1
0
Fork 0
mirror of https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git synced 2025-01-24 17:23:25 -05:00
linux/crypto/algapi.c
Linus Torvalds 93e220a62d Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
 "API:
   - hwrng core now credits for low-quality RNG devices.

  Algorithms:
   - Optimisations for neon aes on arm/arm64.
   - Add accelerated crc32_be on arm64.
   - Add ffdheXYZ(dh) templates.
   - Disallow hmac keys < 112 bits in FIPS mode.
   - Add AVX assembly implementation for sm3 on x86.

  Drivers:
   - Add missing local_bh_disable calls for crypto_engine callback.
   - Ensure BH is disabled in crypto_engine callback path.
   - Fix zero length DMA mappings in ccree.
   - Add synchronization between mailbox accesses in octeontx2.
   - Add Xilinx SHA3 driver.
   - Add support for the TDES IP available on sama7g5 SoC in atmel"

* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (137 commits)
  crypto: xilinx - Turn SHA into a tristate and allow COMPILE_TEST
  MAINTAINERS: update HPRE/SEC2/TRNG driver maintainers list
  crypto: dh - Remove the unused function dh_safe_prime_dh_alg()
  hwrng: nomadik - Change clk_disable to clk_disable_unprepare
  crypto: arm64 - cleanup comments
  crypto: qat - fix initialization of pfvf rts_map_msg structures
  crypto: qat - fix initialization of pfvf cap_msg structures
  crypto: qat - remove unneeded assignment
  crypto: qat - disable registration of algorithms
  crypto: hisilicon/qm - fix memset during queues clearing
  crypto: xilinx: prevent probing on non-xilinx hardware
  crypto: marvell/octeontx - Use swap() instead of open coding it
  crypto: ccree - Fix use after free in cc_cipher_exit()
  crypto: ccp - ccp_dmaengine_unregister release dma channels
  crypto: octeontx2 - fix missing unlock
  hwrng: cavium - fix NULL but dereferenced coccicheck error
  crypto: cavium/nitrox - don't cast parameter in bit operations
  crypto: vmx - add missing dependencies
  MAINTAINERS: Add maintainer for Xilinx ZynqMP SHA3 driver
  crypto: xilinx - Add Xilinx SHA3 driver
  ...
2022-03-21 16:02:36 -07:00

1365 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Cryptographic API for algorithms (i.e., low-level API).
*
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*/
#include <crypto/algapi.h>
#include <crypto/internal/simd.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/fips.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/rtnetlink.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "internal.h"
static LIST_HEAD(crypto_template_list);
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
DEFINE_PER_CPU(bool, crypto_simd_disabled_for_test);
EXPORT_PER_CPU_SYMBOL_GPL(crypto_simd_disabled_for_test);
#endif
static inline void crypto_check_module_sig(struct module *mod)
{
if (fips_enabled && mod && !module_sig_ok(mod))
panic("Module %s signature verification failed in FIPS mode\n",
module_name(mod));
}
static int crypto_check_alg(struct crypto_alg *alg)
{
crypto_check_module_sig(alg->cra_module);
if (!alg->cra_name[0] || !alg->cra_driver_name[0])
return -EINVAL;
if (alg->cra_alignmask & (alg->cra_alignmask + 1))
return -EINVAL;
/* General maximums for all algs. */
if (alg->cra_alignmask > MAX_ALGAPI_ALIGNMASK)
return -EINVAL;
if (alg->cra_blocksize > MAX_ALGAPI_BLOCKSIZE)
return -EINVAL;
/* Lower maximums for specific alg types. */
if (!alg->cra_type && (alg->cra_flags & CRYPTO_ALG_TYPE_MASK) ==
CRYPTO_ALG_TYPE_CIPHER) {
if (alg->cra_alignmask > MAX_CIPHER_ALIGNMASK)
return -EINVAL;
if (alg->cra_blocksize > MAX_CIPHER_BLOCKSIZE)
return -EINVAL;
}
if (alg->cra_priority < 0)
return -EINVAL;
refcount_set(&alg->cra_refcnt, 1);
return 0;
}
static void crypto_free_instance(struct crypto_instance *inst)
{
inst->alg.cra_type->free(inst);
}
static void crypto_destroy_instance(struct crypto_alg *alg)
{
struct crypto_instance *inst = (void *)alg;
struct crypto_template *tmpl = inst->tmpl;
crypto_free_instance(inst);
crypto_tmpl_put(tmpl);
}
/*
* This function adds a spawn to the list secondary_spawns which
* will be used at the end of crypto_remove_spawns to unregister
* instances, unless the spawn happens to be one that is depended
* on by the new algorithm (nalg in crypto_remove_spawns).
*
* This function is also responsible for resurrecting any algorithms
* in the dependency chain of nalg by unsetting n->dead.
*/
static struct list_head *crypto_more_spawns(struct crypto_alg *alg,
struct list_head *stack,
struct list_head *top,
struct list_head *secondary_spawns)
{
struct crypto_spawn *spawn, *n;
spawn = list_first_entry_or_null(stack, struct crypto_spawn, list);
if (!spawn)
return NULL;
n = list_prev_entry(spawn, list);
list_move(&spawn->list, secondary_spawns);
if (list_is_last(&n->list, stack))
return top;
n = list_next_entry(n, list);
if (!spawn->dead)
n->dead = false;
return &n->inst->alg.cra_users;
}
static void crypto_remove_instance(struct crypto_instance *inst,
struct list_head *list)
{
struct crypto_template *tmpl = inst->tmpl;
if (crypto_is_dead(&inst->alg))
return;
inst->alg.cra_flags |= CRYPTO_ALG_DEAD;
if (!tmpl || !crypto_tmpl_get(tmpl))
return;
list_move(&inst->alg.cra_list, list);
hlist_del(&inst->list);
inst->alg.cra_destroy = crypto_destroy_instance;
BUG_ON(!list_empty(&inst->alg.cra_users));
}
/*
* Given an algorithm alg, remove all algorithms that depend on it
* through spawns. If nalg is not null, then exempt any algorithms
* that is depended on by nalg. This is useful when nalg itself
* depends on alg.
*/
void crypto_remove_spawns(struct crypto_alg *alg, struct list_head *list,
struct crypto_alg *nalg)
{
u32 new_type = (nalg ?: alg)->cra_flags;
struct crypto_spawn *spawn, *n;
LIST_HEAD(secondary_spawns);
struct list_head *spawns;
LIST_HEAD(stack);
LIST_HEAD(top);
spawns = &alg->cra_users;
list_for_each_entry_safe(spawn, n, spawns, list) {
if ((spawn->alg->cra_flags ^ new_type) & spawn->mask)
continue;
list_move(&spawn->list, &top);
}
/*
* Perform a depth-first walk starting from alg through
* the cra_users tree. The list stack records the path
* from alg to the current spawn.
*/
spawns = &top;
do {
while (!list_empty(spawns)) {
struct crypto_instance *inst;
spawn = list_first_entry(spawns, struct crypto_spawn,
list);
inst = spawn->inst;
list_move(&spawn->list, &stack);
spawn->dead = !spawn->registered || &inst->alg != nalg;
if (!spawn->registered)
break;
BUG_ON(&inst->alg == alg);
if (&inst->alg == nalg)
break;
spawns = &inst->alg.cra_users;
/*
* Even if spawn->registered is true, the
* instance itself may still be unregistered.
* This is because it may have failed during
* registration. Therefore we still need to
* make the following test.
*
* We may encounter an unregistered instance here, since
* an instance's spawns are set up prior to the instance
* being registered. An unregistered instance will have
* NULL ->cra_users.next, since ->cra_users isn't
* properly initialized until registration. But an
* unregistered instance cannot have any users, so treat
* it the same as ->cra_users being empty.
*/
if (spawns->next == NULL)
break;
}
} while ((spawns = crypto_more_spawns(alg, &stack, &top,
&secondary_spawns)));
/*
* Remove all instances that are marked as dead. Also
* complete the resurrection of the others by moving them
* back to the cra_users list.
*/
list_for_each_entry_safe(spawn, n, &secondary_spawns, list) {
if (!spawn->dead)
list_move(&spawn->list, &spawn->alg->cra_users);
else if (spawn->registered)
crypto_remove_instance(spawn->inst, list);
}
}
EXPORT_SYMBOL_GPL(crypto_remove_spawns);
static struct crypto_larval *crypto_alloc_test_larval(struct crypto_alg *alg)
{
struct crypto_larval *larval;
if (!IS_ENABLED(CONFIG_CRYPTO_MANAGER))
return NULL;
larval = crypto_larval_alloc(alg->cra_name,
alg->cra_flags | CRYPTO_ALG_TESTED, 0);
if (IS_ERR(larval))
return larval;
larval->adult = crypto_mod_get(alg);
if (!larval->adult) {
kfree(larval);
return ERR_PTR(-ENOENT);
}
refcount_set(&larval->alg.cra_refcnt, 1);
memcpy(larval->alg.cra_driver_name, alg->cra_driver_name,
CRYPTO_MAX_ALG_NAME);
larval->alg.cra_priority = alg->cra_priority;
return larval;
}
static struct crypto_larval *__crypto_register_alg(struct crypto_alg *alg)
{
struct crypto_alg *q;
struct crypto_larval *larval;
int ret = -EAGAIN;
if (crypto_is_dead(alg))
goto err;
INIT_LIST_HEAD(&alg->cra_users);
/* No cheating! */
alg->cra_flags &= ~CRYPTO_ALG_TESTED;
ret = -EEXIST;
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (q == alg)
goto err;
if (crypto_is_moribund(q))
continue;
if (crypto_is_larval(q)) {
if (!strcmp(alg->cra_driver_name, q->cra_driver_name))
goto err;
continue;
}
if (!strcmp(q->cra_driver_name, alg->cra_name) ||
!strcmp(q->cra_name, alg->cra_driver_name))
goto err;
}
larval = crypto_alloc_test_larval(alg);
if (IS_ERR(larval))
goto out;
list_add(&alg->cra_list, &crypto_alg_list);
if (larval)
list_add(&larval->alg.cra_list, &crypto_alg_list);
else
alg->cra_flags |= CRYPTO_ALG_TESTED;
crypto_stats_init(alg);
out:
return larval;
err:
larval = ERR_PTR(ret);
goto out;
}
void crypto_alg_tested(const char *name, int err)
{
struct crypto_larval *test;
struct crypto_alg *alg;
struct crypto_alg *q;
LIST_HEAD(list);
bool best;
down_write(&crypto_alg_sem);
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (crypto_is_moribund(q) || !crypto_is_larval(q))
continue;
test = (struct crypto_larval *)q;
if (!strcmp(q->cra_driver_name, name))
goto found;
}
pr_err("alg: Unexpected test result for %s: %d\n", name, err);
goto unlock;
found:
q->cra_flags |= CRYPTO_ALG_DEAD;
alg = test->adult;
if (list_empty(&alg->cra_list))
goto complete;
if (err == -ECANCELED)
alg->cra_flags |= CRYPTO_ALG_FIPS_INTERNAL;
else if (err)
goto complete;
else
alg->cra_flags &= ~CRYPTO_ALG_FIPS_INTERNAL;
alg->cra_flags |= CRYPTO_ALG_TESTED;
/* Only satisfy larval waiters if we are the best. */
best = true;
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (crypto_is_moribund(q) || !crypto_is_larval(q))
continue;
if (strcmp(alg->cra_name, q->cra_name))
continue;
if (q->cra_priority > alg->cra_priority) {
best = false;
break;
}
}
list_for_each_entry(q, &crypto_alg_list, cra_list) {
if (q == alg)
continue;
if (crypto_is_moribund(q))
continue;
if (crypto_is_larval(q)) {
struct crypto_larval *larval = (void *)q;
/*
* Check to see if either our generic name or
* specific name can satisfy the name requested
* by the larval entry q.
*/
if (strcmp(alg->cra_name, q->cra_name) &&
strcmp(alg->cra_driver_name, q->cra_name))
continue;
if (larval->adult)
continue;
if ((q->cra_flags ^ alg->cra_flags) & larval->mask)
continue;
if (best && crypto_mod_get(alg))
larval->adult = alg;
else
larval->adult = ERR_PTR(-EAGAIN);
continue;
}
if (strcmp(alg->cra_name, q->cra_name))
continue;
if (strcmp(alg->cra_driver_name, q->cra_driver_name) &&
q->cra_priority > alg->cra_priority)
continue;
crypto_remove_spawns(q, &list, alg);
}
complete:
complete_all(&test->completion);
unlock:
up_write(&crypto_alg_sem);
crypto_remove_final(&list);
}
EXPORT_SYMBOL_GPL(crypto_alg_tested);
void crypto_remove_final(struct list_head *list)
{
struct crypto_alg *alg;
struct crypto_alg *n;
list_for_each_entry_safe(alg, n, list, cra_list) {
list_del_init(&alg->cra_list);
crypto_alg_put(alg);
}
}
EXPORT_SYMBOL_GPL(crypto_remove_final);
int crypto_register_alg(struct crypto_alg *alg)
{
struct crypto_larval *larval;
bool test_started;
int err;
alg->cra_flags &= ~CRYPTO_ALG_DEAD;
err = crypto_check_alg(alg);
if (err)
return err;
down_write(&crypto_alg_sem);
larval = __crypto_register_alg(alg);
test_started = static_key_enabled(&crypto_boot_test_finished);
if (!IS_ERR_OR_NULL(larval))
larval->test_started = test_started;
up_write(&crypto_alg_sem);
if (IS_ERR_OR_NULL(larval))
return PTR_ERR(larval);
if (test_started)
crypto_wait_for_test(larval);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_register_alg);
static int crypto_remove_alg(struct crypto_alg *alg, struct list_head *list)
{
if (unlikely(list_empty(&alg->cra_list)))
return -ENOENT;
alg->cra_flags |= CRYPTO_ALG_DEAD;
list_del_init(&alg->cra_list);
crypto_remove_spawns(alg, list, NULL);
return 0;
}
void crypto_unregister_alg(struct crypto_alg *alg)
{
int ret;
LIST_HEAD(list);
down_write(&crypto_alg_sem);
ret = crypto_remove_alg(alg, &list);
up_write(&crypto_alg_sem);
if (WARN(ret, "Algorithm %s is not registered", alg->cra_driver_name))
return;
BUG_ON(refcount_read(&alg->cra_refcnt) != 1);
if (alg->cra_destroy)
alg->cra_destroy(alg);
crypto_remove_final(&list);
}
EXPORT_SYMBOL_GPL(crypto_unregister_alg);
int crypto_register_algs(struct crypto_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_alg(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_alg(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_algs);
void crypto_unregister_algs(struct crypto_alg *algs, int count)
{
int i;
for (i = 0; i < count; i++)
crypto_unregister_alg(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_algs);
int crypto_register_template(struct crypto_template *tmpl)
{
struct crypto_template *q;
int err = -EEXIST;
down_write(&crypto_alg_sem);
crypto_check_module_sig(tmpl->module);
list_for_each_entry(q, &crypto_template_list, list) {
if (q == tmpl)
goto out;
}
list_add(&tmpl->list, &crypto_template_list);
err = 0;
out:
up_write(&crypto_alg_sem);
return err;
}
EXPORT_SYMBOL_GPL(crypto_register_template);
int crypto_register_templates(struct crypto_template *tmpls, int count)
{
int i, err;
for (i = 0; i < count; i++) {
err = crypto_register_template(&tmpls[i]);
if (err)
goto out;
}
return 0;
out:
for (--i; i >= 0; --i)
crypto_unregister_template(&tmpls[i]);
return err;
}
EXPORT_SYMBOL_GPL(crypto_register_templates);
void crypto_unregister_template(struct crypto_template *tmpl)
{
struct crypto_instance *inst;
struct hlist_node *n;
struct hlist_head *list;
LIST_HEAD(users);
down_write(&crypto_alg_sem);
BUG_ON(list_empty(&tmpl->list));
list_del_init(&tmpl->list);
list = &tmpl->instances;
hlist_for_each_entry(inst, list, list) {
int err = crypto_remove_alg(&inst->alg, &users);
BUG_ON(err);
}
up_write(&crypto_alg_sem);
hlist_for_each_entry_safe(inst, n, list, list) {
BUG_ON(refcount_read(&inst->alg.cra_refcnt) != 1);
crypto_free_instance(inst);
}
crypto_remove_final(&users);
}
EXPORT_SYMBOL_GPL(crypto_unregister_template);
void crypto_unregister_templates(struct crypto_template *tmpls, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_template(&tmpls[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_templates);
static struct crypto_template *__crypto_lookup_template(const char *name)
{
struct crypto_template *q, *tmpl = NULL;
down_read(&crypto_alg_sem);
list_for_each_entry(q, &crypto_template_list, list) {
if (strcmp(q->name, name))
continue;
if (unlikely(!crypto_tmpl_get(q)))
continue;
tmpl = q;
break;
}
up_read(&crypto_alg_sem);
return tmpl;
}
struct crypto_template *crypto_lookup_template(const char *name)
{
return try_then_request_module(__crypto_lookup_template(name),
"crypto-%s", name);
}
EXPORT_SYMBOL_GPL(crypto_lookup_template);
int crypto_register_instance(struct crypto_template *tmpl,
struct crypto_instance *inst)
{
struct crypto_larval *larval;
struct crypto_spawn *spawn;
u32 fips_internal = 0;
int err;
err = crypto_check_alg(&inst->alg);
if (err)
return err;
inst->alg.cra_module = tmpl->module;
inst->alg.cra_flags |= CRYPTO_ALG_INSTANCE;
down_write(&crypto_alg_sem);
larval = ERR_PTR(-EAGAIN);
for (spawn = inst->spawns; spawn;) {
struct crypto_spawn *next;
if (spawn->dead)
goto unlock;
next = spawn->next;
spawn->inst = inst;
spawn->registered = true;
fips_internal |= spawn->alg->cra_flags;
crypto_mod_put(spawn->alg);
spawn = next;
}
inst->alg.cra_flags |= (fips_internal & CRYPTO_ALG_FIPS_INTERNAL);
larval = __crypto_register_alg(&inst->alg);
if (IS_ERR(larval))
goto unlock;
else if (larval)
larval->test_started = true;
hlist_add_head(&inst->list, &tmpl->instances);
inst->tmpl = tmpl;
unlock:
up_write(&crypto_alg_sem);
err = PTR_ERR(larval);
if (IS_ERR_OR_NULL(larval))
goto err;
crypto_wait_for_test(larval);
err = 0;
err:
return err;
}
EXPORT_SYMBOL_GPL(crypto_register_instance);
void crypto_unregister_instance(struct crypto_instance *inst)
{
LIST_HEAD(list);
down_write(&crypto_alg_sem);
crypto_remove_spawns(&inst->alg, &list, NULL);
crypto_remove_instance(inst, &list);
up_write(&crypto_alg_sem);
crypto_remove_final(&list);
}
EXPORT_SYMBOL_GPL(crypto_unregister_instance);
int crypto_grab_spawn(struct crypto_spawn *spawn, struct crypto_instance *inst,
const char *name, u32 type, u32 mask)
{
struct crypto_alg *alg;
int err = -EAGAIN;
if (WARN_ON_ONCE(inst == NULL))
return -EINVAL;
/* Allow the result of crypto_attr_alg_name() to be passed directly */
if (IS_ERR(name))
return PTR_ERR(name);
alg = crypto_find_alg(name, spawn->frontend,
type | CRYPTO_ALG_FIPS_INTERNAL, mask);
if (IS_ERR(alg))
return PTR_ERR(alg);
down_write(&crypto_alg_sem);
if (!crypto_is_moribund(alg)) {
list_add(&spawn->list, &alg->cra_users);
spawn->alg = alg;
spawn->mask = mask;
spawn->next = inst->spawns;
inst->spawns = spawn;
inst->alg.cra_flags |=
(alg->cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
err = 0;
}
up_write(&crypto_alg_sem);
if (err)
crypto_mod_put(alg);
return err;
}
EXPORT_SYMBOL_GPL(crypto_grab_spawn);
void crypto_drop_spawn(struct crypto_spawn *spawn)
{
if (!spawn->alg) /* not yet initialized? */
return;
down_write(&crypto_alg_sem);
if (!spawn->dead)
list_del(&spawn->list);
up_write(&crypto_alg_sem);
if (!spawn->registered)
crypto_mod_put(spawn->alg);
}
EXPORT_SYMBOL_GPL(crypto_drop_spawn);
static struct crypto_alg *crypto_spawn_alg(struct crypto_spawn *spawn)
{
struct crypto_alg *alg = ERR_PTR(-EAGAIN);
struct crypto_alg *target;
bool shoot = false;
down_read(&crypto_alg_sem);
if (!spawn->dead) {
alg = spawn->alg;
if (!crypto_mod_get(alg)) {
target = crypto_alg_get(alg);
shoot = true;
alg = ERR_PTR(-EAGAIN);
}
}
up_read(&crypto_alg_sem);
if (shoot) {
crypto_shoot_alg(target);
crypto_alg_put(target);
}
return alg;
}
struct crypto_tfm *crypto_spawn_tfm(struct crypto_spawn *spawn, u32 type,
u32 mask)
{
struct crypto_alg *alg;
struct crypto_tfm *tfm;
alg = crypto_spawn_alg(spawn);
if (IS_ERR(alg))
return ERR_CAST(alg);
tfm = ERR_PTR(-EINVAL);
if (unlikely((alg->cra_flags ^ type) & mask))
goto out_put_alg;
tfm = __crypto_alloc_tfm(alg, type, mask);
if (IS_ERR(tfm))
goto out_put_alg;
return tfm;
out_put_alg:
crypto_mod_put(alg);
return tfm;
}
EXPORT_SYMBOL_GPL(crypto_spawn_tfm);
void *crypto_spawn_tfm2(struct crypto_spawn *spawn)
{
struct crypto_alg *alg;
struct crypto_tfm *tfm;
alg = crypto_spawn_alg(spawn);
if (IS_ERR(alg))
return ERR_CAST(alg);
tfm = crypto_create_tfm(alg, spawn->frontend);
if (IS_ERR(tfm))
goto out_put_alg;
return tfm;
out_put_alg:
crypto_mod_put(alg);
return tfm;
}
EXPORT_SYMBOL_GPL(crypto_spawn_tfm2);
int crypto_register_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&crypto_chain, nb);
}
EXPORT_SYMBOL_GPL(crypto_register_notifier);
int crypto_unregister_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&crypto_chain, nb);
}
EXPORT_SYMBOL_GPL(crypto_unregister_notifier);
struct crypto_attr_type *crypto_get_attr_type(struct rtattr **tb)
{
struct rtattr *rta = tb[0];
struct crypto_attr_type *algt;
if (!rta)
return ERR_PTR(-ENOENT);
if (RTA_PAYLOAD(rta) < sizeof(*algt))
return ERR_PTR(-EINVAL);
if (rta->rta_type != CRYPTOA_TYPE)
return ERR_PTR(-EINVAL);
algt = RTA_DATA(rta);
return algt;
}
EXPORT_SYMBOL_GPL(crypto_get_attr_type);
/**
* crypto_check_attr_type() - check algorithm type and compute inherited mask
* @tb: the template parameters
* @type: the algorithm type the template would be instantiated as
* @mask_ret: (output) the mask that should be passed to crypto_grab_*()
* to restrict the flags of any inner algorithms
*
* Validate that the algorithm type the user requested is compatible with the
* one the template would actually be instantiated as. E.g., if the user is
* doing crypto_alloc_shash("cbc(aes)", ...), this would return an error because
* the "cbc" template creates an "skcipher" algorithm, not an "shash" algorithm.
*
* Also compute the mask to use to restrict the flags of any inner algorithms.
*
* Return: 0 on success; -errno on failure
*/
int crypto_check_attr_type(struct rtattr **tb, u32 type, u32 *mask_ret)
{
struct crypto_attr_type *algt;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
if ((algt->type ^ type) & algt->mask)
return -EINVAL;
*mask_ret = crypto_algt_inherited_mask(algt);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_check_attr_type);
const char *crypto_attr_alg_name(struct rtattr *rta)
{
struct crypto_attr_alg *alga;
if (!rta)
return ERR_PTR(-ENOENT);
if (RTA_PAYLOAD(rta) < sizeof(*alga))
return ERR_PTR(-EINVAL);
if (rta->rta_type != CRYPTOA_ALG)
return ERR_PTR(-EINVAL);
alga = RTA_DATA(rta);
alga->name[CRYPTO_MAX_ALG_NAME - 1] = 0;
return alga->name;
}
EXPORT_SYMBOL_GPL(crypto_attr_alg_name);
int crypto_inst_setname(struct crypto_instance *inst, const char *name,
struct crypto_alg *alg)
{
if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s(%s)", name,
alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s(%s)",
name, alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
return -ENAMETOOLONG;
return 0;
}
EXPORT_SYMBOL_GPL(crypto_inst_setname);
void crypto_init_queue(struct crypto_queue *queue, unsigned int max_qlen)
{
INIT_LIST_HEAD(&queue->list);
queue->backlog = &queue->list;
queue->qlen = 0;
queue->max_qlen = max_qlen;
}
EXPORT_SYMBOL_GPL(crypto_init_queue);
int crypto_enqueue_request(struct crypto_queue *queue,
struct crypto_async_request *request)
{
int err = -EINPROGRESS;
if (unlikely(queue->qlen >= queue->max_qlen)) {
if (!(request->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -ENOSPC;
goto out;
}
err = -EBUSY;
if (queue->backlog == &queue->list)
queue->backlog = &request->list;
}
queue->qlen++;
list_add_tail(&request->list, &queue->list);
out:
return err;
}
EXPORT_SYMBOL_GPL(crypto_enqueue_request);
void crypto_enqueue_request_head(struct crypto_queue *queue,
struct crypto_async_request *request)
{
queue->qlen++;
list_add(&request->list, &queue->list);
}
EXPORT_SYMBOL_GPL(crypto_enqueue_request_head);
struct crypto_async_request *crypto_dequeue_request(struct crypto_queue *queue)
{
struct list_head *request;
if (unlikely(!queue->qlen))
return NULL;
queue->qlen--;
if (queue->backlog != &queue->list)
queue->backlog = queue->backlog->next;
request = queue->list.next;
list_del(request);
return list_entry(request, struct crypto_async_request, list);
}
EXPORT_SYMBOL_GPL(crypto_dequeue_request);
static inline void crypto_inc_byte(u8 *a, unsigned int size)
{
u8 *b = (a + size);
u8 c;
for (; size; size--) {
c = *--b + 1;
*b = c;
if (c)
break;
}
}
void crypto_inc(u8 *a, unsigned int size)
{
__be32 *b = (__be32 *)(a + size);
u32 c;
if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
IS_ALIGNED((unsigned long)b, __alignof__(*b)))
for (; size >= 4; size -= 4) {
c = be32_to_cpu(*--b) + 1;
*b = cpu_to_be32(c);
if (likely(c))
return;
}
crypto_inc_byte(a, size);
}
EXPORT_SYMBOL_GPL(crypto_inc);
void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int len)
{
int relalign = 0;
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
int size = sizeof(unsigned long);
int d = (((unsigned long)dst ^ (unsigned long)src1) |
((unsigned long)dst ^ (unsigned long)src2)) &
(size - 1);
relalign = d ? 1 << __ffs(d) : size;
/*
* If we care about alignment, process as many bytes as
* needed to advance dst and src to values whose alignments
* equal their relative alignment. This will allow us to
* process the remainder of the input using optimal strides.
*/
while (((unsigned long)dst & (relalign - 1)) && len > 0) {
*dst++ = *src1++ ^ *src2++;
len--;
}
}
while (IS_ENABLED(CONFIG_64BIT) && len >= 8 && !(relalign & 7)) {
if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
u64 l = get_unaligned((u64 *)src1) ^
get_unaligned((u64 *)src2);
put_unaligned(l, (u64 *)dst);
} else {
*(u64 *)dst = *(u64 *)src1 ^ *(u64 *)src2;
}
dst += 8;
src1 += 8;
src2 += 8;
len -= 8;
}
while (len >= 4 && !(relalign & 3)) {
if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
u32 l = get_unaligned((u32 *)src1) ^
get_unaligned((u32 *)src2);
put_unaligned(l, (u32 *)dst);
} else {
*(u32 *)dst = *(u32 *)src1 ^ *(u32 *)src2;
}
dst += 4;
src1 += 4;
src2 += 4;
len -= 4;
}
while (len >= 2 && !(relalign & 1)) {
if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
u16 l = get_unaligned((u16 *)src1) ^
get_unaligned((u16 *)src2);
put_unaligned(l, (u16 *)dst);
} else {
*(u16 *)dst = *(u16 *)src1 ^ *(u16 *)src2;
}
dst += 2;
src1 += 2;
src2 += 2;
len -= 2;
}
while (len--)
*dst++ = *src1++ ^ *src2++;
}
EXPORT_SYMBOL_GPL(__crypto_xor);
unsigned int crypto_alg_extsize(struct crypto_alg *alg)
{
return alg->cra_ctxsize +
(alg->cra_alignmask & ~(crypto_tfm_ctx_alignment() - 1));
}
EXPORT_SYMBOL_GPL(crypto_alg_extsize);
int crypto_type_has_alg(const char *name, const struct crypto_type *frontend,
u32 type, u32 mask)
{
int ret = 0;
struct crypto_alg *alg = crypto_find_alg(name, frontend, type, mask);
if (!IS_ERR(alg)) {
crypto_mod_put(alg);
ret = 1;
}
return ret;
}
EXPORT_SYMBOL_GPL(crypto_type_has_alg);
#ifdef CONFIG_CRYPTO_STATS
void crypto_stats_init(struct crypto_alg *alg)
{
memset(&alg->stats, 0, sizeof(alg->stats));
}
EXPORT_SYMBOL_GPL(crypto_stats_init);
void crypto_stats_get(struct crypto_alg *alg)
{
crypto_alg_get(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_get);
void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.aead.err_cnt);
} else {
atomic64_inc(&alg->stats.aead.encrypt_cnt);
atomic64_add(cryptlen, &alg->stats.aead.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_aead_encrypt);
void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.aead.err_cnt);
} else {
atomic64_inc(&alg->stats.aead.decrypt_cnt);
atomic64_add(cryptlen, &alg->stats.aead.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_aead_decrypt);
void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.akcipher.err_cnt);
} else {
atomic64_inc(&alg->stats.akcipher.encrypt_cnt);
atomic64_add(src_len, &alg->stats.akcipher.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_encrypt);
void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.akcipher.err_cnt);
} else {
atomic64_inc(&alg->stats.akcipher.decrypt_cnt);
atomic64_add(src_len, &alg->stats.akcipher.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_decrypt);
void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.akcipher.err_cnt);
else
atomic64_inc(&alg->stats.akcipher.sign_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_sign);
void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.akcipher.err_cnt);
else
atomic64_inc(&alg->stats.akcipher.verify_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_akcipher_verify);
void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.compress.err_cnt);
} else {
atomic64_inc(&alg->stats.compress.compress_cnt);
atomic64_add(slen, &alg->stats.compress.compress_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_compress);
void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.compress.err_cnt);
} else {
atomic64_inc(&alg->stats.compress.decompress_cnt);
atomic64_add(slen, &alg->stats.compress.decompress_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_decompress);
void crypto_stats_ahash_update(unsigned int nbytes, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.hash.err_cnt);
else
atomic64_add(nbytes, &alg->stats.hash.hash_tlen);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ahash_update);
void crypto_stats_ahash_final(unsigned int nbytes, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.hash.err_cnt);
} else {
atomic64_inc(&alg->stats.hash.hash_cnt);
atomic64_add(nbytes, &alg->stats.hash.hash_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_ahash_final);
void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.setsecret_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_set_secret);
void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.generate_public_key_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_generate_public_key);
void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
{
if (ret)
atomic64_inc(&alg->stats.kpp.err_cnt);
else
atomic64_inc(&alg->stats.kpp.compute_shared_secret_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_kpp_compute_shared_secret);
void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY)
atomic64_inc(&alg->stats.rng.err_cnt);
else
atomic64_inc(&alg->stats.rng.seed_cnt);
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_rng_seed);
void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen,
int ret)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.rng.err_cnt);
} else {
atomic64_inc(&alg->stats.rng.generate_cnt);
atomic64_add(dlen, &alg->stats.rng.generate_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_rng_generate);
void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.cipher.err_cnt);
} else {
atomic64_inc(&alg->stats.cipher.encrypt_cnt);
atomic64_add(cryptlen, &alg->stats.cipher.encrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_skcipher_encrypt);
void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret,
struct crypto_alg *alg)
{
if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
atomic64_inc(&alg->stats.cipher.err_cnt);
} else {
atomic64_inc(&alg->stats.cipher.decrypt_cnt);
atomic64_add(cryptlen, &alg->stats.cipher.decrypt_tlen);
}
crypto_alg_put(alg);
}
EXPORT_SYMBOL_GPL(crypto_stats_skcipher_decrypt);
#endif
static void __init crypto_start_tests(void)
{
for (;;) {
struct crypto_larval *larval = NULL;
struct crypto_alg *q;
down_write(&crypto_alg_sem);
list_for_each_entry(q, &crypto_alg_list, cra_list) {
struct crypto_larval *l;
if (!crypto_is_larval(q))
continue;
l = (void *)q;
if (!crypto_is_test_larval(l))
continue;
if (l->test_started)
continue;
l->test_started = true;
larval = l;
break;
}
up_write(&crypto_alg_sem);
if (!larval)
break;
crypto_wait_for_test(larval);
}
static_branch_enable(&crypto_boot_test_finished);
}
static int __init crypto_algapi_init(void)
{
crypto_init_proc();
crypto_start_tests();
return 0;
}
static void __exit crypto_algapi_exit(void)
{
crypto_exit_proc();
}
/*
* We run this at late_initcall so that all the built-in algorithms
* have had a chance to register themselves first.
*/
late_initcall(crypto_algapi_init);
module_exit(crypto_algapi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Cryptographic algorithms API");
MODULE_SOFTDEP("pre: cryptomgr");