1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/block/keyslot-manager.c
Linus Torvalds 325b764089 - Fix DM integrity's HMAC support to provide enhanced security of
internal_hash and journal_mac capabilities.
 
 - Various DM writecache fixes to address performance, fix table output
   to match what was provided at table creation, fix writing beyond end
   of device when shrinking underlying data device, and a couple other
   small cleanups.
 
 - Add DM crypt support for using trusted keys.
 
 - Fix deadlock when swapping to DM crypt device by throttling number
   of in-flight REQ_SWAP bios. Implemented in DM core so that other
   bio-based targets can opt-in by setting ti->limit_swap_bios.
 
 - Fix various inverted logic bugs in the .iterate_devices callout
   functions that are used to assess if specific feature or capability
   is supported across all devices being combined/stacked by DM.
 
 - Fix DM era target bugs that exposed users to lost writes or memory
   leaks.
 
 - Add DM core support for passing through inline crypto support of
   underlying devices. Includes block/keyslot-manager changes that
   enable extending this support to DM.
 
 - Various small fixes and cleanups (spelling fixes, front padding
   calculation cleanup, cleanup conditional zoned support in targets,
   etc).
 -----BEGIN PGP SIGNATURE-----
 
 iQFHBAABCAAxFiEEJfWUX4UqZ4x1O2wixSPxCi2dA1oFAmAqxggTHHNuaXR6ZXJA
 cmVkaGF0LmNvbQAKCRDFI/EKLZ0DWjVOCACkZKleQhsCEYHNtjZ40Du+4PPBvESA
 O+ScdUCeik4YUXvQtlFRPcYxxOH0zL0CUivLnNlsKzGTTgulw5azgFNuUTzIhH5y
 a86Q+DReigPegzVCCOenInU18pYa03rLtYOAb6SK49IqVeMWMFSJVBv73HWS7OFV
 slMlsQCN46YgbviYsGUXk5+uKMET4ijJZVW+8zSYg0GsWLHdgQtBkEoojO1n9H2B
 jio2Nvhto0bJ4dV482lmd3G+LABmaBbLs0Xx/a7iHVigkIYZz4BHwDYNz/EQnNEi
 dYlOrSL9a6ur+DFR6vxShzG40LbK7KVr8jHiXyKv2WZA7FMK0l4fyEFV
 =E+n3
 -----END PGP SIGNATURE-----

Merge tag 'for-5.12/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm

Pull device mapper updates from Mike Snitzer:

 - Fix DM integrity's HMAC support to provide enhanced security of
   internal_hash and journal_mac capabilities.

 - Various DM writecache fixes to address performance, fix table output
   to match what was provided at table creation, fix writing beyond end
   of device when shrinking underlying data device, and a couple other
   small cleanups.

 - Add DM crypt support for using trusted keys.

 - Fix deadlock when swapping to DM crypt device by throttling number of
   in-flight REQ_SWAP bios. Implemented in DM core so that other
   bio-based targets can opt-in by setting ti->limit_swap_bios.

 - Fix various inverted logic bugs in the .iterate_devices callout
   functions that are used to assess if specific feature or capability
   is supported across all devices being combined/stacked by DM.

 - Fix DM era target bugs that exposed users to lost writes or memory
   leaks.

 - Add DM core support for passing through inline crypto support of
   underlying devices. Includes block/keyslot-manager changes that
   enable extending this support to DM.

 - Various small fixes and cleanups (spelling fixes, front padding
   calculation cleanup, cleanup conditional zoned support in targets,
   etc).

* tag 'for-5.12/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: (31 commits)
  dm: fix deadlock when swapping to encrypted device
  dm: simplify target code conditional on CONFIG_BLK_DEV_ZONED
  dm: set DM_TARGET_PASSES_CRYPTO feature for some targets
  dm: support key eviction from keyslot managers of underlying devices
  dm: add support for passing through inline crypto support
  block/keyslot-manager: Introduce functions for device mapper support
  block/keyslot-manager: Introduce passthrough keyslot manager
  dm era: only resize metadata in preresume
  dm era: Use correct value size in equality function of writeset tree
  dm era: Fix bitset memory leaks
  dm era: Verify the data block size hasn't changed
  dm era: Reinitialize bitset cache before digesting a new writeset
  dm era: Update in-core bitset after committing the metadata
  dm era: Recover committed writeset after crash
  dm writecache: use bdev_nr_sectors() instead of open-coded equivalent
  dm writecache: fix writing beyond end of underlying device when shrinking
  dm table: remove needless request_queue NULL pointer checks
  dm table: fix zoned iterate_devices based device capability checks
  dm table: fix DAX iterate_devices based device capability checks
  dm table: fix iterate_devices based device capability checks
  ...
2021-02-22 10:22:54 -08:00

578 lines
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 Google LLC
*/
/**
* DOC: The Keyslot Manager
*
* Many devices with inline encryption support have a limited number of "slots"
* into which encryption contexts may be programmed, and requests can be tagged
* with a slot number to specify the key to use for en/decryption.
*
* As the number of slots is limited, and programming keys is expensive on
* many inline encryption hardware, we don't want to program the same key into
* multiple slots - if multiple requests are using the same key, we want to
* program just one slot with that key and use that slot for all requests.
*
* The keyslot manager manages these keyslots appropriately, and also acts as
* an abstraction between the inline encryption hardware and the upper layers.
*
* Lower layer devices will set up a keyslot manager in their request queue
* and tell it how to perform device specific operations like programming/
* evicting keys from keyslots.
*
* Upper layers will call blk_ksm_get_slot_for_key() to program a
* key into some slot in the inline encryption hardware.
*/
#define pr_fmt(fmt) "blk-crypto: " fmt
#include <linux/keyslot-manager.h>
#include <linux/device.h>
#include <linux/atomic.h>
#include <linux/mutex.h>
#include <linux/pm_runtime.h>
#include <linux/wait.h>
#include <linux/blkdev.h>
struct blk_ksm_keyslot {
atomic_t slot_refs;
struct list_head idle_slot_node;
struct hlist_node hash_node;
const struct blk_crypto_key *key;
struct blk_keyslot_manager *ksm;
};
static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm)
{
/*
* Calling into the driver requires ksm->lock held and the device
* resumed. But we must resume the device first, since that can acquire
* and release ksm->lock via blk_ksm_reprogram_all_keys().
*/
if (ksm->dev)
pm_runtime_get_sync(ksm->dev);
down_write(&ksm->lock);
}
static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm)
{
up_write(&ksm->lock);
if (ksm->dev)
pm_runtime_put_sync(ksm->dev);
}
static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm)
{
return ksm->num_slots == 0;
}
/**
* blk_ksm_init() - Initialize a keyslot manager
* @ksm: The keyslot_manager to initialize.
* @num_slots: The number of key slots to manage.
*
* Allocate memory for keyslots and initialize a keyslot manager. Called by
* e.g. storage drivers to set up a keyslot manager in their request_queue.
*
* Return: 0 on success, or else a negative error code.
*/
int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots)
{
unsigned int slot;
unsigned int i;
unsigned int slot_hashtable_size;
memset(ksm, 0, sizeof(*ksm));
if (num_slots == 0)
return -EINVAL;
ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL);
if (!ksm->slots)
return -ENOMEM;
ksm->num_slots = num_slots;
init_rwsem(&ksm->lock);
init_waitqueue_head(&ksm->idle_slots_wait_queue);
INIT_LIST_HEAD(&ksm->idle_slots);
for (slot = 0; slot < num_slots; slot++) {
ksm->slots[slot].ksm = ksm;
list_add_tail(&ksm->slots[slot].idle_slot_node,
&ksm->idle_slots);
}
spin_lock_init(&ksm->idle_slots_lock);
slot_hashtable_size = roundup_pow_of_two(num_slots);
/*
* hash_ptr() assumes bits != 0, so ensure the hash table has at least 2
* buckets. This only makes a difference when there is only 1 keyslot.
*/
if (slot_hashtable_size < 2)
slot_hashtable_size = 2;
ksm->log_slot_ht_size = ilog2(slot_hashtable_size);
ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size,
sizeof(ksm->slot_hashtable[0]),
GFP_KERNEL);
if (!ksm->slot_hashtable)
goto err_destroy_ksm;
for (i = 0; i < slot_hashtable_size; i++)
INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
return 0;
err_destroy_ksm:
blk_ksm_destroy(ksm);
return -ENOMEM;
}
EXPORT_SYMBOL_GPL(blk_ksm_init);
static void blk_ksm_destroy_callback(void *ksm)
{
blk_ksm_destroy(ksm);
}
/**
* devm_blk_ksm_init() - Resource-managed blk_ksm_init()
* @dev: The device which owns the blk_keyslot_manager.
* @ksm: The blk_keyslot_manager to initialize.
* @num_slots: The number of key slots to manage.
*
* Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically
* on driver detach.
*
* Return: 0 on success, or else a negative error code.
*/
int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm,
unsigned int num_slots)
{
int err = blk_ksm_init(ksm, num_slots);
if (err)
return err;
return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm);
}
EXPORT_SYMBOL_GPL(devm_blk_ksm_init);
static inline struct hlist_head *
blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)];
}
static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot)
{
struct blk_keyslot_manager *ksm = slot->ksm;
unsigned long flags;
spin_lock_irqsave(&ksm->idle_slots_lock, flags);
list_del(&slot->idle_slot_node);
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
}
static struct blk_ksm_keyslot *blk_ksm_find_keyslot(
struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key);
struct blk_ksm_keyslot *slotp;
hlist_for_each_entry(slotp, head, hash_node) {
if (slotp->key == key)
return slotp;
}
return NULL;
}
static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot(
struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
struct blk_ksm_keyslot *slot;
slot = blk_ksm_find_keyslot(ksm, key);
if (!slot)
return NULL;
if (atomic_inc_return(&slot->slot_refs) == 1) {
/* Took first reference to this slot; remove it from LRU list */
blk_ksm_remove_slot_from_lru_list(slot);
}
return slot;
}
unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot)
{
return slot - slot->ksm->slots;
}
EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx);
/**
* blk_ksm_get_slot_for_key() - Program a key into a keyslot.
* @ksm: The keyslot manager to program the key into.
* @key: Pointer to the key object to program, including the raw key, crypto
* mode, and data unit size.
* @slot_ptr: A pointer to return the pointer of the allocated keyslot.
*
* Get a keyslot that's been programmed with the specified key. If one already
* exists, return it with incremented refcount. Otherwise, wait for a keyslot
* to become idle and program it.
*
* Context: Process context. Takes and releases ksm->lock.
* Return: BLK_STS_OK on success (and keyslot is set to the pointer of the
* allocated keyslot), or some other blk_status_t otherwise (and
* keyslot is set to NULL).
*/
blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key,
struct blk_ksm_keyslot **slot_ptr)
{
struct blk_ksm_keyslot *slot;
int slot_idx;
int err;
*slot_ptr = NULL;
if (blk_ksm_is_passthrough(ksm))
return BLK_STS_OK;
down_read(&ksm->lock);
slot = blk_ksm_find_and_grab_keyslot(ksm, key);
up_read(&ksm->lock);
if (slot)
goto success;
for (;;) {
blk_ksm_hw_enter(ksm);
slot = blk_ksm_find_and_grab_keyslot(ksm, key);
if (slot) {
blk_ksm_hw_exit(ksm);
goto success;
}
/*
* If we're here, that means there wasn't a slot that was
* already programmed with the key. So try to program it.
*/
if (!list_empty(&ksm->idle_slots))
break;
blk_ksm_hw_exit(ksm);
wait_event(ksm->idle_slots_wait_queue,
!list_empty(&ksm->idle_slots));
}
slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot,
idle_slot_node);
slot_idx = blk_ksm_get_slot_idx(slot);
err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx);
if (err) {
wake_up(&ksm->idle_slots_wait_queue);
blk_ksm_hw_exit(ksm);
return errno_to_blk_status(err);
}
/* Move this slot to the hash list for the new key. */
if (slot->key)
hlist_del(&slot->hash_node);
slot->key = key;
hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key));
atomic_set(&slot->slot_refs, 1);
blk_ksm_remove_slot_from_lru_list(slot);
blk_ksm_hw_exit(ksm);
success:
*slot_ptr = slot;
return BLK_STS_OK;
}
/**
* blk_ksm_put_slot() - Release a reference to a slot
* @slot: The keyslot to release the reference of.
*
* Context: Any context.
*/
void blk_ksm_put_slot(struct blk_ksm_keyslot *slot)
{
struct blk_keyslot_manager *ksm;
unsigned long flags;
if (!slot)
return;
ksm = slot->ksm;
if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
&ksm->idle_slots_lock, flags)) {
list_add_tail(&slot->idle_slot_node, &ksm->idle_slots);
spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
wake_up(&ksm->idle_slots_wait_queue);
}
}
/**
* blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is
* supported by a ksm.
* @ksm: The keyslot manager to check
* @cfg: The crypto configuration to check for.
*
* Checks for crypto_mode/data unit size/dun bytes support.
*
* Return: Whether or not this ksm supports the specified crypto config.
*/
bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm,
const struct blk_crypto_config *cfg)
{
if (!ksm)
return false;
if (!(ksm->crypto_modes_supported[cfg->crypto_mode] &
cfg->data_unit_size))
return false;
if (ksm->max_dun_bytes_supported < cfg->dun_bytes)
return false;
return true;
}
/**
* blk_ksm_evict_key() - Evict a key from the lower layer device.
* @ksm: The keyslot manager to evict from
* @key: The key to evict
*
* Find the keyslot that the specified key was programmed into, and evict that
* slot from the lower layer device. The slot must not be in use by any
* in-flight IO when this function is called.
*
* Context: Process context. Takes and releases ksm->lock.
* Return: 0 on success or if there's no keyslot with the specified key, -EBUSY
* if the keyslot is still in use, or another -errno value on other
* error.
*/
int blk_ksm_evict_key(struct blk_keyslot_manager *ksm,
const struct blk_crypto_key *key)
{
struct blk_ksm_keyslot *slot;
int err = 0;
if (blk_ksm_is_passthrough(ksm)) {
if (ksm->ksm_ll_ops.keyslot_evict) {
blk_ksm_hw_enter(ksm);
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
blk_ksm_hw_exit(ksm);
return err;
}
return 0;
}
blk_ksm_hw_enter(ksm);
slot = blk_ksm_find_keyslot(ksm, key);
if (!slot)
goto out_unlock;
if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
err = -EBUSY;
goto out_unlock;
}
err = ksm->ksm_ll_ops.keyslot_evict(ksm, key,
blk_ksm_get_slot_idx(slot));
if (err)
goto out_unlock;
hlist_del(&slot->hash_node);
slot->key = NULL;
err = 0;
out_unlock:
blk_ksm_hw_exit(ksm);
return err;
}
/**
* blk_ksm_reprogram_all_keys() - Re-program all keyslots.
* @ksm: The keyslot manager
*
* Re-program all keyslots that are supposed to have a key programmed. This is
* intended only for use by drivers for hardware that loses its keys on reset.
*
* Context: Process context. Takes and releases ksm->lock.
*/
void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm)
{
unsigned int slot;
if (blk_ksm_is_passthrough(ksm))
return;
/* This is for device initialization, so don't resume the device */
down_write(&ksm->lock);
for (slot = 0; slot < ksm->num_slots; slot++) {
const struct blk_crypto_key *key = ksm->slots[slot].key;
int err;
if (!key)
continue;
err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
WARN_ON(err);
}
up_write(&ksm->lock);
}
EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys);
void blk_ksm_destroy(struct blk_keyslot_manager *ksm)
{
if (!ksm)
return;
kvfree(ksm->slot_hashtable);
kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots);
memzero_explicit(ksm, sizeof(*ksm));
}
EXPORT_SYMBOL_GPL(blk_ksm_destroy);
bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q)
{
if (blk_integrity_queue_supports_integrity(q)) {
pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
return false;
}
q->ksm = ksm;
return true;
}
EXPORT_SYMBOL_GPL(blk_ksm_register);
void blk_ksm_unregister(struct request_queue *q)
{
q->ksm = NULL;
}
/**
* blk_ksm_intersect_modes() - restrict supported modes by child device
* @parent: The keyslot manager for parent device
* @child: The keyslot manager for child device, or NULL
*
* Clear any crypto mode support bits in @parent that aren't set in @child.
* If @child is NULL, then all parent bits are cleared.
*
* Only use this when setting up the keyslot manager for a layered device,
* before it's been exposed yet.
*/
void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent,
const struct blk_keyslot_manager *child)
{
if (child) {
unsigned int i;
parent->max_dun_bytes_supported =
min(parent->max_dun_bytes_supported,
child->max_dun_bytes_supported);
for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported);
i++) {
parent->crypto_modes_supported[i] &=
child->crypto_modes_supported[i];
}
} else {
parent->max_dun_bytes_supported = 0;
memset(parent->crypto_modes_supported, 0,
sizeof(parent->crypto_modes_supported));
}
}
EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes);
/**
* blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes
* and DUN bytes that another KSM supports. Here,
* "superset" refers to the mathematical meaning of the
* word - i.e. if two KSMs have the *same* capabilities,
* they *are* considered supersets of each other.
* @ksm_superset: The KSM that we want to verify is a superset
* @ksm_subset: The KSM that we want to verify is a subset
*
* Return: True if @ksm_superset supports a superset of the crypto modes and DUN
* bytes that @ksm_subset supports.
*/
bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset,
struct blk_keyslot_manager *ksm_subset)
{
int i;
if (!ksm_subset)
return true;
if (!ksm_superset)
return false;
for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) {
if (ksm_subset->crypto_modes_supported[i] &
(~ksm_superset->crypto_modes_supported[i])) {
return false;
}
}
if (ksm_subset->max_dun_bytes_supported >
ksm_superset->max_dun_bytes_supported) {
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(blk_ksm_is_superset);
/**
* blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of
* another KSM
* @target_ksm: The KSM whose restrictions to update.
* @reference_ksm: The KSM to whose restrictions this function will update
* @target_ksm's restrictions to.
*
* Blk-crypto requires that crypto capabilities that were
* advertised when a bio was created continue to be supported by the
* device until that bio is ended. This is turn means that a device cannot
* shrink its advertised crypto capabilities without any explicit
* synchronization with upper layers. So if there's no such explicit
* synchronization, @reference_ksm must support all the crypto capabilities that
* @target_ksm does
* (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true).
*
* Note also that as long as the crypto capabilities are being expanded, the
* order of updates becoming visible is not important because it's alright
* for blk-crypto to see stale values - they only cause blk-crypto to
* believe that a crypto capability isn't supported when it actually is (which
* might result in blk-crypto-fallback being used if available, or the bio being
* failed).
*/
void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm,
struct blk_keyslot_manager *reference_ksm)
{
memcpy(target_ksm->crypto_modes_supported,
reference_ksm->crypto_modes_supported,
sizeof(target_ksm->crypto_modes_supported));
target_ksm->max_dun_bytes_supported =
reference_ksm->max_dun_bytes_supported;
}
EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities);
/**
* blk_ksm_init_passthrough() - Init a passthrough keyslot manager
* @ksm: The keyslot manager to init
*
* Initialize a passthrough keyslot manager.
* Called by e.g. storage drivers to set up a keyslot manager in their
* request_queue, when the storage driver wants to manage its keys by itself.
* This is useful for inline encryption hardware that doesn't have the concept
* of keyslots, and for layered devices.
*/
void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm)
{
memset(ksm, 0, sizeof(*ksm));
init_rwsem(&ksm->lock);
}
EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);