1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-23 08:35:19 -05:00
linux/drivers/iio/dac/ad9739a.c
Nuno Sa 561e2e3e90 iio: dac: ad9739a: write complete MU_CNT1 register during lock
As specified by the datasheet we should write the value 0x3 (enable
plus tracking gain) into the MU_CNT1 register during the MU lock phase.

Currently we were only setting the enable bit (bit 0) as the tracking
gain default value is already set to 1. While we should be mostly fine
in assuming the tracking gain will have the value it should, better to
explicitly write it. On top of that the datasheet also states to
re-attempt the writes in case the lock fails which we were not doing for
the tracking gain bit.

Lastly, the recommended value for the MU phase slope lock (bit 6) is 0
but for some reason the default value is 1 and hence, we were not
changing it accordingly.

Note there was no problem with the MU lock mechanism so this is not
being treated as a fix but rather an improvement.

Signed-off-by: Nuno Sa <nuno.sa@analog.com>
Link: https://lore.kernel.org/r/20240429-ad9739a-improv-v1-1-c076a06a697d@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2024-04-29 21:11:12 +01:00

464 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices AD9739a SPI DAC driver
*
* Copyright 2015-2024 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/units.h>
#include <linux/iio/backend.h>
#include <linux/iio/iio.h>
#include <linux/iio/types.h>
#define AD9739A_REG_MODE 0
#define AD9739A_RESET_MASK BIT(5)
#define AD9739A_REG_FSC_1 0x06
#define AD9739A_REG_FSC_2 0x07
#define AD9739A_FSC_MSB GENMASK(1, 0)
#define AD9739A_REG_DEC_CNT 0x8
#define AD9739A_NORMAL_MODE 0
#define AD9739A_MIXED_MODE 2
#define AD9739A_DAC_DEC GENMASK(1, 0)
#define AD9739A_REG_LVDS_REC_CNT1 0x10
#define AD9739A_RCVR_LOOP_EN_MASK GENMASK(1, 0)
#define AD9739A_REG_LVDS_REC_CNT4 0x13
#define AD9739A_FINE_DEL_SKW_MASK GENMASK(3, 0)
#define AD9739A_REG_LVDS_REC_STAT9 0x21
#define AD9739A_RCVR_TRACK_AND_LOCK (BIT(3) | BIT(0))
#define AD9739A_REG_CROSS_CNT1 0x22
#define AD9739A_REG_CROSS_CNT2 0x23
#define AD9739A_REG_PHS_DET 0x24
#define AD9739A_REG_MU_DUTY 0x25
#define AD9739A_REG_MU_CNT1 0x26
#define AD9739A_MU_EN_MASK BIT(0)
#define AD9739A_MU_GAIN_MASK BIT(1)
#define AD9739A_REG_MU_CNT2 0x27
#define AD9739A_REG_MU_CNT3 0x28
#define AD9739A_REG_MU_CNT4 0x29
#define AD9739A_MU_CNT4_DEFAULT 0xcb
#define AD9739A_REG_MU_STAT1 0x2A
#define AD9739A_MU_LOCK_MASK BIT(0)
#define AD9739A_REG_ANA_CNT_1 0x32
#define AD9739A_REG_ID 0x35
#define AD9739A_ID 0x24
#define AD9739A_REG_IS_RESERVED(reg) \
((reg) == 0x5 || (reg) == 0x9 || (reg) == 0x0E || (reg) == 0x0D || \
(reg) == 0x2B || (reg) == 0x2C || (reg) == 0x34)
#define AD9739A_FSC_MIN 8580
#define AD9739A_FSC_MAX 31700
#define AD9739A_FSC_RANGE (AD9739A_FSC_MAX - AD9739A_FSC_MIN + 1)
#define AD9739A_MIN_DAC_CLK (1600 * MEGA)
#define AD9739A_MAX_DAC_CLK (2500 * MEGA)
#define AD9739A_DAC_CLK_RANGE (AD9739A_MAX_DAC_CLK - AD9739A_MIN_DAC_CLK + 1)
/* as recommended by the datasheet */
#define AD9739A_LOCK_N_TRIES 3
struct ad9739a_state {
struct iio_backend *back;
struct regmap *regmap;
unsigned long sample_rate;
};
static int ad9739a_oper_mode_get(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad9739a_state *st = iio_priv(indio_dev);
u32 mode;
int ret;
ret = regmap_read(st->regmap, AD9739A_REG_DEC_CNT, &mode);
if (ret)
return ret;
mode = FIELD_GET(AD9739A_DAC_DEC, mode);
/* sanity check we get valid values from the HW */
if (mode != AD9739A_NORMAL_MODE && mode != AD9739A_MIXED_MODE)
return -EIO;
if (!mode)
return AD9739A_NORMAL_MODE;
/*
* We get 2 from the device but for IIO modes, that means 1. Hence the
* minus 1.
*/
return AD9739A_MIXED_MODE - 1;
}
static int ad9739a_oper_mode_set(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, u32 mode)
{
struct ad9739a_state *st = iio_priv(indio_dev);
/*
* On the IIO interface we have 0 and 1 for mode. But for mixed_mode, we
* need to write 2 in the device. That's what the below check is about.
*/
if (mode == AD9739A_MIXED_MODE - 1)
mode = AD9739A_MIXED_MODE;
return regmap_update_bits(st->regmap, AD9739A_REG_DEC_CNT,
AD9739A_DAC_DEC, mode);
}
static int ad9739a_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct ad9739a_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->sample_rate;
*val2 = 0;
return IIO_VAL_INT_64;
default:
return -EINVAL;
}
}
static int ad9739a_buffer_preenable(struct iio_dev *indio_dev)
{
struct ad9739a_state *st = iio_priv(indio_dev);
return iio_backend_data_source_set(st->back, 0, IIO_BACKEND_EXTERNAL);
}
static int ad9739a_buffer_postdisable(struct iio_dev *indio_dev)
{
struct ad9739a_state *st = iio_priv(indio_dev);
return iio_backend_data_source_set(st->back, 0,
IIO_BACKEND_INTERNAL_CONTINUOS_WAVE);
}
static bool ad9739a_reg_accessible(struct device *dev, unsigned int reg)
{
if (AD9739A_REG_IS_RESERVED(reg))
return false;
if (reg > AD9739A_REG_MU_STAT1 && reg < AD9739A_REG_ANA_CNT_1)
return false;
return true;
}
static int ad9739a_reset(struct device *dev, const struct ad9739a_state *st)
{
struct gpio_desc *gpio;
int ret;
gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
if (gpio) {
/* minimum pulse width of 40ns */
ndelay(40);
gpiod_set_value_cansleep(gpio, 0);
return 0;
}
/* bring all registers to their default state */
ret = regmap_set_bits(st->regmap, AD9739A_REG_MODE, AD9739A_RESET_MASK);
if (ret)
return ret;
ndelay(40);
return regmap_clear_bits(st->regmap, AD9739A_REG_MODE,
AD9739A_RESET_MASK);
}
/*
* Recommended values (as per datasheet) for the dac clk common mode voltage
* and Mu controller. Look at table 29.
*/
static const struct reg_sequence ad9739a_clk_mu_ctrl[] = {
/* DAC clk common mode voltage */
{ AD9739A_REG_CROSS_CNT1, 0x0f },
{ AD9739A_REG_CROSS_CNT2, 0x0f },
/* Mu controller configuration */
{ AD9739A_REG_PHS_DET, 0x30 },
{ AD9739A_REG_MU_DUTY, 0x80 },
{ AD9739A_REG_MU_CNT2, 0x44 },
{ AD9739A_REG_MU_CNT3, 0x6c },
};
static int ad9739a_init(struct device *dev, const struct ad9739a_state *st)
{
unsigned int i = 0, lock, fsc;
u32 fsc_raw;
int ret;
ret = regmap_multi_reg_write(st->regmap, ad9739a_clk_mu_ctrl,
ARRAY_SIZE(ad9739a_clk_mu_ctrl));
if (ret)
return ret;
/*
* Try to get the Mu lock. Repeat the below steps AD9739A_LOCK_N_TRIES
* (as specified by the datasheet) until we get the lock.
*/
do {
ret = regmap_write(st->regmap, AD9739A_REG_MU_CNT4,
AD9739A_MU_CNT4_DEFAULT);
if (ret)
return ret;
/* Enable the Mu controller search and track mode. */
ret = regmap_write(st->regmap, AD9739A_REG_MU_CNT1,
AD9739A_MU_EN_MASK | AD9739A_MU_GAIN_MASK);
if (ret)
return ret;
/* Ensure the DLL loop is locked */
ret = regmap_read_poll_timeout(st->regmap, AD9739A_REG_MU_STAT1,
lock, lock & AD9739A_MU_LOCK_MASK,
0, 1000);
if (ret && ret != -ETIMEDOUT)
return ret;
} while (ret && ++i < AD9739A_LOCK_N_TRIES);
if (i == AD9739A_LOCK_N_TRIES)
return dev_err_probe(dev, ret, "Mu lock timeout\n");
/* Receiver tracking and lock. Same deal as the Mu controller */
i = 0;
do {
ret = regmap_update_bits(st->regmap, AD9739A_REG_LVDS_REC_CNT4,
AD9739A_FINE_DEL_SKW_MASK,
FIELD_PREP(AD9739A_FINE_DEL_SKW_MASK, 2));
if (ret)
return ret;
/* Disable the receiver and the loop. */
ret = regmap_write(st->regmap, AD9739A_REG_LVDS_REC_CNT1, 0);
if (ret)
return ret;
/*
* Re-enable the loop so it falls out of lock and begins the
* search/track routine again.
*/
ret = regmap_set_bits(st->regmap, AD9739A_REG_LVDS_REC_CNT1,
AD9739A_RCVR_LOOP_EN_MASK);
if (ret)
return ret;
/* Ensure the DLL loop is locked */
ret = regmap_read_poll_timeout(st->regmap,
AD9739A_REG_LVDS_REC_STAT9, lock,
lock == AD9739A_RCVR_TRACK_AND_LOCK,
0, 1000);
if (ret && ret != -ETIMEDOUT)
return ret;
} while (ret && ++i < AD9739A_LOCK_N_TRIES);
if (i == AD9739A_LOCK_N_TRIES)
return dev_err_probe(dev, ret, "Receiver lock timeout\n");
ret = device_property_read_u32(dev, "adi,full-scale-microamp", &fsc);
if (ret && ret == -EINVAL)
return 0;
if (ret)
return ret;
if (!in_range(fsc, AD9739A_FSC_MIN, AD9739A_FSC_RANGE))
return dev_err_probe(dev, -EINVAL,
"Invalid full scale current(%u) [%u %u]\n",
fsc, AD9739A_FSC_MIN, AD9739A_FSC_MAX);
/*
* IOUTFS is given by
* Ioutfs = 0.0226 * FSC + 8.58
* and is given in mA. Hence we'll have to multiply by 10 * MILLI in
* order to get rid of the fractional.
*/
fsc_raw = DIV_ROUND_CLOSEST(fsc * 10 - 85800, 226);
ret = regmap_write(st->regmap, AD9739A_REG_FSC_1, fsc_raw & 0xff);
if (ret)
return ret;
return regmap_update_bits(st->regmap, AD9739A_REG_FSC_2,
AD9739A_FSC_MSB, fsc_raw >> 8);
}
static const char * const ad9739a_modes_avail[] = { "normal", "mixed-mode" };
static const struct iio_enum ad9739a_modes = {
.items = ad9739a_modes_avail,
.num_items = ARRAY_SIZE(ad9739a_modes_avail),
.get = ad9739a_oper_mode_get,
.set = ad9739a_oper_mode_set,
};
static const struct iio_chan_spec_ext_info ad9739a_ext_info[] = {
IIO_ENUM_AVAILABLE("operating_mode", IIO_SEPARATE, &ad9739a_modes),
IIO_ENUM("operating_mode", IIO_SEPARATE, &ad9739a_modes),
{ }
};
/*
* The reason for having two different channels is because we have, in reality,
* two sources of data:
* ALTVOLTAGE: It's a Continuous Wave that's internally generated by the
* backend device.
* VOLTAGE: It's the typical data we can have in a DAC device and the source
* of it has nothing to do with the backend. The backend will only
* forward it into our data interface to be sent out.
*/
static struct iio_chan_spec ad9739a_channels[] = {
{
.type = IIO_ALTVOLTAGE,
.indexed = 1,
.output = 1,
.scan_index = -1,
},
{
.type = IIO_VOLTAGE,
.indexed = 1,
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.output = 1,
.ext_info = ad9739a_ext_info,
.scan_type = {
.sign = 's',
.storagebits = 16,
.realbits = 16,
},
}
};
static const struct iio_info ad9739a_info = {
.read_raw = ad9739a_read_raw,
};
static const struct iio_buffer_setup_ops ad9739a_buffer_setup_ops = {
.preenable = &ad9739a_buffer_preenable,
.postdisable = &ad9739a_buffer_postdisable,
};
static const struct regmap_config ad9739a_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.readable_reg = ad9739a_reg_accessible,
.writeable_reg = ad9739a_reg_accessible,
.max_register = AD9739A_REG_ID,
};
static int ad9739a_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct ad9739a_state *st;
unsigned int id;
struct clk *clk;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "Could not get clkin\n");
st->sample_rate = clk_get_rate(clk);
if (!in_range(st->sample_rate, AD9739A_MIN_DAC_CLK,
AD9739A_DAC_CLK_RANGE))
return dev_err_probe(dev, -EINVAL,
"Invalid dac clk range(%lu) [%lu %lu]\n",
st->sample_rate, AD9739A_MIN_DAC_CLK,
AD9739A_MAX_DAC_CLK);
st->regmap = devm_regmap_init_spi(spi, &ad9739a_regmap_config);
if (IS_ERR(st->regmap))
return PTR_ERR(st->regmap);
ret = regmap_read(st->regmap, AD9739A_REG_ID, &id);
if (ret)
return ret;
if (id != AD9739A_ID)
dev_warn(dev, "Unrecognized CHIP_ID 0x%X", id);
ret = ad9739a_reset(dev, st);
if (ret)
return ret;
ret = ad9739a_init(dev, st);
if (ret)
return ret;
st->back = devm_iio_backend_get(dev, NULL);
if (IS_ERR(st->back))
return PTR_ERR(st->back);
ret = devm_iio_backend_request_buffer(dev, st->back, indio_dev);
if (ret)
return ret;
ret = iio_backend_extend_chan_spec(indio_dev, st->back,
&ad9739a_channels[0]);
if (ret)
return ret;
ret = iio_backend_set_sampling_freq(st->back, 0, st->sample_rate);
if (ret)
return ret;
ret = devm_iio_backend_enable(dev, st->back);
if (ret)
return ret;
indio_dev->name = "ad9739a";
indio_dev->info = &ad9739a_info;
indio_dev->channels = ad9739a_channels;
indio_dev->num_channels = ARRAY_SIZE(ad9739a_channels);
indio_dev->setup_ops = &ad9739a_buffer_setup_ops;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct of_device_id ad9739a_of_match[] = {
{ .compatible = "adi,ad9739a" },
{}
};
MODULE_DEVICE_TABLE(of, ad9739a_of_match);
static const struct spi_device_id ad9739a_id[] = {
{"ad9739a"},
{}
};
MODULE_DEVICE_TABLE(spi, ad9739a_id);
static struct spi_driver ad9739a_driver = {
.driver = {
.name = "ad9739a",
.of_match_table = ad9739a_of_match,
},
.probe = ad9739a_probe,
.id_table = ad9739a_id,
};
module_spi_driver(ad9739a_driver);
MODULE_AUTHOR("Dragos Bogdan <dragos.bogdan@analog.com>");
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD9739 DAC");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_BACKEND);