mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-26 18:43:33 -05:00
bf64b66036
The DW SSI errors handling method can be generically implemented for all types of the transfers: IRQ, DMA and poll-based ones. It will be a function which checks the overflow/underflow error flags and resets the controller if any of them is set. In the framework of this commit we make use of the new method to detect the errors in the IRQ- and DMA-based SPI transfer execution procedures. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Link: https://lore.kernel.org/r/20201007235511.4935-17-Sergey.Semin@baikalelectronics.ru Signed-off-by: Mark Brown <broonie@kernel.org>
656 lines
16 KiB
C
656 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Special handling for DW DMA core
|
|
*
|
|
* Copyright (c) 2009, 2014 Intel Corporation.
|
|
*/
|
|
|
|
#include <linux/completion.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/irqreturn.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/platform_data/dma-dw.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/types.h>
|
|
|
|
#include "spi-dw.h"
|
|
|
|
#define RX_BUSY 0
|
|
#define RX_BURST_LEVEL 16
|
|
#define TX_BUSY 1
|
|
#define TX_BURST_LEVEL 16
|
|
|
|
static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
|
|
{
|
|
struct dw_dma_slave *s = param;
|
|
|
|
if (s->dma_dev != chan->device->dev)
|
|
return false;
|
|
|
|
chan->private = s;
|
|
return true;
|
|
}
|
|
|
|
static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
|
|
{
|
|
struct dma_slave_caps caps;
|
|
u32 max_burst, def_burst;
|
|
int ret;
|
|
|
|
def_burst = dws->fifo_len / 2;
|
|
|
|
ret = dma_get_slave_caps(dws->rxchan, &caps);
|
|
if (!ret && caps.max_burst)
|
|
max_burst = caps.max_burst;
|
|
else
|
|
max_burst = RX_BURST_LEVEL;
|
|
|
|
dws->rxburst = min(max_burst, def_burst);
|
|
dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
|
|
|
|
ret = dma_get_slave_caps(dws->txchan, &caps);
|
|
if (!ret && caps.max_burst)
|
|
max_burst = caps.max_burst;
|
|
else
|
|
max_burst = TX_BURST_LEVEL;
|
|
|
|
/*
|
|
* Having a Rx DMA channel serviced with higher priority than a Tx DMA
|
|
* channel might not be enough to provide a well balanced DMA-based
|
|
* SPI transfer interface. There might still be moments when the Tx DMA
|
|
* channel is occasionally handled faster than the Rx DMA channel.
|
|
* That in its turn will eventually cause the SPI Rx FIFO overflow if
|
|
* SPI bus speed is high enough to fill the SPI Rx FIFO in before it's
|
|
* cleared by the Rx DMA channel. In order to fix the problem the Tx
|
|
* DMA activity is intentionally slowed down by limiting the SPI Tx
|
|
* FIFO depth with a value twice bigger than the Tx burst length.
|
|
*/
|
|
dws->txburst = min(max_burst, def_burst);
|
|
dw_writel(dws, DW_SPI_DMATDLR, dws->txburst);
|
|
}
|
|
|
|
static void dw_spi_dma_sg_burst_init(struct dw_spi *dws)
|
|
{
|
|
struct dma_slave_caps tx = {0}, rx = {0};
|
|
|
|
dma_get_slave_caps(dws->txchan, &tx);
|
|
dma_get_slave_caps(dws->rxchan, &rx);
|
|
|
|
if (tx.max_sg_burst > 0 && rx.max_sg_burst > 0)
|
|
dws->dma_sg_burst = min(tx.max_sg_burst, rx.max_sg_burst);
|
|
else if (tx.max_sg_burst > 0)
|
|
dws->dma_sg_burst = tx.max_sg_burst;
|
|
else if (rx.max_sg_burst > 0)
|
|
dws->dma_sg_burst = rx.max_sg_burst;
|
|
else
|
|
dws->dma_sg_burst = 0;
|
|
}
|
|
|
|
static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
|
|
{
|
|
struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
|
|
struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
|
|
struct pci_dev *dma_dev;
|
|
dma_cap_mask_t mask;
|
|
|
|
/*
|
|
* Get pci device for DMA controller, currently it could only
|
|
* be the DMA controller of Medfield
|
|
*/
|
|
dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
|
|
if (!dma_dev)
|
|
return -ENODEV;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
/* 1. Init rx channel */
|
|
rx->dma_dev = &dma_dev->dev;
|
|
dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
|
|
if (!dws->rxchan)
|
|
goto err_exit;
|
|
|
|
/* 2. Init tx channel */
|
|
tx->dma_dev = &dma_dev->dev;
|
|
dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
|
|
if (!dws->txchan)
|
|
goto free_rxchan;
|
|
|
|
dws->master->dma_rx = dws->rxchan;
|
|
dws->master->dma_tx = dws->txchan;
|
|
|
|
init_completion(&dws->dma_completion);
|
|
|
|
dw_spi_dma_maxburst_init(dws);
|
|
|
|
dw_spi_dma_sg_burst_init(dws);
|
|
|
|
return 0;
|
|
|
|
free_rxchan:
|
|
dma_release_channel(dws->rxchan);
|
|
dws->rxchan = NULL;
|
|
err_exit:
|
|
return -EBUSY;
|
|
}
|
|
|
|
static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
|
|
{
|
|
dws->rxchan = dma_request_slave_channel(dev, "rx");
|
|
if (!dws->rxchan)
|
|
return -ENODEV;
|
|
|
|
dws->txchan = dma_request_slave_channel(dev, "tx");
|
|
if (!dws->txchan) {
|
|
dma_release_channel(dws->rxchan);
|
|
dws->rxchan = NULL;
|
|
return -ENODEV;
|
|
}
|
|
|
|
dws->master->dma_rx = dws->rxchan;
|
|
dws->master->dma_tx = dws->txchan;
|
|
|
|
init_completion(&dws->dma_completion);
|
|
|
|
dw_spi_dma_maxburst_init(dws);
|
|
|
|
dw_spi_dma_sg_burst_init(dws);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void dw_spi_dma_exit(struct dw_spi *dws)
|
|
{
|
|
if (dws->txchan) {
|
|
dmaengine_terminate_sync(dws->txchan);
|
|
dma_release_channel(dws->txchan);
|
|
}
|
|
|
|
if (dws->rxchan) {
|
|
dmaengine_terminate_sync(dws->rxchan);
|
|
dma_release_channel(dws->rxchan);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
|
|
{
|
|
dw_spi_check_status(dws, false);
|
|
|
|
complete(&dws->dma_completion);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static bool dw_spi_can_dma(struct spi_controller *master,
|
|
struct spi_device *spi, struct spi_transfer *xfer)
|
|
{
|
|
struct dw_spi *dws = spi_controller_get_devdata(master);
|
|
|
|
return xfer->len > dws->fifo_len;
|
|
}
|
|
|
|
static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
|
|
{
|
|
if (n_bytes == 1)
|
|
return DMA_SLAVE_BUSWIDTH_1_BYTE;
|
|
else if (n_bytes == 2)
|
|
return DMA_SLAVE_BUSWIDTH_2_BYTES;
|
|
|
|
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
|
|
}
|
|
|
|
static int dw_spi_dma_wait(struct dw_spi *dws, unsigned int len, u32 speed)
|
|
{
|
|
unsigned long long ms;
|
|
|
|
ms = len * MSEC_PER_SEC * BITS_PER_BYTE;
|
|
do_div(ms, speed);
|
|
ms += ms + 200;
|
|
|
|
if (ms > UINT_MAX)
|
|
ms = UINT_MAX;
|
|
|
|
ms = wait_for_completion_timeout(&dws->dma_completion,
|
|
msecs_to_jiffies(ms));
|
|
|
|
if (ms == 0) {
|
|
dev_err(&dws->master->cur_msg->spi->dev,
|
|
"DMA transaction timed out\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
|
|
{
|
|
return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
|
|
}
|
|
|
|
static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
int retry = SPI_WAIT_RETRIES;
|
|
struct spi_delay delay;
|
|
u32 nents;
|
|
|
|
nents = dw_readl(dws, DW_SPI_TXFLR);
|
|
delay.unit = SPI_DELAY_UNIT_SCK;
|
|
delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
|
|
|
|
while (dw_spi_dma_tx_busy(dws) && retry--)
|
|
spi_delay_exec(&delay, xfer);
|
|
|
|
if (retry < 0) {
|
|
dev_err(&dws->master->dev, "Tx hanged up\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
|
|
* channel will clear a corresponding bit.
|
|
*/
|
|
static void dw_spi_dma_tx_done(void *arg)
|
|
{
|
|
struct dw_spi *dws = arg;
|
|
|
|
clear_bit(TX_BUSY, &dws->dma_chan_busy);
|
|
if (test_bit(RX_BUSY, &dws->dma_chan_busy))
|
|
return;
|
|
|
|
complete(&dws->dma_completion);
|
|
}
|
|
|
|
static int dw_spi_dma_config_tx(struct dw_spi *dws)
|
|
{
|
|
struct dma_slave_config txconf;
|
|
|
|
memset(&txconf, 0, sizeof(txconf));
|
|
txconf.direction = DMA_MEM_TO_DEV;
|
|
txconf.dst_addr = dws->dma_addr;
|
|
txconf.dst_maxburst = dws->txburst;
|
|
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
|
|
txconf.device_fc = false;
|
|
|
|
return dmaengine_slave_config(dws->txchan, &txconf);
|
|
}
|
|
|
|
static int dw_spi_dma_submit_tx(struct dw_spi *dws, struct scatterlist *sgl,
|
|
unsigned int nents)
|
|
{
|
|
struct dma_async_tx_descriptor *txdesc;
|
|
dma_cookie_t cookie;
|
|
int ret;
|
|
|
|
txdesc = dmaengine_prep_slave_sg(dws->txchan, sgl, nents,
|
|
DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!txdesc)
|
|
return -ENOMEM;
|
|
|
|
txdesc->callback = dw_spi_dma_tx_done;
|
|
txdesc->callback_param = dws;
|
|
|
|
cookie = dmaengine_submit(txdesc);
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
dmaengine_terminate_sync(dws->txchan);
|
|
return ret;
|
|
}
|
|
|
|
set_bit(TX_BUSY, &dws->dma_chan_busy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
|
|
{
|
|
return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
|
|
}
|
|
|
|
static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
|
|
{
|
|
int retry = SPI_WAIT_RETRIES;
|
|
struct spi_delay delay;
|
|
unsigned long ns, us;
|
|
u32 nents;
|
|
|
|
/*
|
|
* It's unlikely that DMA engine is still doing the data fetching, but
|
|
* if it's let's give it some reasonable time. The timeout calculation
|
|
* is based on the synchronous APB/SSI reference clock rate, on a
|
|
* number of data entries left in the Rx FIFO, times a number of clock
|
|
* periods normally needed for a single APB read/write transaction
|
|
* without PREADY signal utilized (which is true for the DW APB SSI
|
|
* controller).
|
|
*/
|
|
nents = dw_readl(dws, DW_SPI_RXFLR);
|
|
ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
|
|
if (ns <= NSEC_PER_USEC) {
|
|
delay.unit = SPI_DELAY_UNIT_NSECS;
|
|
delay.value = ns;
|
|
} else {
|
|
us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
|
|
delay.unit = SPI_DELAY_UNIT_USECS;
|
|
delay.value = clamp_val(us, 0, USHRT_MAX);
|
|
}
|
|
|
|
while (dw_spi_dma_rx_busy(dws) && retry--)
|
|
spi_delay_exec(&delay, NULL);
|
|
|
|
if (retry < 0) {
|
|
dev_err(&dws->master->dev, "Rx hanged up\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* dws->dma_chan_busy is set before the dma transfer starts, callback for rx
|
|
* channel will clear a corresponding bit.
|
|
*/
|
|
static void dw_spi_dma_rx_done(void *arg)
|
|
{
|
|
struct dw_spi *dws = arg;
|
|
|
|
clear_bit(RX_BUSY, &dws->dma_chan_busy);
|
|
if (test_bit(TX_BUSY, &dws->dma_chan_busy))
|
|
return;
|
|
|
|
complete(&dws->dma_completion);
|
|
}
|
|
|
|
static int dw_spi_dma_config_rx(struct dw_spi *dws)
|
|
{
|
|
struct dma_slave_config rxconf;
|
|
|
|
memset(&rxconf, 0, sizeof(rxconf));
|
|
rxconf.direction = DMA_DEV_TO_MEM;
|
|
rxconf.src_addr = dws->dma_addr;
|
|
rxconf.src_maxburst = dws->rxburst;
|
|
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
|
|
rxconf.device_fc = false;
|
|
|
|
return dmaengine_slave_config(dws->rxchan, &rxconf);
|
|
}
|
|
|
|
static int dw_spi_dma_submit_rx(struct dw_spi *dws, struct scatterlist *sgl,
|
|
unsigned int nents)
|
|
{
|
|
struct dma_async_tx_descriptor *rxdesc;
|
|
dma_cookie_t cookie;
|
|
int ret;
|
|
|
|
rxdesc = dmaengine_prep_slave_sg(dws->rxchan, sgl, nents,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!rxdesc)
|
|
return -ENOMEM;
|
|
|
|
rxdesc->callback = dw_spi_dma_rx_done;
|
|
rxdesc->callback_param = dws;
|
|
|
|
cookie = dmaengine_submit(rxdesc);
|
|
ret = dma_submit_error(cookie);
|
|
if (ret) {
|
|
dmaengine_terminate_sync(dws->rxchan);
|
|
return ret;
|
|
}
|
|
|
|
set_bit(RX_BUSY, &dws->dma_chan_busy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
|
|
{
|
|
u16 imr, dma_ctrl;
|
|
int ret;
|
|
|
|
if (!xfer->tx_buf)
|
|
return -EINVAL;
|
|
|
|
/* Setup DMA channels */
|
|
ret = dw_spi_dma_config_tx(dws);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (xfer->rx_buf) {
|
|
ret = dw_spi_dma_config_rx(dws);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Set the DMA handshaking interface */
|
|
dma_ctrl = SPI_DMA_TDMAE;
|
|
if (xfer->rx_buf)
|
|
dma_ctrl |= SPI_DMA_RDMAE;
|
|
dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
|
|
|
|
/* Set the interrupt mask */
|
|
imr = SPI_INT_TXOI;
|
|
if (xfer->rx_buf)
|
|
imr |= SPI_INT_RXUI | SPI_INT_RXOI;
|
|
spi_umask_intr(dws, imr);
|
|
|
|
reinit_completion(&dws->dma_completion);
|
|
|
|
dws->transfer_handler = dw_spi_dma_transfer_handler;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dw_spi_dma_transfer_all(struct dw_spi *dws,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
int ret;
|
|
|
|
/* Submit the DMA Tx transfer */
|
|
ret = dw_spi_dma_submit_tx(dws, xfer->tx_sg.sgl, xfer->tx_sg.nents);
|
|
if (ret)
|
|
goto err_clear_dmac;
|
|
|
|
/* Submit the DMA Rx transfer if required */
|
|
if (xfer->rx_buf) {
|
|
ret = dw_spi_dma_submit_rx(dws, xfer->rx_sg.sgl,
|
|
xfer->rx_sg.nents);
|
|
if (ret)
|
|
goto err_clear_dmac;
|
|
|
|
/* rx must be started before tx due to spi instinct */
|
|
dma_async_issue_pending(dws->rxchan);
|
|
}
|
|
|
|
dma_async_issue_pending(dws->txchan);
|
|
|
|
ret = dw_spi_dma_wait(dws, xfer->len, xfer->effective_speed_hz);
|
|
|
|
err_clear_dmac:
|
|
dw_writel(dws, DW_SPI_DMACR, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* In case if at least one of the requested DMA channels doesn't support the
|
|
* hardware accelerated SG list entries traverse, the DMA driver will most
|
|
* likely work that around by performing the IRQ-based SG list entries
|
|
* resubmission. That might and will cause a problem if the DMA Tx channel is
|
|
* recharged and re-executed before the Rx DMA channel. Due to
|
|
* non-deterministic IRQ-handler execution latency the DMA Tx channel will
|
|
* start pushing data to the SPI bus before the Rx DMA channel is even
|
|
* reinitialized with the next inbound SG list entry. By doing so the DMA Tx
|
|
* channel will implicitly start filling the DW APB SSI Rx FIFO up, which while
|
|
* the DMA Rx channel being recharged and re-executed will eventually be
|
|
* overflown.
|
|
*
|
|
* In order to solve the problem we have to feed the DMA engine with SG list
|
|
* entries one-by-one. It shall keep the DW APB SSI Tx and Rx FIFOs
|
|
* synchronized and prevent the Rx FIFO overflow. Since in general the tx_sg
|
|
* and rx_sg lists may have different number of entries of different lengths
|
|
* (though total length should match) let's virtually split the SG-lists to the
|
|
* set of DMA transfers, which length is a minimum of the ordered SG-entries
|
|
* lengths. An ASCII-sketch of the implemented algo is following:
|
|
* xfer->len
|
|
* |___________|
|
|
* tx_sg list: |___|____|__|
|
|
* rx_sg list: |_|____|____|
|
|
* DMA transfers: |_|_|__|_|__|
|
|
*
|
|
* Note in order to have this workaround solving the denoted problem the DMA
|
|
* engine driver should properly initialize the max_sg_burst capability and set
|
|
* the DMA device max segment size parameter with maximum data block size the
|
|
* DMA engine supports.
|
|
*/
|
|
|
|
static int dw_spi_dma_transfer_one(struct dw_spi *dws,
|
|
struct spi_transfer *xfer)
|
|
{
|
|
struct scatterlist *tx_sg = NULL, *rx_sg = NULL, tx_tmp, rx_tmp;
|
|
unsigned int tx_len = 0, rx_len = 0;
|
|
unsigned int base, len;
|
|
int ret;
|
|
|
|
sg_init_table(&tx_tmp, 1);
|
|
sg_init_table(&rx_tmp, 1);
|
|
|
|
for (base = 0, len = 0; base < xfer->len; base += len) {
|
|
/* Fetch next Tx DMA data chunk */
|
|
if (!tx_len) {
|
|
tx_sg = !tx_sg ? &xfer->tx_sg.sgl[0] : sg_next(tx_sg);
|
|
sg_dma_address(&tx_tmp) = sg_dma_address(tx_sg);
|
|
tx_len = sg_dma_len(tx_sg);
|
|
}
|
|
|
|
/* Fetch next Rx DMA data chunk */
|
|
if (!rx_len) {
|
|
rx_sg = !rx_sg ? &xfer->rx_sg.sgl[0] : sg_next(rx_sg);
|
|
sg_dma_address(&rx_tmp) = sg_dma_address(rx_sg);
|
|
rx_len = sg_dma_len(rx_sg);
|
|
}
|
|
|
|
len = min(tx_len, rx_len);
|
|
|
|
sg_dma_len(&tx_tmp) = len;
|
|
sg_dma_len(&rx_tmp) = len;
|
|
|
|
/* Submit DMA Tx transfer */
|
|
ret = dw_spi_dma_submit_tx(dws, &tx_tmp, 1);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Submit DMA Rx transfer */
|
|
ret = dw_spi_dma_submit_rx(dws, &rx_tmp, 1);
|
|
if (ret)
|
|
break;
|
|
|
|
/* Rx must be started before Tx due to SPI instinct */
|
|
dma_async_issue_pending(dws->rxchan);
|
|
|
|
dma_async_issue_pending(dws->txchan);
|
|
|
|
/*
|
|
* Here we only need to wait for the DMA transfer to be
|
|
* finished since SPI controller is kept enabled during the
|
|
* procedure this loop implements and there is no risk to lose
|
|
* data left in the Tx/Rx FIFOs.
|
|
*/
|
|
ret = dw_spi_dma_wait(dws, len, xfer->effective_speed_hz);
|
|
if (ret)
|
|
break;
|
|
|
|
reinit_completion(&dws->dma_completion);
|
|
|
|
sg_dma_address(&tx_tmp) += len;
|
|
sg_dma_address(&rx_tmp) += len;
|
|
tx_len -= len;
|
|
rx_len -= len;
|
|
}
|
|
|
|
dw_writel(dws, DW_SPI_DMACR, 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
|
|
{
|
|
unsigned int nents;
|
|
int ret;
|
|
|
|
nents = max(xfer->tx_sg.nents, xfer->rx_sg.nents);
|
|
|
|
/*
|
|
* Execute normal DMA-based transfer (which submits the Rx and Tx SG
|
|
* lists directly to the DMA engine at once) if either full hardware
|
|
* accelerated SG list traverse is supported by both channels, or the
|
|
* Tx-only SPI transfer is requested, or the DMA engine is capable to
|
|
* handle both SG lists on hardware accelerated basis.
|
|
*/
|
|
if (!dws->dma_sg_burst || !xfer->rx_buf || nents <= dws->dma_sg_burst)
|
|
ret = dw_spi_dma_transfer_all(dws, xfer);
|
|
else
|
|
ret = dw_spi_dma_transfer_one(dws, xfer);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dws->master->cur_msg->status == -EINPROGRESS) {
|
|
ret = dw_spi_dma_wait_tx_done(dws, xfer);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (xfer->rx_buf && dws->master->cur_msg->status == -EINPROGRESS)
|
|
ret = dw_spi_dma_wait_rx_done(dws);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dw_spi_dma_stop(struct dw_spi *dws)
|
|
{
|
|
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
|
|
dmaengine_terminate_sync(dws->txchan);
|
|
clear_bit(TX_BUSY, &dws->dma_chan_busy);
|
|
}
|
|
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
|
|
dmaengine_terminate_sync(dws->rxchan);
|
|
clear_bit(RX_BUSY, &dws->dma_chan_busy);
|
|
}
|
|
}
|
|
|
|
static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
|
|
.dma_init = dw_spi_dma_init_mfld,
|
|
.dma_exit = dw_spi_dma_exit,
|
|
.dma_setup = dw_spi_dma_setup,
|
|
.can_dma = dw_spi_can_dma,
|
|
.dma_transfer = dw_spi_dma_transfer,
|
|
.dma_stop = dw_spi_dma_stop,
|
|
};
|
|
|
|
void dw_spi_dma_setup_mfld(struct dw_spi *dws)
|
|
{
|
|
dws->dma_ops = &dw_spi_dma_mfld_ops;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
|
|
|
|
static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
|
|
.dma_init = dw_spi_dma_init_generic,
|
|
.dma_exit = dw_spi_dma_exit,
|
|
.dma_setup = dw_spi_dma_setup,
|
|
.can_dma = dw_spi_can_dma,
|
|
.dma_transfer = dw_spi_dma_transfer,
|
|
.dma_stop = dw_spi_dma_stop,
|
|
};
|
|
|
|
void dw_spi_dma_setup_generic(struct dw_spi *dws)
|
|
{
|
|
dws->dma_ops = &dw_spi_dma_generic_ops;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);
|