1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/arch/mips/math-emu/sp_sub.c
Paul Burton db57f29d50 MIPS: math-emu: Fix m{add,sub}.s shifts
The code in _sp_maddf (formerly ieee754sp_madd) appears to have been
copied verbatim from ieee754sp_add, and although it's adding the
unpacked "r" & "z" floats it kept using macros that operate on "x" &
"y". This led to the addition being carried out incorrectly on some
mismash of the product, accumulator & multiplicand fields. Typically
this would lead to the assertions "ze == re" & "ze <= SP_EMAX" failing
since ze & re hadn't been operated upon.

Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Fixes: e24c3bec3e ("MIPS: math-emu: Add support for the MIPS R6 MADDF FPU instruction")
Cc: Adam Buchbinder <adam.buchbinder@gmail.com>
Cc: Maciej W. Rozycki <macro@imgtec.com>
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Patchwork: https://patchwork.linux-mips.org/patch/13159/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2016-05-13 14:02:23 +02:00

180 lines
4.5 KiB
C

/* IEEE754 floating point arithmetic
* single precision
*/
/*
* MIPS floating point support
* Copyright (C) 1994-2000 Algorithmics Ltd.
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "ieee754sp.h"
union ieee754sp ieee754sp_sub(union ieee754sp x, union ieee754sp y)
{
int s;
COMPXSP;
COMPYSP;
EXPLODEXSP;
EXPLODEYSP;
ieee754_clearcx();
FLUSHXSP;
FLUSHYSP;
switch (CLPAIR(xc, yc)) {
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_SNAN):
return ieee754sp_nanxcpt(y);
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_SNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_SNAN, IEEE754_CLASS_INF):
return ieee754sp_nanxcpt(x);
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_QNAN):
return y;
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_QNAN):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_DNORM):
case CLPAIR(IEEE754_CLASS_QNAN, IEEE754_CLASS_INF):
return x;
/*
* Infinity handling
*/
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_INF):
if (xs != ys)
return x;
ieee754_setcx(IEEE754_INVALID_OPERATION);
return ieee754sp_indef();
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_INF):
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_INF):
return ieee754sp_inf(ys ^ 1);
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_INF, IEEE754_CLASS_DNORM):
return x;
/*
* Zero handling
*/
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_ZERO):
if (xs != ys)
return x;
else
return ieee754sp_zero(ieee754_csr.rm == FPU_CSR_RD);
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_ZERO):
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_ZERO):
return x;
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_NORM):
case CLPAIR(IEEE754_CLASS_ZERO, IEEE754_CLASS_DNORM):
/* quick fix up */
SPSIGN(y) ^= 1;
return y;
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_DNORM):
SPDNORMX;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_DNORM):
SPDNORMY;
break;
case CLPAIR(IEEE754_CLASS_DNORM, IEEE754_CLASS_NORM):
SPDNORMX;
break;
case CLPAIR(IEEE754_CLASS_NORM, IEEE754_CLASS_NORM):
break;
}
/* flip sign of y and handle as add */
ys ^= 1;
assert(xm & SP_HIDDEN_BIT);
assert(ym & SP_HIDDEN_BIT);
/* provide guard,round and stick bit space */
xm <<= 3;
ym <<= 3;
if (xe > ye) {
/*
* have to shift y fraction right to align
*/
s = xe - ye;
ym = XSPSRS(ym, s);
ye += s;
} else if (ye > xe) {
/*
* have to shift x fraction right to align
*/
s = ye - xe;
xm = XSPSRS(xm, s);
xe += s;
}
assert(xe == ye);
assert(xe <= SP_EMAX);
if (xs == ys) {
/* generate 28 bit result of adding two 27 bit numbers
*/
xm = xm + ym;
if (xm >> (SP_FBITS + 1 + 3)) { /* carry out */
SPXSRSX1(); /* shift preserving sticky */
}
} else {
if (xm >= ym) {
xm = xm - ym;
} else {
xm = ym - xm;
xs = ys;
}
if (xm == 0) {
if (ieee754_csr.rm == FPU_CSR_RD)
return ieee754sp_zero(1); /* round negative inf. => sign = -1 */
else
return ieee754sp_zero(0); /* other round modes => sign = 1 */
}
/* normalize to rounding precision
*/
while ((xm >> (SP_FBITS + 3)) == 0) {
xm <<= 1;
xe--;
}
}
return ieee754sp_format(xs, xe, xm);
}