mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-24 17:23:25 -05:00
eb5618911a
- Enable the per-vcpu dirty-ring tracking mechanism, together with an option to keep the good old dirty log around for pages that are dirtied by something other than a vcpu. - Switch to the relaxed parallel fault handling, using RCU to delay page table reclaim and giving better performance under load. - Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option, which multi-process VMMs such as crosvm rely on. - Merge the pKVM shadow vcpu state tracking that allows the hypervisor to have its own view of a vcpu, keeping that state private. - Add support for the PMUv3p5 architecture revision, bringing support for 64bit counters on systems that support it, and fix the no-quite-compliant CHAIN-ed counter support for the machines that actually exist out there. - Fix a handful of minor issues around 52bit VA/PA support (64kB pages only) as a prefix of the oncoming support for 4kB and 16kB pages. - Add/Enable/Fix a bunch of selftests covering memslots, breakpoints, stage-2 faults and access tracking. You name it, we got it, we probably broke it. - Pick a small set of documentation and spelling fixes, because no good merge window would be complete without those. As a side effect, this tag also drags: - The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring series - A shared branch with the arm64 tree that repaints all the system registers to match the ARM ARM's naming, and resulting in interesting conflicts -----BEGIN PGP SIGNATURE----- iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmOODb0PHG1hekBrZXJu ZWwub3JnAAoJECPQ0LrRPXpDztsQAInRnsgLl57/SpqhZzExNCllN6AT/bdeB3uz rnw3ScJOV174uNKp8lnPWoTvu2YUGiVtBp6tFHhDI8le7zHX438ZT8KE5mcs8p5i KfFKnb8SHV2DDpqkcy24c0Xl/6vsg1qkKrdfJb49yl5ZakRITDpynW/7tn6dXsxX wASeGFdCYeW4g2xMQzsCbtx6LgeQ8uomBmzRfPrOtZHYYxAn6+4Mj4595EC1sWxM AQnbp8tW3Vw46saEZAQvUEOGOW9q0Nls7G21YqQ52IA+ZVDK1LmAF2b1XY3edjkk pX8EsXOURfqdasBxfSfF3SgnUazoz9GHpSzp1cTVTktrPp40rrT7Ldtml0ktq69d 1malPj47KVMDsIq0kNJGnMxciXFgAHw+VaCQX+k4zhIatNwviMbSop2fEoxj22jc 4YGgGOxaGrnvmAJhreCIbr4CkZk5CJ8Zvmtfg+QM6npIp8BY8896nvORx/d4i6tT H4caadd8AAR56ANUyd3+KqF3x0WrkaU0PLHJLy1tKwOXJUUTjcpvIfahBAAeUlSR qEFrtb+EEMPgAwLfNOICcNkPZR/yyuYvM+FiUQNVy5cNiwFkpztpIctfOFaHySGF K07O2/a1F6xKL0OKRUg7hGKknF9ecmux4vHhiUMuIk9VOgNTWobHozBDorLKXMzC aWa6oGVC =iIPT -----END PGP SIGNATURE----- Merge tag 'kvmarm-6.2' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm64 updates for 6.2 - Enable the per-vcpu dirty-ring tracking mechanism, together with an option to keep the good old dirty log around for pages that are dirtied by something other than a vcpu. - Switch to the relaxed parallel fault handling, using RCU to delay page table reclaim and giving better performance under load. - Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option, which multi-process VMMs such as crosvm rely on. - Merge the pKVM shadow vcpu state tracking that allows the hypervisor to have its own view of a vcpu, keeping that state private. - Add support for the PMUv3p5 architecture revision, bringing support for 64bit counters on systems that support it, and fix the no-quite-compliant CHAIN-ed counter support for the machines that actually exist out there. - Fix a handful of minor issues around 52bit VA/PA support (64kB pages only) as a prefix of the oncoming support for 4kB and 16kB pages. - Add/Enable/Fix a bunch of selftests covering memslots, breakpoints, stage-2 faults and access tracking. You name it, we got it, we probably broke it. - Pick a small set of documentation and spelling fixes, because no good merge window would be complete without those. As a side effect, this tag also drags: - The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring series - A shared branch with the arm64 tree that repaints all the system registers to match the ARM ARM's naming, and resulting in interesting conflicts
322 lines
8.7 KiB
C
322 lines
8.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2020, Google LLC.
|
|
*/
|
|
#define _GNU_SOURCE
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include "kvm_util.h"
|
|
#include "memstress.h"
|
|
#include "processor.h"
|
|
|
|
struct memstress_args memstress_args;
|
|
|
|
/*
|
|
* Guest virtual memory offset of the testing memory slot.
|
|
* Must not conflict with identity mapped test code.
|
|
*/
|
|
static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
|
|
|
|
struct vcpu_thread {
|
|
/* The index of the vCPU. */
|
|
int vcpu_idx;
|
|
|
|
/* The pthread backing the vCPU. */
|
|
pthread_t thread;
|
|
|
|
/* Set to true once the vCPU thread is up and running. */
|
|
bool running;
|
|
};
|
|
|
|
/* The vCPU threads involved in this test. */
|
|
static struct vcpu_thread vcpu_threads[KVM_MAX_VCPUS];
|
|
|
|
/* The function run by each vCPU thread, as provided by the test. */
|
|
static void (*vcpu_thread_fn)(struct memstress_vcpu_args *);
|
|
|
|
/* Set to true once all vCPU threads are up and running. */
|
|
static bool all_vcpu_threads_running;
|
|
|
|
static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
|
|
|
|
/*
|
|
* Continuously write to the first 8 bytes of each page in the
|
|
* specified region.
|
|
*/
|
|
void memstress_guest_code(uint32_t vcpu_idx)
|
|
{
|
|
struct memstress_args *args = &memstress_args;
|
|
struct memstress_vcpu_args *vcpu_args = &args->vcpu_args[vcpu_idx];
|
|
struct guest_random_state rand_state;
|
|
uint64_t gva;
|
|
uint64_t pages;
|
|
uint64_t addr;
|
|
uint64_t page;
|
|
int i;
|
|
|
|
rand_state = new_guest_random_state(args->random_seed + vcpu_idx);
|
|
|
|
gva = vcpu_args->gva;
|
|
pages = vcpu_args->pages;
|
|
|
|
/* Make sure vCPU args data structure is not corrupt. */
|
|
GUEST_ASSERT(vcpu_args->vcpu_idx == vcpu_idx);
|
|
|
|
while (true) {
|
|
for (i = 0; i < pages; i++) {
|
|
if (args->random_access)
|
|
page = guest_random_u32(&rand_state) % pages;
|
|
else
|
|
page = i;
|
|
|
|
addr = gva + (page * args->guest_page_size);
|
|
|
|
if (guest_random_u32(&rand_state) % 100 < args->write_percent)
|
|
*(uint64_t *)addr = 0x0123456789ABCDEF;
|
|
else
|
|
READ_ONCE(*(uint64_t *)addr);
|
|
}
|
|
|
|
GUEST_SYNC(1);
|
|
}
|
|
}
|
|
|
|
void memstress_setup_vcpus(struct kvm_vm *vm, int nr_vcpus,
|
|
struct kvm_vcpu *vcpus[],
|
|
uint64_t vcpu_memory_bytes,
|
|
bool partition_vcpu_memory_access)
|
|
{
|
|
struct memstress_args *args = &memstress_args;
|
|
struct memstress_vcpu_args *vcpu_args;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_vcpus; i++) {
|
|
vcpu_args = &args->vcpu_args[i];
|
|
|
|
vcpu_args->vcpu = vcpus[i];
|
|
vcpu_args->vcpu_idx = i;
|
|
|
|
if (partition_vcpu_memory_access) {
|
|
vcpu_args->gva = guest_test_virt_mem +
|
|
(i * vcpu_memory_bytes);
|
|
vcpu_args->pages = vcpu_memory_bytes /
|
|
args->guest_page_size;
|
|
vcpu_args->gpa = args->gpa + (i * vcpu_memory_bytes);
|
|
} else {
|
|
vcpu_args->gva = guest_test_virt_mem;
|
|
vcpu_args->pages = (nr_vcpus * vcpu_memory_bytes) /
|
|
args->guest_page_size;
|
|
vcpu_args->gpa = args->gpa;
|
|
}
|
|
|
|
vcpu_args_set(vcpus[i], 1, i);
|
|
|
|
pr_debug("Added VCPU %d with test mem gpa [%lx, %lx)\n",
|
|
i, vcpu_args->gpa, vcpu_args->gpa +
|
|
(vcpu_args->pages * args->guest_page_size));
|
|
}
|
|
}
|
|
|
|
struct kvm_vm *memstress_create_vm(enum vm_guest_mode mode, int nr_vcpus,
|
|
uint64_t vcpu_memory_bytes, int slots,
|
|
enum vm_mem_backing_src_type backing_src,
|
|
bool partition_vcpu_memory_access)
|
|
{
|
|
struct memstress_args *args = &memstress_args;
|
|
struct kvm_vm *vm;
|
|
uint64_t guest_num_pages, slot0_pages = 0;
|
|
uint64_t backing_src_pagesz = get_backing_src_pagesz(backing_src);
|
|
uint64_t region_end_gfn;
|
|
int i;
|
|
|
|
pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
|
|
|
|
/* By default vCPUs will write to memory. */
|
|
args->write_percent = 100;
|
|
|
|
/*
|
|
* Snapshot the non-huge page size. This is used by the guest code to
|
|
* access/dirty pages at the logging granularity.
|
|
*/
|
|
args->guest_page_size = vm_guest_mode_params[mode].page_size;
|
|
|
|
guest_num_pages = vm_adjust_num_guest_pages(mode,
|
|
(nr_vcpus * vcpu_memory_bytes) / args->guest_page_size);
|
|
|
|
TEST_ASSERT(vcpu_memory_bytes % getpagesize() == 0,
|
|
"Guest memory size is not host page size aligned.");
|
|
TEST_ASSERT(vcpu_memory_bytes % args->guest_page_size == 0,
|
|
"Guest memory size is not guest page size aligned.");
|
|
TEST_ASSERT(guest_num_pages % slots == 0,
|
|
"Guest memory cannot be evenly divided into %d slots.",
|
|
slots);
|
|
|
|
/*
|
|
* If using nested, allocate extra pages for the nested page tables and
|
|
* in-memory data structures.
|
|
*/
|
|
if (args->nested)
|
|
slot0_pages += memstress_nested_pages(nr_vcpus);
|
|
|
|
/*
|
|
* Pass guest_num_pages to populate the page tables for test memory.
|
|
* The memory is also added to memslot 0, but that's a benign side
|
|
* effect as KVM allows aliasing HVAs in meslots.
|
|
*/
|
|
vm = __vm_create_with_vcpus(mode, nr_vcpus, slot0_pages + guest_num_pages,
|
|
memstress_guest_code, vcpus);
|
|
|
|
args->vm = vm;
|
|
|
|
/* Put the test region at the top guest physical memory. */
|
|
region_end_gfn = vm->max_gfn + 1;
|
|
|
|
#ifdef __x86_64__
|
|
/*
|
|
* When running vCPUs in L2, restrict the test region to 48 bits to
|
|
* avoid needing 5-level page tables to identity map L2.
|
|
*/
|
|
if (args->nested)
|
|
region_end_gfn = min(region_end_gfn, (1UL << 48) / args->guest_page_size);
|
|
#endif
|
|
/*
|
|
* If there should be more memory in the guest test region than there
|
|
* can be pages in the guest, it will definitely cause problems.
|
|
*/
|
|
TEST_ASSERT(guest_num_pages < region_end_gfn,
|
|
"Requested more guest memory than address space allows.\n"
|
|
" guest pages: %" PRIx64 " max gfn: %" PRIx64
|
|
" nr_vcpus: %d wss: %" PRIx64 "]\n",
|
|
guest_num_pages, region_end_gfn - 1, nr_vcpus, vcpu_memory_bytes);
|
|
|
|
args->gpa = (region_end_gfn - guest_num_pages - 1) * args->guest_page_size;
|
|
args->gpa = align_down(args->gpa, backing_src_pagesz);
|
|
#ifdef __s390x__
|
|
/* Align to 1M (segment size) */
|
|
args->gpa = align_down(args->gpa, 1 << 20);
|
|
#endif
|
|
args->size = guest_num_pages * args->guest_page_size;
|
|
pr_info("guest physical test memory: [0x%lx, 0x%lx)\n",
|
|
args->gpa, args->gpa + args->size);
|
|
|
|
/* Add extra memory slots for testing */
|
|
for (i = 0; i < slots; i++) {
|
|
uint64_t region_pages = guest_num_pages / slots;
|
|
vm_paddr_t region_start = args->gpa + region_pages * args->guest_page_size * i;
|
|
|
|
vm_userspace_mem_region_add(vm, backing_src, region_start,
|
|
MEMSTRESS_MEM_SLOT_INDEX + i,
|
|
region_pages, 0);
|
|
}
|
|
|
|
/* Do mapping for the demand paging memory slot */
|
|
virt_map(vm, guest_test_virt_mem, args->gpa, guest_num_pages);
|
|
|
|
memstress_setup_vcpus(vm, nr_vcpus, vcpus, vcpu_memory_bytes,
|
|
partition_vcpu_memory_access);
|
|
|
|
if (args->nested) {
|
|
pr_info("Configuring vCPUs to run in L2 (nested).\n");
|
|
memstress_setup_nested(vm, nr_vcpus, vcpus);
|
|
}
|
|
|
|
/* Export the shared variables to the guest. */
|
|
sync_global_to_guest(vm, memstress_args);
|
|
|
|
return vm;
|
|
}
|
|
|
|
void memstress_destroy_vm(struct kvm_vm *vm)
|
|
{
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
void memstress_set_write_percent(struct kvm_vm *vm, uint32_t write_percent)
|
|
{
|
|
memstress_args.write_percent = write_percent;
|
|
sync_global_to_guest(vm, memstress_args.write_percent);
|
|
}
|
|
|
|
void memstress_set_random_seed(struct kvm_vm *vm, uint32_t random_seed)
|
|
{
|
|
memstress_args.random_seed = random_seed;
|
|
sync_global_to_guest(vm, memstress_args.random_seed);
|
|
}
|
|
|
|
void memstress_set_random_access(struct kvm_vm *vm, bool random_access)
|
|
{
|
|
memstress_args.random_access = random_access;
|
|
sync_global_to_guest(vm, memstress_args.random_access);
|
|
}
|
|
|
|
uint64_t __weak memstress_nested_pages(int nr_vcpus)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void __weak memstress_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu **vcpus)
|
|
{
|
|
pr_info("%s() not support on this architecture, skipping.\n", __func__);
|
|
exit(KSFT_SKIP);
|
|
}
|
|
|
|
static void *vcpu_thread_main(void *data)
|
|
{
|
|
struct vcpu_thread *vcpu = data;
|
|
int vcpu_idx = vcpu->vcpu_idx;
|
|
|
|
if (memstress_args.pin_vcpus)
|
|
kvm_pin_this_task_to_pcpu(memstress_args.vcpu_to_pcpu[vcpu_idx]);
|
|
|
|
WRITE_ONCE(vcpu->running, true);
|
|
|
|
/*
|
|
* Wait for all vCPU threads to be up and running before calling the test-
|
|
* provided vCPU thread function. This prevents thread creation (which
|
|
* requires taking the mmap_sem in write mode) from interfering with the
|
|
* guest faulting in its memory.
|
|
*/
|
|
while (!READ_ONCE(all_vcpu_threads_running))
|
|
;
|
|
|
|
vcpu_thread_fn(&memstress_args.vcpu_args[vcpu_idx]);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void memstress_start_vcpu_threads(int nr_vcpus,
|
|
void (*vcpu_fn)(struct memstress_vcpu_args *))
|
|
{
|
|
int i;
|
|
|
|
vcpu_thread_fn = vcpu_fn;
|
|
WRITE_ONCE(all_vcpu_threads_running, false);
|
|
WRITE_ONCE(memstress_args.stop_vcpus, false);
|
|
|
|
for (i = 0; i < nr_vcpus; i++) {
|
|
struct vcpu_thread *vcpu = &vcpu_threads[i];
|
|
|
|
vcpu->vcpu_idx = i;
|
|
WRITE_ONCE(vcpu->running, false);
|
|
|
|
pthread_create(&vcpu->thread, NULL, vcpu_thread_main, vcpu);
|
|
}
|
|
|
|
for (i = 0; i < nr_vcpus; i++) {
|
|
while (!READ_ONCE(vcpu_threads[i].running))
|
|
;
|
|
}
|
|
|
|
WRITE_ONCE(all_vcpu_threads_running, true);
|
|
}
|
|
|
|
void memstress_join_vcpu_threads(int nr_vcpus)
|
|
{
|
|
int i;
|
|
|
|
WRITE_ONCE(memstress_args.stop_vcpus, true);
|
|
|
|
for (i = 0; i < nr_vcpus; i++)
|
|
pthread_join(vcpu_threads[i].thread, NULL);
|
|
}
|