1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-26 02:25:00 -05:00
linux/mm/damon/dbgfs.c
SeongJae Park 8b9b0d335a mm/damon/core: allow non-exclusive DAMON start/stop
Patch series "Introduce DAMON sysfs interface", v3.

Introduction
============

DAMON's debugfs-based user interface (DAMON_DBGFS) served very well, so
far.  However, it unnecessarily depends on debugfs, while DAMON is not
aimed to be used for only debugging.  Also, the interface receives
multiple values via one file.  For example, schemes file receives 18
values.  As a result, it is inefficient, hard to be used, and difficult to
be extended.  Especially, keeping backward compatibility of user space
tools is getting only challenging.  It would be better to implement
another reliable and flexible interface and deprecate DAMON_DBGFS in long
term.

For the reason, this patchset introduces a sysfs-based new user interface
of DAMON.  The idea of the new interface is, using directory hierarchies
and having one dedicated file for each value.  For a short example, users
can do the virtual address monitoring via the interface as below:

    # cd /sys/kernel/mm/damon/admin/
    # echo 1 > kdamonds/nr_kdamonds
    # echo 1 > kdamonds/0/contexts/nr_contexts
    # echo vaddr > kdamonds/0/contexts/0/operations
    # echo 1 > kdamonds/0/contexts/0/targets/nr_targets
    # echo $(pidof <workload>) > kdamonds/0/contexts/0/targets/0/pid_target
    # echo on > kdamonds/0/state

A brief representation of the files hierarchy of DAMON sysfs interface is
as below.  Childs are represented with indentation, directories are having
'/' suffix, and files in each directory are separated by comma.

    /sys/kernel/mm/damon/admin
    │ kdamonds/nr_kdamonds
    │ │ 0/state,pid
    │ │ │ contexts/nr_contexts
    │ │ │ │ 0/operations
    │ │ │ │ │ monitoring_attrs/
    │ │ │ │ │ │ intervals/sample_us,aggr_us,update_us
    │ │ │ │ │ │ nr_regions/min,max
    │ │ │ │ │ targets/nr_targets
    │ │ │ │ │ │ 0/pid_target
    │ │ │ │ │ │ │ regions/nr_regions
    │ │ │ │ │ │ │ │ 0/start,end
    │ │ │ │ │ │ │ │ ...
    │ │ │ │ │ │ ...
    │ │ │ │ │ schemes/nr_schemes
    │ │ │ │ │ │ 0/action
    │ │ │ │ │ │ │ access_pattern/
    │ │ │ │ │ │ │ │ sz/min,max
    │ │ │ │ │ │ │ │ nr_accesses/min,max
    │ │ │ │ │ │ │ │ age/min,max
    │ │ │ │ │ │ │ quotas/ms,bytes,reset_interval_ms
    │ │ │ │ │ │ │ │ weights/sz_permil,nr_accesses_permil,age_permil
    │ │ │ │ │ │ │ watermarks/metric,interval_us,high,mid,low
    │ │ │ │ │ │ │ stats/nr_tried,sz_tried,nr_applied,sz_applied,qt_exceeds
    │ │ │ │ │ │ ...
    │ │ │ │ ...
    │ │ ...

Detailed usage of the files will be described in the final Documentation
patch of this patchset.

Main Difference Between DAMON_DBGFS and DAMON_SYSFS
---------------------------------------------------

At the moment, DAMON_DBGFS and DAMON_SYSFS provides same features.  One
important difference between them is their exclusiveness.  DAMON_DBGFS
works in an exclusive manner, so that no DAMON worker thread (kdamond) in
the system can run concurrently and interfere somehow.  For the reason,
DAMON_DBGFS asks users to construct all monitoring contexts and start them
at once.  It's not a big problem but makes the operation a little bit
complex and unflexible.

For more flexible usage, DAMON_SYSFS moves the responsibility of
preventing any possible interference to the admins and work in a
non-exclusive manner.  That is, users can configure and start contexts one
by one.  Note that DAMON respects both exclusive groups and non-exclusive
groups of contexts, in a manner similar to that of reader-writer locks.
That is, if any exclusive monitoring contexts (e.g., contexts that started
via DAMON_DBGFS) are running, DAMON_SYSFS does not start new contexts, and
vice versa.

Future Plan of DAMON_DBGFS Deprecation
======================================

Once this patchset is merged, DAMON_DBGFS development will be frozen.
That is, we will maintain it to work as is now so that no users will be
break.  But, it will not be extended to provide any new feature of DAMON.
The support will be continued only until next LTS release.  After that, we
will drop DAMON_DBGFS.

User-space Tooling Compatibility
--------------------------------

As DAMON_SYSFS provides all features of DAMON_DBGFS, all user space
tooling can move to DAMON_SYSFS.  As we will continue supporting
DAMON_DBGFS until next LTS kernel release, user space tools would have
enough time to move to DAMON_SYSFS.

The official user space tool, damo[1], is already supporting both
DAMON_SYSFS and DAMON_DBGFS.  Both correctness tests[2] and performance
tests[3] of DAMON using DAMON_SYSFS also passed.

[1] https://github.com/awslabs/damo
[2] https://github.com/awslabs/damon-tests/tree/master/corr
[3] https://github.com/awslabs/damon-tests/tree/master/perf

Sequence of Patches
===================

First two patches (patches 1-2) make core changes for DAMON_SYSFS.  The
first one (patch 1) allows non-exclusive DAMON contexts so that
DAMON_SYSFS can work in non-exclusive mode, while the second one (patch 2)
adds size of DAMON enum types so that DAMON API users can safely iterate
the enums.

Third patch (patch 3) implements basic sysfs stub for virtual address
spaces monitoring.  Note that this implements only sysfs files and DAMON
is not linked.  Fourth patch (patch 4) links the DAMON_SYSFS to DAMON so
that users can control DAMON using the sysfs files.

Following six patches (patches 5-10) implements other DAMON features that
DAMON_DBGFS supports one by one (physical address space monitoring,
DAMON-based operation schemes, schemes quotas, schemes prioritization
weights, schemes watermarks, and schemes stats).

Following patch (patch 11) adds a simple selftest for DAMON_SYSFS, and the
final one (patch 12) documents DAMON_SYSFS.

This patch (of 13):

To avoid interference between DAMON contexts monitoring overlapping memory
regions, damon_start() works in an exclusive manner.  That is,
damon_start() does nothing bug fails if any context that started by
another instance of the function is still running.  This makes its usage a
little bit restrictive.  However, admins could aware each DAMON usage and
address such interferences on their own in some cases.

This commit hence implements non-exclusive mode of the function and allows
the callers to select the mode.  Note that the exclusive groups and
non-exclusive groups of contexts will respect each other in a manner
similar to that of reader-writer locks.  Therefore, this commit will not
cause any behavioral change to the exclusive groups.

Link: https://lkml.kernel.org/r/20220228081314.5770-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20220228081314.5770-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Xin Hao <xhao@linux.alibaba.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:13 -07:00

1056 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* DAMON Debugfs Interface
*
* Author: SeongJae Park <sjpark@amazon.de>
*/
#define pr_fmt(fmt) "damon-dbgfs: " fmt
#include <linux/damon.h>
#include <linux/debugfs.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/page_idle.h>
#include <linux/slab.h>
static struct damon_ctx **dbgfs_ctxs;
static int dbgfs_nr_ctxs;
static struct dentry **dbgfs_dirs;
static DEFINE_MUTEX(damon_dbgfs_lock);
/*
* Returns non-empty string on success, negative error code otherwise.
*/
static char *user_input_str(const char __user *buf, size_t count, loff_t *ppos)
{
char *kbuf;
ssize_t ret;
/* We do not accept continuous write */
if (*ppos)
return ERR_PTR(-EINVAL);
kbuf = kmalloc(count + 1, GFP_KERNEL | __GFP_NOWARN);
if (!kbuf)
return ERR_PTR(-ENOMEM);
ret = simple_write_to_buffer(kbuf, count + 1, ppos, buf, count);
if (ret != count) {
kfree(kbuf);
return ERR_PTR(-EIO);
}
kbuf[ret] = '\0';
return kbuf;
}
static ssize_t dbgfs_attrs_read(struct file *file,
char __user *buf, size_t count, loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
char kbuf[128];
int ret;
mutex_lock(&ctx->kdamond_lock);
ret = scnprintf(kbuf, ARRAY_SIZE(kbuf), "%lu %lu %lu %lu %lu\n",
ctx->sample_interval, ctx->aggr_interval,
ctx->ops_update_interval, ctx->min_nr_regions,
ctx->max_nr_regions);
mutex_unlock(&ctx->kdamond_lock);
return simple_read_from_buffer(buf, count, ppos, kbuf, ret);
}
static ssize_t dbgfs_attrs_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
unsigned long s, a, r, minr, maxr;
char *kbuf;
ssize_t ret;
kbuf = user_input_str(buf, count, ppos);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
if (sscanf(kbuf, "%lu %lu %lu %lu %lu",
&s, &a, &r, &minr, &maxr) != 5) {
ret = -EINVAL;
goto out;
}
mutex_lock(&ctx->kdamond_lock);
if (ctx->kdamond) {
ret = -EBUSY;
goto unlock_out;
}
ret = damon_set_attrs(ctx, s, a, r, minr, maxr);
if (!ret)
ret = count;
unlock_out:
mutex_unlock(&ctx->kdamond_lock);
out:
kfree(kbuf);
return ret;
}
static ssize_t sprint_schemes(struct damon_ctx *c, char *buf, ssize_t len)
{
struct damos *s;
int written = 0;
int rc;
damon_for_each_scheme(s, c) {
rc = scnprintf(&buf[written], len - written,
"%lu %lu %u %u %u %u %d %lu %lu %lu %u %u %u %d %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
s->min_sz_region, s->max_sz_region,
s->min_nr_accesses, s->max_nr_accesses,
s->min_age_region, s->max_age_region,
s->action,
s->quota.ms, s->quota.sz,
s->quota.reset_interval,
s->quota.weight_sz,
s->quota.weight_nr_accesses,
s->quota.weight_age,
s->wmarks.metric, s->wmarks.interval,
s->wmarks.high, s->wmarks.mid, s->wmarks.low,
s->stat.nr_tried, s->stat.sz_tried,
s->stat.nr_applied, s->stat.sz_applied,
s->stat.qt_exceeds);
if (!rc)
return -ENOMEM;
written += rc;
}
return written;
}
static ssize_t dbgfs_schemes_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
char *kbuf;
ssize_t len;
kbuf = kmalloc(count, GFP_KERNEL | __GFP_NOWARN);
if (!kbuf)
return -ENOMEM;
mutex_lock(&ctx->kdamond_lock);
len = sprint_schemes(ctx, kbuf, count);
mutex_unlock(&ctx->kdamond_lock);
if (len < 0)
goto out;
len = simple_read_from_buffer(buf, count, ppos, kbuf, len);
out:
kfree(kbuf);
return len;
}
static void free_schemes_arr(struct damos **schemes, ssize_t nr_schemes)
{
ssize_t i;
for (i = 0; i < nr_schemes; i++)
kfree(schemes[i]);
kfree(schemes);
}
static bool damos_action_valid(int action)
{
switch (action) {
case DAMOS_WILLNEED:
case DAMOS_COLD:
case DAMOS_PAGEOUT:
case DAMOS_HUGEPAGE:
case DAMOS_NOHUGEPAGE:
case DAMOS_STAT:
return true;
default:
return false;
}
}
/*
* Converts a string into an array of struct damos pointers
*
* Returns an array of struct damos pointers that converted if the conversion
* success, or NULL otherwise.
*/
static struct damos **str_to_schemes(const char *str, ssize_t len,
ssize_t *nr_schemes)
{
struct damos *scheme, **schemes;
const int max_nr_schemes = 256;
int pos = 0, parsed, ret;
unsigned long min_sz, max_sz;
unsigned int min_nr_a, max_nr_a, min_age, max_age;
unsigned int action;
schemes = kmalloc_array(max_nr_schemes, sizeof(scheme),
GFP_KERNEL);
if (!schemes)
return NULL;
*nr_schemes = 0;
while (pos < len && *nr_schemes < max_nr_schemes) {
struct damos_quota quota = {};
struct damos_watermarks wmarks;
ret = sscanf(&str[pos],
"%lu %lu %u %u %u %u %u %lu %lu %lu %u %u %u %u %lu %lu %lu %lu%n",
&min_sz, &max_sz, &min_nr_a, &max_nr_a,
&min_age, &max_age, &action, &quota.ms,
&quota.sz, &quota.reset_interval,
&quota.weight_sz, &quota.weight_nr_accesses,
&quota.weight_age, &wmarks.metric,
&wmarks.interval, &wmarks.high, &wmarks.mid,
&wmarks.low, &parsed);
if (ret != 18)
break;
if (!damos_action_valid(action))
goto fail;
if (min_sz > max_sz || min_nr_a > max_nr_a || min_age > max_age)
goto fail;
if (wmarks.high < wmarks.mid || wmarks.high < wmarks.low ||
wmarks.mid < wmarks.low)
goto fail;
pos += parsed;
scheme = damon_new_scheme(min_sz, max_sz, min_nr_a, max_nr_a,
min_age, max_age, action, &quota, &wmarks);
if (!scheme)
goto fail;
schemes[*nr_schemes] = scheme;
*nr_schemes += 1;
}
return schemes;
fail:
free_schemes_arr(schemes, *nr_schemes);
return NULL;
}
static ssize_t dbgfs_schemes_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
char *kbuf;
struct damos **schemes;
ssize_t nr_schemes = 0, ret;
kbuf = user_input_str(buf, count, ppos);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
schemes = str_to_schemes(kbuf, count, &nr_schemes);
if (!schemes) {
ret = -EINVAL;
goto out;
}
mutex_lock(&ctx->kdamond_lock);
if (ctx->kdamond) {
ret = -EBUSY;
goto unlock_out;
}
ret = damon_set_schemes(ctx, schemes, nr_schemes);
if (!ret) {
ret = count;
nr_schemes = 0;
}
unlock_out:
mutex_unlock(&ctx->kdamond_lock);
free_schemes_arr(schemes, nr_schemes);
out:
kfree(kbuf);
return ret;
}
static inline bool target_has_pid(const struct damon_ctx *ctx)
{
return ctx->ops.id == DAMON_OPS_VADDR;
}
static ssize_t sprint_target_ids(struct damon_ctx *ctx, char *buf, ssize_t len)
{
struct damon_target *t;
int id;
int written = 0;
int rc;
damon_for_each_target(t, ctx) {
if (target_has_pid(ctx))
/* Show pid numbers to debugfs users */
id = pid_vnr(t->pid);
else
/* Show 42 for physical address space, just for fun */
id = 42;
rc = scnprintf(&buf[written], len - written, "%d ", id);
if (!rc)
return -ENOMEM;
written += rc;
}
if (written)
written -= 1;
written += scnprintf(&buf[written], len - written, "\n");
return written;
}
static ssize_t dbgfs_target_ids_read(struct file *file,
char __user *buf, size_t count, loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
ssize_t len;
char ids_buf[320];
mutex_lock(&ctx->kdamond_lock);
len = sprint_target_ids(ctx, ids_buf, 320);
mutex_unlock(&ctx->kdamond_lock);
if (len < 0)
return len;
return simple_read_from_buffer(buf, count, ppos, ids_buf, len);
}
/*
* Converts a string into an integers array
*
* Returns an array of integers array if the conversion success, or NULL
* otherwise.
*/
static int *str_to_ints(const char *str, ssize_t len, ssize_t *nr_ints)
{
int *array;
const int max_nr_ints = 32;
int nr;
int pos = 0, parsed, ret;
*nr_ints = 0;
array = kmalloc_array(max_nr_ints, sizeof(*array), GFP_KERNEL);
if (!array)
return NULL;
while (*nr_ints < max_nr_ints && pos < len) {
ret = sscanf(&str[pos], "%d%n", &nr, &parsed);
pos += parsed;
if (ret != 1)
break;
array[*nr_ints] = nr;
*nr_ints += 1;
}
return array;
}
static void dbgfs_put_pids(struct pid **pids, int nr_pids)
{
int i;
for (i = 0; i < nr_pids; i++)
put_pid(pids[i]);
}
/*
* Converts a string into an struct pid pointers array
*
* Returns an array of struct pid pointers if the conversion success, or NULL
* otherwise.
*/
static struct pid **str_to_pids(const char *str, ssize_t len, ssize_t *nr_pids)
{
int *ints;
ssize_t nr_ints;
struct pid **pids;
*nr_pids = 0;
ints = str_to_ints(str, len, &nr_ints);
if (!ints)
return NULL;
pids = kmalloc_array(nr_ints, sizeof(*pids), GFP_KERNEL);
if (!pids)
goto out;
for (; *nr_pids < nr_ints; (*nr_pids)++) {
pids[*nr_pids] = find_get_pid(ints[*nr_pids]);
if (!pids[*nr_pids]) {
dbgfs_put_pids(pids, *nr_pids);
kfree(ints);
kfree(pids);
return NULL;
}
}
out:
kfree(ints);
return pids;
}
/*
* dbgfs_set_targets() - Set monitoring targets.
* @ctx: monitoring context
* @nr_targets: number of targets
* @pids: array of target pids (size is same to @nr_targets)
*
* This function should not be called while the kdamond is running. @pids is
* ignored if the context is not configured to have pid in each target. On
* failure, reference counts of all pids in @pids are decremented.
*
* Return: 0 on success, negative error code otherwise.
*/
static int dbgfs_set_targets(struct damon_ctx *ctx, ssize_t nr_targets,
struct pid **pids)
{
ssize_t i;
struct damon_target *t, *next;
damon_for_each_target_safe(t, next, ctx) {
if (target_has_pid(ctx))
put_pid(t->pid);
damon_destroy_target(t);
}
for (i = 0; i < nr_targets; i++) {
t = damon_new_target();
if (!t) {
damon_for_each_target_safe(t, next, ctx)
damon_destroy_target(t);
if (target_has_pid(ctx))
dbgfs_put_pids(pids, nr_targets);
return -ENOMEM;
}
if (target_has_pid(ctx))
t->pid = pids[i];
damon_add_target(ctx, t);
}
return 0;
}
static ssize_t dbgfs_target_ids_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
bool id_is_pid = true;
char *kbuf;
struct pid **target_pids = NULL;
ssize_t nr_targets;
ssize_t ret;
kbuf = user_input_str(buf, count, ppos);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
if (!strncmp(kbuf, "paddr\n", count)) {
id_is_pid = false;
nr_targets = 1;
}
if (id_is_pid) {
target_pids = str_to_pids(kbuf, count, &nr_targets);
if (!target_pids) {
ret = -ENOMEM;
goto out;
}
}
mutex_lock(&ctx->kdamond_lock);
if (ctx->kdamond) {
if (id_is_pid)
dbgfs_put_pids(target_pids, nr_targets);
ret = -EBUSY;
goto unlock_out;
}
/* remove previously set targets */
dbgfs_set_targets(ctx, 0, NULL);
if (!nr_targets) {
ret = count;
goto unlock_out;
}
/* Configure the context for the address space type */
if (id_is_pid)
ret = damon_select_ops(ctx, DAMON_OPS_VADDR);
else
ret = damon_select_ops(ctx, DAMON_OPS_PADDR);
if (ret)
goto unlock_out;
ret = dbgfs_set_targets(ctx, nr_targets, target_pids);
if (!ret)
ret = count;
unlock_out:
mutex_unlock(&ctx->kdamond_lock);
kfree(target_pids);
out:
kfree(kbuf);
return ret;
}
static ssize_t sprint_init_regions(struct damon_ctx *c, char *buf, ssize_t len)
{
struct damon_target *t;
struct damon_region *r;
int target_idx = 0;
int written = 0;
int rc;
damon_for_each_target(t, c) {
damon_for_each_region(r, t) {
rc = scnprintf(&buf[written], len - written,
"%d %lu %lu\n",
target_idx, r->ar.start, r->ar.end);
if (!rc)
return -ENOMEM;
written += rc;
}
target_idx++;
}
return written;
}
static ssize_t dbgfs_init_regions_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
char *kbuf;
ssize_t len;
kbuf = kmalloc(count, GFP_KERNEL | __GFP_NOWARN);
if (!kbuf)
return -ENOMEM;
mutex_lock(&ctx->kdamond_lock);
if (ctx->kdamond) {
mutex_unlock(&ctx->kdamond_lock);
len = -EBUSY;
goto out;
}
len = sprint_init_regions(ctx, kbuf, count);
mutex_unlock(&ctx->kdamond_lock);
if (len < 0)
goto out;
len = simple_read_from_buffer(buf, count, ppos, kbuf, len);
out:
kfree(kbuf);
return len;
}
static int add_init_region(struct damon_ctx *c, int target_idx,
struct damon_addr_range *ar)
{
struct damon_target *t;
struct damon_region *r, *prev;
unsigned long idx = 0;
int rc = -EINVAL;
if (ar->start >= ar->end)
return -EINVAL;
damon_for_each_target(t, c) {
if (idx++ == target_idx) {
r = damon_new_region(ar->start, ar->end);
if (!r)
return -ENOMEM;
damon_add_region(r, t);
if (damon_nr_regions(t) > 1) {
prev = damon_prev_region(r);
if (prev->ar.end > r->ar.start) {
damon_destroy_region(r, t);
return -EINVAL;
}
}
rc = 0;
}
}
return rc;
}
static int set_init_regions(struct damon_ctx *c, const char *str, ssize_t len)
{
struct damon_target *t;
struct damon_region *r, *next;
int pos = 0, parsed, ret;
int target_idx;
struct damon_addr_range ar;
int err;
damon_for_each_target(t, c) {
damon_for_each_region_safe(r, next, t)
damon_destroy_region(r, t);
}
while (pos < len) {
ret = sscanf(&str[pos], "%d %lu %lu%n",
&target_idx, &ar.start, &ar.end, &parsed);
if (ret != 3)
break;
err = add_init_region(c, target_idx, &ar);
if (err)
goto fail;
pos += parsed;
}
return 0;
fail:
damon_for_each_target(t, c) {
damon_for_each_region_safe(r, next, t)
damon_destroy_region(r, t);
}
return err;
}
static ssize_t dbgfs_init_regions_write(struct file *file,
const char __user *buf, size_t count,
loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
char *kbuf;
ssize_t ret = count;
int err;
kbuf = user_input_str(buf, count, ppos);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
mutex_lock(&ctx->kdamond_lock);
if (ctx->kdamond) {
ret = -EBUSY;
goto unlock_out;
}
err = set_init_regions(ctx, kbuf, ret);
if (err)
ret = err;
unlock_out:
mutex_unlock(&ctx->kdamond_lock);
kfree(kbuf);
return ret;
}
static ssize_t dbgfs_kdamond_pid_read(struct file *file,
char __user *buf, size_t count, loff_t *ppos)
{
struct damon_ctx *ctx = file->private_data;
char *kbuf;
ssize_t len;
kbuf = kmalloc(count, GFP_KERNEL | __GFP_NOWARN);
if (!kbuf)
return -ENOMEM;
mutex_lock(&ctx->kdamond_lock);
if (ctx->kdamond)
len = scnprintf(kbuf, count, "%d\n", ctx->kdamond->pid);
else
len = scnprintf(kbuf, count, "none\n");
mutex_unlock(&ctx->kdamond_lock);
if (!len)
goto out;
len = simple_read_from_buffer(buf, count, ppos, kbuf, len);
out:
kfree(kbuf);
return len;
}
static int damon_dbgfs_open(struct inode *inode, struct file *file)
{
file->private_data = inode->i_private;
return nonseekable_open(inode, file);
}
static const struct file_operations attrs_fops = {
.open = damon_dbgfs_open,
.read = dbgfs_attrs_read,
.write = dbgfs_attrs_write,
};
static const struct file_operations schemes_fops = {
.open = damon_dbgfs_open,
.read = dbgfs_schemes_read,
.write = dbgfs_schemes_write,
};
static const struct file_operations target_ids_fops = {
.open = damon_dbgfs_open,
.read = dbgfs_target_ids_read,
.write = dbgfs_target_ids_write,
};
static const struct file_operations init_regions_fops = {
.open = damon_dbgfs_open,
.read = dbgfs_init_regions_read,
.write = dbgfs_init_regions_write,
};
static const struct file_operations kdamond_pid_fops = {
.open = damon_dbgfs_open,
.read = dbgfs_kdamond_pid_read,
};
static void dbgfs_fill_ctx_dir(struct dentry *dir, struct damon_ctx *ctx)
{
const char * const file_names[] = {"attrs", "schemes", "target_ids",
"init_regions", "kdamond_pid"};
const struct file_operations *fops[] = {&attrs_fops, &schemes_fops,
&target_ids_fops, &init_regions_fops, &kdamond_pid_fops};
int i;
for (i = 0; i < ARRAY_SIZE(file_names); i++)
debugfs_create_file(file_names[i], 0600, dir, ctx, fops[i]);
}
static void dbgfs_before_terminate(struct damon_ctx *ctx)
{
struct damon_target *t, *next;
if (!target_has_pid(ctx))
return;
mutex_lock(&ctx->kdamond_lock);
damon_for_each_target_safe(t, next, ctx) {
put_pid(t->pid);
damon_destroy_target(t);
}
mutex_unlock(&ctx->kdamond_lock);
}
static struct damon_ctx *dbgfs_new_ctx(void)
{
struct damon_ctx *ctx;
ctx = damon_new_ctx();
if (!ctx)
return NULL;
if (damon_select_ops(ctx, DAMON_OPS_VADDR) &&
damon_select_ops(ctx, DAMON_OPS_PADDR)) {
damon_destroy_ctx(ctx);
return NULL;
}
ctx->callback.before_terminate = dbgfs_before_terminate;
return ctx;
}
static void dbgfs_destroy_ctx(struct damon_ctx *ctx)
{
damon_destroy_ctx(ctx);
}
/*
* Make a context of @name and create a debugfs directory for it.
*
* This function should be called while holding damon_dbgfs_lock.
*
* Returns 0 on success, negative error code otherwise.
*/
static int dbgfs_mk_context(char *name)
{
struct dentry *root, **new_dirs, *new_dir;
struct damon_ctx **new_ctxs, *new_ctx;
if (damon_nr_running_ctxs())
return -EBUSY;
new_ctxs = krealloc(dbgfs_ctxs, sizeof(*dbgfs_ctxs) *
(dbgfs_nr_ctxs + 1), GFP_KERNEL);
if (!new_ctxs)
return -ENOMEM;
dbgfs_ctxs = new_ctxs;
new_dirs = krealloc(dbgfs_dirs, sizeof(*dbgfs_dirs) *
(dbgfs_nr_ctxs + 1), GFP_KERNEL);
if (!new_dirs)
return -ENOMEM;
dbgfs_dirs = new_dirs;
root = dbgfs_dirs[0];
if (!root)
return -ENOENT;
new_dir = debugfs_create_dir(name, root);
dbgfs_dirs[dbgfs_nr_ctxs] = new_dir;
new_ctx = dbgfs_new_ctx();
if (!new_ctx) {
debugfs_remove(new_dir);
dbgfs_dirs[dbgfs_nr_ctxs] = NULL;
return -ENOMEM;
}
dbgfs_ctxs[dbgfs_nr_ctxs] = new_ctx;
dbgfs_fill_ctx_dir(dbgfs_dirs[dbgfs_nr_ctxs],
dbgfs_ctxs[dbgfs_nr_ctxs]);
dbgfs_nr_ctxs++;
return 0;
}
static ssize_t dbgfs_mk_context_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
char *kbuf;
char *ctx_name;
ssize_t ret;
kbuf = user_input_str(buf, count, ppos);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
ctx_name = kmalloc(count + 1, GFP_KERNEL);
if (!ctx_name) {
kfree(kbuf);
return -ENOMEM;
}
/* Trim white space */
if (sscanf(kbuf, "%s", ctx_name) != 1) {
ret = -EINVAL;
goto out;
}
mutex_lock(&damon_dbgfs_lock);
ret = dbgfs_mk_context(ctx_name);
if (!ret)
ret = count;
mutex_unlock(&damon_dbgfs_lock);
out:
kfree(kbuf);
kfree(ctx_name);
return ret;
}
/*
* Remove a context of @name and its debugfs directory.
*
* This function should be called while holding damon_dbgfs_lock.
*
* Return 0 on success, negative error code otherwise.
*/
static int dbgfs_rm_context(char *name)
{
struct dentry *root, *dir, **new_dirs;
struct damon_ctx **new_ctxs;
int i, j;
if (damon_nr_running_ctxs())
return -EBUSY;
root = dbgfs_dirs[0];
if (!root)
return -ENOENT;
dir = debugfs_lookup(name, root);
if (!dir)
return -ENOENT;
new_dirs = kmalloc_array(dbgfs_nr_ctxs - 1, sizeof(*dbgfs_dirs),
GFP_KERNEL);
if (!new_dirs)
return -ENOMEM;
new_ctxs = kmalloc_array(dbgfs_nr_ctxs - 1, sizeof(*dbgfs_ctxs),
GFP_KERNEL);
if (!new_ctxs) {
kfree(new_dirs);
return -ENOMEM;
}
for (i = 0, j = 0; i < dbgfs_nr_ctxs; i++) {
if (dbgfs_dirs[i] == dir) {
debugfs_remove(dbgfs_dirs[i]);
dbgfs_destroy_ctx(dbgfs_ctxs[i]);
continue;
}
new_dirs[j] = dbgfs_dirs[i];
new_ctxs[j++] = dbgfs_ctxs[i];
}
kfree(dbgfs_dirs);
kfree(dbgfs_ctxs);
dbgfs_dirs = new_dirs;
dbgfs_ctxs = new_ctxs;
dbgfs_nr_ctxs--;
return 0;
}
static ssize_t dbgfs_rm_context_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
char *kbuf;
ssize_t ret;
char *ctx_name;
kbuf = user_input_str(buf, count, ppos);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
ctx_name = kmalloc(count + 1, GFP_KERNEL);
if (!ctx_name) {
kfree(kbuf);
return -ENOMEM;
}
/* Trim white space */
if (sscanf(kbuf, "%s", ctx_name) != 1) {
ret = -EINVAL;
goto out;
}
mutex_lock(&damon_dbgfs_lock);
ret = dbgfs_rm_context(ctx_name);
if (!ret)
ret = count;
mutex_unlock(&damon_dbgfs_lock);
out:
kfree(kbuf);
kfree(ctx_name);
return ret;
}
static ssize_t dbgfs_monitor_on_read(struct file *file,
char __user *buf, size_t count, loff_t *ppos)
{
char monitor_on_buf[5];
bool monitor_on = damon_nr_running_ctxs() != 0;
int len;
len = scnprintf(monitor_on_buf, 5, monitor_on ? "on\n" : "off\n");
return simple_read_from_buffer(buf, count, ppos, monitor_on_buf, len);
}
static ssize_t dbgfs_monitor_on_write(struct file *file,
const char __user *buf, size_t count, loff_t *ppos)
{
ssize_t ret;
char *kbuf;
kbuf = user_input_str(buf, count, ppos);
if (IS_ERR(kbuf))
return PTR_ERR(kbuf);
/* Remove white space */
if (sscanf(kbuf, "%s", kbuf) != 1) {
kfree(kbuf);
return -EINVAL;
}
mutex_lock(&damon_dbgfs_lock);
if (!strncmp(kbuf, "on", count)) {
int i;
for (i = 0; i < dbgfs_nr_ctxs; i++) {
if (damon_targets_empty(dbgfs_ctxs[i])) {
kfree(kbuf);
mutex_unlock(&damon_dbgfs_lock);
return -EINVAL;
}
}
ret = damon_start(dbgfs_ctxs, dbgfs_nr_ctxs, true);
} else if (!strncmp(kbuf, "off", count)) {
ret = damon_stop(dbgfs_ctxs, dbgfs_nr_ctxs);
} else {
ret = -EINVAL;
}
mutex_unlock(&damon_dbgfs_lock);
if (!ret)
ret = count;
kfree(kbuf);
return ret;
}
static const struct file_operations mk_contexts_fops = {
.write = dbgfs_mk_context_write,
};
static const struct file_operations rm_contexts_fops = {
.write = dbgfs_rm_context_write,
};
static const struct file_operations monitor_on_fops = {
.read = dbgfs_monitor_on_read,
.write = dbgfs_monitor_on_write,
};
static int __init __damon_dbgfs_init(void)
{
struct dentry *dbgfs_root;
const char * const file_names[] = {"mk_contexts", "rm_contexts",
"monitor_on"};
const struct file_operations *fops[] = {&mk_contexts_fops,
&rm_contexts_fops, &monitor_on_fops};
int i;
dbgfs_root = debugfs_create_dir("damon", NULL);
for (i = 0; i < ARRAY_SIZE(file_names); i++)
debugfs_create_file(file_names[i], 0600, dbgfs_root, NULL,
fops[i]);
dbgfs_fill_ctx_dir(dbgfs_root, dbgfs_ctxs[0]);
dbgfs_dirs = kmalloc_array(1, sizeof(dbgfs_root), GFP_KERNEL);
if (!dbgfs_dirs) {
debugfs_remove(dbgfs_root);
return -ENOMEM;
}
dbgfs_dirs[0] = dbgfs_root;
return 0;
}
/*
* Functions for the initialization
*/
static int __init damon_dbgfs_init(void)
{
int rc = -ENOMEM;
mutex_lock(&damon_dbgfs_lock);
dbgfs_ctxs = kmalloc(sizeof(*dbgfs_ctxs), GFP_KERNEL);
if (!dbgfs_ctxs)
goto out;
dbgfs_ctxs[0] = dbgfs_new_ctx();
if (!dbgfs_ctxs[0]) {
kfree(dbgfs_ctxs);
goto out;
}
dbgfs_nr_ctxs = 1;
rc = __damon_dbgfs_init();
if (rc) {
kfree(dbgfs_ctxs[0]);
kfree(dbgfs_ctxs);
pr_err("%s: dbgfs init failed\n", __func__);
}
out:
mutex_unlock(&damon_dbgfs_lock);
return rc;
}
module_init(damon_dbgfs_init);
#include "dbgfs-test.h"