|
|
if (desc->immediate > 0)
|
|
descriptor_count++;
|
|
update_config_roms();
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fw_core_add_descriptor);
|
|
|
|
void fw_core_remove_descriptor(struct fw_descriptor *desc)
|
|
{
|
|
guard(mutex)(&card_mutex);
|
|
|
|
list_del(&desc->link);
|
|
config_rom_length -= required_space(desc);
|
|
descriptor_count--;
|
|
if (desc->immediate > 0)
|
|
descriptor_count--;
|
|
update_config_roms();
|
|
}
|
|
EXPORT_SYMBOL(fw_core_remove_descriptor);
|
|
|
|
static int reset_bus(struct fw_card *card, bool short_reset)
|
|
{
|
|
int reg = short_reset ? 5 : 1;
|
|
int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
|
|
|
|
trace_bus_reset_initiate(card->index, card->generation, short_reset);
|
|
|
|
return card->driver->update_phy_reg(card, reg, 0, bit);
|
|
}
|
|
|
|
void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
|
|
{
|
|
trace_bus_reset_schedule(card->index, card->generation, short_reset);
|
|
|
|
/* We don't try hard to sort out requests of long vs. short resets. */
|
|
card->br_short = short_reset;
|
|
|
|
/* Use an arbitrary short delay to combine multiple reset requests. */
|
|
fw_card_get(card);
|
|
if (!queue_delayed_work(fw_workqueue, &card->br_work,
|
|
delayed ? DIV_ROUND_UP(HZ, 100) : 0))
|
|
fw_card_put(card);
|
|
}
|
|
EXPORT_SYMBOL(fw_schedule_bus_reset);
|
|
|
|
static void br_work(struct work_struct *work)
|
|
{
|
|
struct fw_card *card = container_of(work, struct fw_card, br_work.work);
|
|
|
|
/* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
|
|
if (card->reset_jiffies != 0 &&
|
|
time_before64(get_jiffies_64(), card->reset_jiffies + 2 * HZ)) {
|
|
trace_bus_reset_postpone(card->index, card->generation, card->br_short);
|
|
|
|
if (!queue_delayed_work(fw_workqueue, &card->br_work, 2 * HZ))
|
|
fw_card_put(card);
|
|
return;
|
|
}
|
|
|
|
fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
|
|
FW_PHY_CONFIG_CURRENT_GAP_COUNT);
|
|
reset_bus(card, card->br_short);
|
|
fw_card_put(card);
|
|
}
|
|
|
|
static void allocate_broadcast_channel(struct fw_card *card, int generation)
|
|
{
|
|
int channel, bandwidth = 0;
|
|
|
|
if (!card->broadcast_channel_allocated) {
|
|
fw_iso_resource_manage(card, generation, 1ULL << 31,
|
|
&channel, &bandwidth, true);
|
|
if (channel != 31) {
|
|
fw_notice(card, "failed to allocate broadcast channel\n");
|
|
return;
|
|
}
|
|
card->broadcast_channel_allocated = true;
|
|
}
|
|
|
|
device_for_each_child(card->device, (void *)(long)generation,
|
|
fw_device_set_broadcast_channel);
|
|
}
|
|
|
|
static const char gap_count_table[] = {
|
|
63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
|
|
};
|
|
|
|
void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
|
|
{
|
|
fw_card_get(card);
|
|
if (!schedule_delayed_work(&card->bm_work, delay))
|
|
fw_card_put(card);
|
|
}
|
|
|
|
static void bm_work(struct work_struct *work)
|
|
{
|
|
struct fw_card *card = container_of(work, struct fw_card, bm_work.work);
|
|
struct fw_device *root_device, *irm_device;
|
|
struct fw_node *root_node;
|
|
int root_id, new_root_id, irm_id, bm_id, local_id;
|
|
int gap_count, generation, grace, rcode;
|
|
bool do_reset = false;
|
|
bool root_device_is_running;
|
|
bool root_device_is_cmc;
|
|
bool irm_is_1394_1995_only;
|
|
bool keep_this_irm;
|
|
__be32 transaction_data[2];
|
|
|
|
spin_lock_irq(&card->lock);
|
|
|
|
if (card->local_node == NULL) {
|
|
spin_unlock_irq(&card->lock);
|
|
goto out_put_card;
|
|
}
|
|
|
|
generation = card->generation;
|
|
|
|
root_node = card->root_node;
|
|
fw_node_get(root_node);
|
|
root_device = root_node->data;
|
|
root_device_is_running = root_device &&
|
|
atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
|
|
root_device_is_cmc = root_device && root_device->cmc;
|
|
|
|
irm_device = card->irm_node->data;
|
|
irm_is_1394_1995_only = irm_device && irm_device->config_rom &&
|
|
(irm_device->config_rom[2] & 0x000000f0) == 0;
|
|
|
|
/* Canon MV5i works unreliably if it is not root node. */
|
|
keep_this_irm = irm_device && irm_device->config_rom &&
|
|
irm_device->config_rom[3] >> 8 == CANON_OUI;
|
|
|
|
root_id = root_node->node_id;
|
|
irm_id = card->irm_node->node_id;
|
|
local_id = card->local_node->node_id;
|
|
|
|
grace = time_after64(get_jiffies_64(),
|
|
card->reset_jiffies + DIV_ROUND_UP(HZ, 8));
|
|
|
|
if ((is_next_generation(generation, card->bm_generation) &&
|
|
!card->bm_abdicate) ||
|
|
(card->bm_generation != generation && grace)) {
|
|
/*
|
|
* This first step is to figure out who is IRM and
|
|
* then try to become bus manager. If the IRM is not
|
|
* well defined (e.g. does not have an active link
|
|
* layer or does not responds to our lock request, we
|
|
* will have to do a little vigilante bus management.
|
|
* In that case, we do a goto into the gap count logic
|
|
* so that when we do the reset, we still optimize the
|
|
* gap count. That could well save a reset in the
|
|
* next generation.
|
|
*/
|
|
|
|
if (!card->irm_node->link_on) {
|
|
new_root_id = local_id;
|
|
fw_notice(card, "%s, making local node (%02x) root\n",
|
|
"IRM has link off", new_root_id);
|
|
goto pick_me;
|
|
}
|
|
|
|
if (irm_is_1394_1995_only && !keep_this_irm) {
|
|
new_root_id = local_id;
|
|
fw_notice(card, "%s, making local node (%02x) root\n",
|
|
"IRM is not 1394a compliant", new_root_id);
|
|
goto pick_me;
|
|
}
|
|
|
|
transaction_data[0] = cpu_to_be32(0x3f);
|
|
transaction_data[1] = cpu_to_be32(local_id);
|
|
|
|
spin_unlock_irq(&card->lock);
|
|
|
|
rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
|
|
irm_id, generation, SCODE_100,
|
|
CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
|
|
transaction_data, 8);
|
|
|
|
if (rcode == RCODE_GENERATION)
|
|
/* Another bus reset, BM work has been rescheduled. */
|
|
goto out;
|
|
|
|
bm_id = be32_to_cpu(transaction_data[0]);
|
|
|
|
scoped_guard(spinlock_irq, &card->lock) {
|
|
if (rcode == RCODE_COMPLETE && generation == card->generation)
|
|
card->bm_node_id =
|
|
bm_id == 0x3f ? local_id : 0xffc0 | bm_id;
|
|
}
|
|
|
|
if (rcode == RCODE_COMPLETE && bm_id != 0x3f) {
|
|
/* Somebody else is BM. Only act as IRM. */
|
|
if (local_id == irm_id)
|
|
allocate_broadcast_channel(card, generation);
|
|
|
|
goto out;
|
|
}
|
|
|
|
if (rcode == RCODE_SEND_ERROR) {
|
|
/*
|
|
* We have been unable to send the lock request due to
|
|
* some local problem. Let's try again later and hope
|
|
* that the problem has gone away by then.
|
|
*/
|
|
fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
|
|
goto out;
|
|
}
|
|
|
|
spin_lock_irq(&card->lock);
|
|
|
|
if (rcode != RCODE_COMPLETE && !keep_this_irm) {
|
|
/*
|
|
* The lock request failed, maybe the IRM
|
|
* isn't really IRM capable after all. Let's
|
|
* do a bus reset and pick the local node as
|
|
* root, and thus, IRM.
|
|
*/
|
|
new_root_id = local_id;
|
|
fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
|
|
fw_rcode_string(rcode), new_root_id);
|
|
goto pick_me;
|
|
}
|
|
} else if (card->bm_generation != generation) {
|
|
/*
|
|
* We weren't BM in the last generation, and the last
|
|
* bus reset is less than 125ms ago. Reschedule this job.
|
|
*/
|
|
spin_unlock_irq(&card->lock);
|
|
fw_schedule_bm_work(card, DIV_ROUND_UP(HZ, 8));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We're bus manager for this generation, so next step is to
|
|
* make sure we have an active cycle master and do gap count
|
|
* optimization.
|
|
*/
|
|
card->bm_generation = generation;
|
|
|
|
if (card->gap_count == 0) {
|
|
/*
|
|
* If self IDs have inconsistent gap counts, do a
|
|
* bus reset ASAP. The config rom read might never
|
|
* complete, so don't wait for it. However, still
|
|
* send a PHY configuration packet prior to the
|
|
* bus reset. The PHY configuration packet might
|
|
* fail, but 1394-2008 8.4.5.2 explicitly permits
|
|
* it in this case, so it should be safe to try.
|
|
*/
|
|
new_root_id = local_id;
|
|
/*
|
|
* We must always send a bus reset if the gap count
|
|
* is inconsistent, so bypass the 5-reset limit.
|
|
*/
|
|
card->bm_retries = 0;
|
|
} else if (root_device == NULL) {
|
|
/*
|
|
* Either link_on is false, or we failed to read the
|
|
* config rom. In either case, pick another root.
|
|
*/
|
|
new_root_id = local_id;
|
|
} else if (!root_device_is_running) {
|
|
/*
|
|
* If we haven't probed this device yet, bail out now
|
|
* and let's try again once that's done.
|
|
*/
|
|
spin_unlock_irq(&card->lock);
|
|
goto out;
|
|
} else if (root_device_is_cmc) {
|
|
/*
|
|
* We will send out a force root packet for this
|
|
* node as part of the gap count optimization.
|
|
*/
|
|
new_root_id = root_id;
|
|
} else {
|
|
/*
|
|
* Current root has an active link layer and we
|
|
* successfully read the config rom, but it's not
|
|
* cycle master capable.
|
|
*/
|
|
new_root_id = local_id;
|
|
}
|
|
|
|
pick_me:
|
|
/*
|
|
* Pick a gap count from 1394a table E-1. The table doesn't cover
|
|
* the typically much larger 1394b beta repeater delays though.
|
|
*/
|
|
if (!card->beta_repeaters_present &&
|
|
root_node->max_hops < ARRAY_SIZE(gap_count_table))
|
|
gap_count = gap_count_table[root_node->max_hops];
|
|
else
|
|
gap_count = 63;
|
|
|
|
/*
|
|
* Finally, figure out if we should do a reset or not. If we have
|
|
* done less than 5 resets with the same physical topology and we
|
|
* have either a new root or a new gap count setting, let's do it.
|
|
*/
|
|
|
|
if (card->bm_retries++ < 5 &&
|
|
(card->gap_count != gap_count || new_root_id != root_id))
|
|
do_reset = true;
|
|
|
|
spin_unlock_irq(&card->lock);
|
|
|
|
if (do_reset) {
|
|
fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
|
|
new_root_id, gap_count);
|
|
fw_send_phy_config(card, new_root_id, generation, gap_count);
|
|
/*
|
|
* Where possible, use a short bus reset to minimize
|
|
* disruption to isochronous transfers. But in the event
|
|
* of a gap count inconsistency, use a long bus reset.
|
|
*
|
|
* As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
|
|
* may set different gap counts after a bus reset. On a mixed
|
|
* 1394/1394a bus, a short bus reset can get doubled. Some
|
|
* nodes may treat the double reset as one bus reset and others
|
|
* may treat it as two, causing a gap count inconsistency
|
|
* again. Using a long bus reset prevents this.
|
|
*/
|
|
reset_bus(card, card->gap_count != 0);
|
|
/* Will allocate broadcast channel after the reset. */
|
|
goto out;
|
|
}
|
|
|
|
if (root_device_is_cmc) {
|
|
/*
|
|
* Make sure that the cycle master sends cycle start packets.
|
|
*/
|
|
transaction_data[0] = cpu_to_be32(CSR_STATE_BIT_CMSTR);
|
|
rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
|
|
root_id, generation, SCODE_100,
|
|
CSR_REGISTER_BASE + CSR_STATE_SET,
|
|
transaction_data, 4);
|
|
if (rcode == RCODE_GENERATION)
|
|
goto out;
|
|
}
|
|
|
|
if (local_id == irm_id)
|
|
allocate_broadcast_channel(card, generation);
|
|
|
|
out:
|
|
fw_node_put(root_node);
|
|
out_put_card:
|
|
fw_card_put(card);
|
|
}
|
|
|
|
void fw_card_initialize(struct fw_card *card,
|
|
const struct fw_card_driver *driver,
|
|
struct device *device)
|
|
{
|
|
static atomic_t index = ATOMIC_INIT(-1);
|
|
|
|
card->index = atomic_inc_return(&index);
|
|
card->driver = driver;
|
|
card->device = device;
|
|
card->current_tlabel = 0;
|
|
card->tlabel_mask = 0;
|
|
card->split_timeout_hi = DEFAULT_SPLIT_TIMEOUT / 8000;
|
|
card->split_timeout_lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
|
|
card->split_timeout_cycles = DEFAULT_SPLIT_TIMEOUT;
|
|
card->split_timeout_jiffies =
|
|
DIV_ROUND_UP(DEFAULT_SPLIT_TIMEOUT * HZ, 8000);
|
|
card->color = 0;
|
|
card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
|
|
|
|
kref_init(&card->kref);
|
|
init_completion(&card->done);
|
|
INIT_LIST_HEAD(&card->transaction_list);
|
|
INIT_LIST_HEAD(&card->phy_receiver_list);
|
|
spin_lock_init(&card->lock);
|
|
|
|
card->local_node = NULL;
|
|
|
|
INIT_DELAYED_WORK(&card->br_work, br_work);
|
|
INIT_DELAYED_WORK(&card->bm_work, bm_work);
|
|
}
|
|
EXPORT_SYMBOL(fw_card_initialize);
|
|
|
|
int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
|
|
unsigned int supported_isoc_contexts)
|
|
{
|
|
struct workqueue_struct *isoc_wq;
|
|
int ret;
|
|
|
|
// This workqueue should be:
|
|
// * != WQ_BH Sleepable.
|
|
// * == WQ_UNBOUND Any core can process data for isoc context. The
|
|
// implementation of unit protocol could consumes the core
|
|
// longer somehow.
|
|
// * != WQ_MEM_RECLAIM Not used for any backend of block device.
|
|
// * == WQ_FREEZABLE Isochronous communication is at regular interval in real
|
|
// time, thus should be drained if possible at freeze phase.
|
|
// * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
|
|
// * == WQ_SYSFS Parameters are available via sysfs.
|
|
// * max_active == n_it + n_ir A hardIRQ could notify events for multiple isochronous
|
|
// contexts if they are scheduled to the same cycle.
|
|
isoc_wq = alloc_workqueue("firewire-isoc-card%u",
|
|
WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
|
|
supported_isoc_contexts, card->index);
|
|
if (!isoc_wq)
|
|
return -ENOMEM;
|
|
|
|
card->max_receive = max_receive;
|
|
card->link_speed = link_speed;
|
|
card->guid = guid;
|
|
|
|
guard(mutex)(&card_mutex);
|
|
|
|
generate_config_rom(card, tmp_config_rom);
|
|
ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
|
|
if (ret < 0) {
|
|
destroy_workqueue(isoc_wq);
|
|
return ret;
|
|
}
|
|
|
|
card->isoc_wq = isoc_wq;
|
|
list_add_tail(&card->link, &card_list);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(fw_card_add);
|
|
|
|
/*
|
|
* The next few functions implement a dummy driver that is used once a card
|
|
* driver shuts down an fw_card. This allows the driver to cleanly unload,
|
|
* as all IO to the card will be handled (and failed) by the dummy driver
|
|
* instead of calling into the module. Only functions for iso context
|
|
* shutdown still need to be provided by the card driver.
|
|
*
|
|
* .read/write_csr() should never be called anymore after the dummy driver
|
|
* was bound since they are only used within request handler context.
|
|
* .set_config_rom() is never called since the card is taken out of card_list
|
|
* before switching to the dummy driver.
|
|
*/
|
|
|
|
static int dummy_read_phy_reg(struct fw_card *card, int address)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int dummy_update_phy_reg(struct fw_card *card, int address,
|
|
int clear_bits, int set_bits)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
|
|
{
|
|
packet->callback(packet, card, RCODE_CANCELLED);
|
|
}
|
|
|
|
static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
|
|
{
|
|
packet->callback(packet, card, RCODE_CANCELLED);
|
|
}
|
|
|
|
static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
|
|
{
|
|
return -ENOENT;
|
|
}
|
|
|
|
static int dummy_enable_phys_dma(struct fw_card *card,
|
|
int node_id, int generation)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
|
|
int type, int channel, size_t header_size)
|
|
{
|
|
return ERR_PTR(-ENODEV);
|
|
}
|
|
|
|
static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
|
|
{
|
|
}
|
|
|
|
static int dummy_start_iso(struct fw_iso_context *ctx,
|
|
s32 cycle, u32 sync, u32 tags)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
|
|
struct fw_iso_buffer *buffer, unsigned long payload)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
|
|
{
|
|
}
|
|
|
|
static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static const struct fw_card_driver dummy_driver_template = {
|
|
.read_phy_reg = dummy_read_phy_reg,
|
|
.update_phy_reg = dummy_update_phy_reg,
|
|
.send_request = dummy_send_request,
|
|
.send_response = dummy_send_response,
|
|
.cancel_packet = dummy_cancel_packet,
|
|
.enable_phys_dma = dummy_enable_phys_dma,
|
|
.read_csr = dummy_read_csr,
|
|
.write_csr = dummy_write_csr,
|
|
.allocate_iso_context = dummy_allocate_iso_context,
|
|
.start_iso = dummy_start_iso,
|
|
.set_iso_channels = dummy_set_iso_channels,
|
|
.queue_iso = dummy_queue_iso,
|
|
.flush_queue_iso = dummy_flush_queue_iso,
|
|
.flush_iso_completions = dummy_flush_iso_completions,
|
|
};
|
|
|
|
void fw_card_release(struct kref *kref)
|
|
{
|
|
struct fw_card *card = container_of(kref, struct fw_card, kref);
|
|
|
|
complete(&card->done);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fw_card_release);
|
|
|
|
void fw_core_remove_card(struct fw_card *card)
|
|
{
|
|
struct fw_card_driver dummy_driver = dummy_driver_template;
|
|
|
|
might_sleep();
|
|
|
|
card->driver->update_phy_reg(card, 4,
|
|
PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
|
|
fw_schedule_bus_reset(card, false, true);
|
|
|
|
scoped_guard(mutex, &card_mutex)
|
|
list_del_init(&card->link);
|
|
|
|
/* Switch off most of the card driver interface. */
|
|
dummy_driver.free_iso_context = card->driver->free_iso_context;
|
|
dummy_driver.stop_iso = card->driver->stop_iso;
|
|
card->driver = &dummy_driver;
|
|
drain_workqueue(card->isoc_wq);
|
|
|
|
scoped_guard(spinlock_irqsave, &card->lock)
|
|
fw_destroy_nodes(card);
|
|
|
|
/* Wait for all users, especially device workqueue jobs, to finish. */
|
|
fw_card_put(card);
|
|
wait_for_completion(&card->done);
|
|
|
|
destroy_workqueue(card->isoc_wq);
|
|
|
|
WARN_ON(!list_empty(&card->transaction_list));
|
|
}
|
|
EXPORT_SYMBOL(fw_core_remove_card);
|
|
|
|
/**
|
|
* fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
|
|
* for controller card.
|
|
* @card: The instance of card for 1394 OHCI controller.
|
|
* @cycle_time: The mutual reference to value of cycle time for the read operation.
|
|
*
|
|
* Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
|
|
* controller card. This function accesses the region without any lock primitives or IRQ mask.
|
|
* When returning successfully, the content of @value argument has value aligned to host endianness,
|
|
* formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
|
|
*
|
|
* Context: Any context.
|
|
* Return:
|
|
* * 0 - Read successfully.
|
|
* * -ENODEV - The controller is unavailable due to being removed or unbound.
|
|
*/
|
|
int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
|
|
{
|
|
if (card->driver->read_csr == dummy_read_csr)
|
|
return -ENODEV;
|
|
|
|
// It's possible to switch to dummy driver between the above and the below. This is the best
|
|
// effort to return -ENODEV.
|
|
*cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
|