1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 09:13:20 -05:00
linux/drivers/clocksource/arc_timer.c
Dejin Zheng 311fb70aa5 clocksource/drivers/arc_timer: Remove duplicate error message
The function arc_get_timer_clk() prints an error message if it fails,
remove the second error message if the function fails.

Signed-off-by: Dejin Zheng <zhengdejin5@gmail.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20200429151223.3120-1-zhengdejin5@gmail.com
2020-05-22 23:58:56 +02:00

373 lines
9 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
*/
/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
* programmed to go from @count to @limit and optionally interrupt.
* We've designated TIMER0 for clockevents and TIMER1 for clocksource
*
* ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
* which are suitable for UP and SMP based clocksources respectively
*/
#include <linux/interrupt.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/cpu.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/sched_clock.h>
#include <soc/arc/timers.h>
#include <soc/arc/mcip.h>
static unsigned long arc_timer_freq;
static int noinline arc_get_timer_clk(struct device_node *node)
{
struct clk *clk;
int ret;
clk = of_clk_get(node, 0);
if (IS_ERR(clk)) {
pr_err("timer missing clk\n");
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("Couldn't enable parent clk\n");
return ret;
}
arc_timer_freq = clk_get_rate(clk);
return 0;
}
/********** Clock Source Device *********/
#ifdef CONFIG_ARC_TIMERS_64BIT
static u64 arc_read_gfrc(struct clocksource *cs)
{
unsigned long flags;
u32 l, h;
/*
* From a programming model pov, there seems to be just one instance of
* MCIP_CMD/MCIP_READBACK however micro-architecturally there's
* an instance PER ARC CORE (not per cluster), and there are dedicated
* hardware decode logic (per core) inside ARConnect to handle
* simultaneous read/write accesses from cores via those two registers.
* So several concurrent commands to ARConnect are OK if they are
* trying to access two different sub-components (like GFRC,
* inter-core interrupt, etc...). HW also supports simultaneously
* accessing GFRC by multiple cores.
* That's why it is safe to disable hard interrupts on the local CPU
* before access to GFRC instead of taking global MCIP spinlock
* defined in arch/arc/kernel/mcip.c
*/
local_irq_save(flags);
__mcip_cmd(CMD_GFRC_READ_LO, 0);
l = read_aux_reg(ARC_REG_MCIP_READBACK);
__mcip_cmd(CMD_GFRC_READ_HI, 0);
h = read_aux_reg(ARC_REG_MCIP_READBACK);
local_irq_restore(flags);
return (((u64)h) << 32) | l;
}
static notrace u64 arc_gfrc_clock_read(void)
{
return arc_read_gfrc(NULL);
}
static struct clocksource arc_counter_gfrc = {
.name = "ARConnect GFRC",
.rating = 400,
.read = arc_read_gfrc,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static int __init arc_cs_setup_gfrc(struct device_node *node)
{
struct mcip_bcr mp;
int ret;
READ_BCR(ARC_REG_MCIP_BCR, mp);
if (!mp.gfrc) {
pr_warn("Global-64-bit-Ctr clocksource not detected\n");
return -ENXIO;
}
ret = arc_get_timer_clk(node);
if (ret)
return ret;
sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq);
return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
}
TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
#define AUX_RTC_CTRL 0x103
#define AUX_RTC_LOW 0x104
#define AUX_RTC_HIGH 0x105
static u64 arc_read_rtc(struct clocksource *cs)
{
unsigned long status;
u32 l, h;
/*
* hardware has an internal state machine which tracks readout of
* low/high and updates the CTRL.status if
* - interrupt/exception taken between the two reads
* - high increments after low has been read
*/
do {
l = read_aux_reg(AUX_RTC_LOW);
h = read_aux_reg(AUX_RTC_HIGH);
status = read_aux_reg(AUX_RTC_CTRL);
} while (!(status & BIT(31)));
return (((u64)h) << 32) | l;
}
static notrace u64 arc_rtc_clock_read(void)
{
return arc_read_rtc(NULL);
}
static struct clocksource arc_counter_rtc = {
.name = "ARCv2 RTC",
.rating = 350,
.read = arc_read_rtc,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static int __init arc_cs_setup_rtc(struct device_node *node)
{
struct bcr_timer timer;
int ret;
READ_BCR(ARC_REG_TIMERS_BCR, timer);
if (!timer.rtc) {
pr_warn("Local-64-bit-Ctr clocksource not detected\n");
return -ENXIO;
}
/* Local to CPU hence not usable in SMP */
if (IS_ENABLED(CONFIG_SMP)) {
pr_warn("Local-64-bit-Ctr not usable in SMP\n");
return -EINVAL;
}
ret = arc_get_timer_clk(node);
if (ret)
return ret;
write_aux_reg(AUX_RTC_CTRL, 1);
sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq);
return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
}
TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
#endif
/*
* 32bit TIMER1 to keep counting monotonically and wraparound
*/
static u64 arc_read_timer1(struct clocksource *cs)
{
return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
}
static notrace u64 arc_timer1_clock_read(void)
{
return arc_read_timer1(NULL);
}
static struct clocksource arc_counter_timer1 = {
.name = "ARC Timer1",
.rating = 300,
.read = arc_read_timer1,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static int __init arc_cs_setup_timer1(struct device_node *node)
{
int ret;
/* Local to CPU hence not usable in SMP */
if (IS_ENABLED(CONFIG_SMP))
return -EINVAL;
ret = arc_get_timer_clk(node);
if (ret)
return ret;
write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
write_aux_reg(ARC_REG_TIMER1_CNT, 0);
write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq);
return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
}
/********** Clock Event Device *********/
static int arc_timer_irq;
/*
* Arm the timer to interrupt after @cycles
* The distinction for oneshot/periodic is done in arc_event_timer_ack() below
*/
static void arc_timer_event_setup(unsigned int cycles)
{
write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
}
static int arc_clkevent_set_next_event(unsigned long delta,
struct clock_event_device *dev)
{
arc_timer_event_setup(delta);
return 0;
}
static int arc_clkevent_set_periodic(struct clock_event_device *dev)
{
/*
* At X Hz, 1 sec = 1000ms -> X cycles;
* 10ms -> X / 100 cycles
*/
arc_timer_event_setup(arc_timer_freq / HZ);
return 0;
}
static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
.name = "ARC Timer0",
.features = CLOCK_EVT_FEAT_ONESHOT |
CLOCK_EVT_FEAT_PERIODIC,
.rating = 300,
.set_next_event = arc_clkevent_set_next_event,
.set_state_periodic = arc_clkevent_set_periodic,
};
static irqreturn_t timer_irq_handler(int irq, void *dev_id)
{
/*
* Note that generic IRQ core could have passed @evt for @dev_id if
* irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
*/
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
int irq_reenable = clockevent_state_periodic(evt);
/*
* 1. ACK the interrupt
* - For ARC700, any write to CTRL reg ACKs it, so just rewrite
* Count when [N]ot [H]alted bit.
* - For HS3x, it is a bit subtle. On taken count-down interrupt,
* IP bit [3] is set, which needs to be cleared for ACK'ing.
* The write below can only update the other two bits, hence
* explicitly clears IP bit
* 2. Re-arm interrupt if periodic by writing to IE bit [0]
*/
write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
evt->event_handler(evt);
return IRQ_HANDLED;
}
static int arc_timer_starting_cpu(unsigned int cpu)
{
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
evt->cpumask = cpumask_of(smp_processor_id());
clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
enable_percpu_irq(arc_timer_irq, 0);
return 0;
}
static int arc_timer_dying_cpu(unsigned int cpu)
{
disable_percpu_irq(arc_timer_irq);
return 0;
}
/*
* clockevent setup for boot CPU
*/
static int __init arc_clockevent_setup(struct device_node *node)
{
struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
int ret;
arc_timer_irq = irq_of_parse_and_map(node, 0);
if (arc_timer_irq <= 0) {
pr_err("clockevent: missing irq\n");
return -EINVAL;
}
ret = arc_get_timer_clk(node);
if (ret)
return ret;
/* Needs apriori irq_set_percpu_devid() done in intc map function */
ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
"Timer0 (per-cpu-tick)", evt);
if (ret) {
pr_err("clockevent: unable to request irq\n");
return ret;
}
ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
"clockevents/arc/timer:starting",
arc_timer_starting_cpu,
arc_timer_dying_cpu);
if (ret) {
pr_err("Failed to setup hotplug state\n");
return ret;
}
return 0;
}
static int __init arc_of_timer_init(struct device_node *np)
{
static int init_count = 0;
int ret;
if (!init_count) {
init_count = 1;
ret = arc_clockevent_setup(np);
} else {
ret = arc_cs_setup_timer1(np);
}
return ret;
}
TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);