serenity/Kernel/Process.h

895 lines
36 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018-2021, Andreas Kling <kling@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
#include <AK/Checked.h>
#include <AK/Concepts.h>
#include <AK/HashMap.h>
#include <AK/IntrusiveList.h>
#include <AK/NonnullOwnPtrVector.h>
#include <AK/NonnullRefPtrVector.h>
#include <AK/String.h>
#include <AK/Userspace.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/API/Syscall.h>
#include <Kernel/AtomicEdgeAction.h>
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/FileSystem/InodeMetadata.h>
2020-02-16 01:50:16 +01:00
#include <Kernel/Forward.h>
#include <Kernel/FutexQueue.h>
#include <Kernel/Lock.h>
#include <Kernel/PerformanceEventBuffer.h>
#include <Kernel/ProcessGroup.h>
2020-06-18 22:18:44 +02:00
#include <Kernel/StdLib.h>
#include <Kernel/Thread.h>
#include <Kernel/ThreadTracer.h>
#include <Kernel/UnixTypes.h>
#include <Kernel/UnveilNode.h>
#include <Kernel/VM/AllocationStrategy.h>
#include <Kernel/VM/RangeAllocator.h>
#include <Kernel/VM/Space.h>
#include <LibC/elf.h>
#include <LibC/signal_numbers.h>
namespace Kernel {
Time kgettimeofday();
2020-06-18 22:18:44 +02:00
#define ENUMERATE_PLEDGE_PROMISES \
__ENUMERATE_PLEDGE_PROMISE(stdio) \
__ENUMERATE_PLEDGE_PROMISE(rpath) \
__ENUMERATE_PLEDGE_PROMISE(wpath) \
__ENUMERATE_PLEDGE_PROMISE(cpath) \
__ENUMERATE_PLEDGE_PROMISE(dpath) \
__ENUMERATE_PLEDGE_PROMISE(inet) \
__ENUMERATE_PLEDGE_PROMISE(id) \
__ENUMERATE_PLEDGE_PROMISE(proc) \
__ENUMERATE_PLEDGE_PROMISE(ptrace) \
2020-06-18 22:18:44 +02:00
__ENUMERATE_PLEDGE_PROMISE(exec) \
__ENUMERATE_PLEDGE_PROMISE(unix) \
__ENUMERATE_PLEDGE_PROMISE(recvfd) \
__ENUMERATE_PLEDGE_PROMISE(sendfd) \
2020-06-18 22:18:44 +02:00
__ENUMERATE_PLEDGE_PROMISE(fattr) \
__ENUMERATE_PLEDGE_PROMISE(tty) \
__ENUMERATE_PLEDGE_PROMISE(chown) \
__ENUMERATE_PLEDGE_PROMISE(chroot) \
__ENUMERATE_PLEDGE_PROMISE(thread) \
__ENUMERATE_PLEDGE_PROMISE(video) \
__ENUMERATE_PLEDGE_PROMISE(accept) \
__ENUMERATE_PLEDGE_PROMISE(settime) \
__ENUMERATE_PLEDGE_PROMISE(sigaction) \
__ENUMERATE_PLEDGE_PROMISE(setkeymap) \
__ENUMERATE_PLEDGE_PROMISE(prot_exec) \
__ENUMERATE_PLEDGE_PROMISE(map_fixed) \
__ENUMERATE_PLEDGE_PROMISE(getkeymap)
2020-01-11 20:48:43 +01:00
enum class Pledge : u32 {
#define __ENUMERATE_PLEDGE_PROMISE(x) x,
ENUMERATE_PLEDGE_PROMISES
#undef __ENUMERATE_PLEDGE_PROMISE
};
enum class VeilState {
None,
Dropped,
Locked,
};
typedef HashMap<FlatPtr, RefPtr<FutexQueue>> FutexQueues;
struct LoadResult;
class ProtectedProcessBase {
protected:
ProcessID m_pid { 0 };
ProcessID m_ppid { 0 };
SessionID m_sid { 0 };
uid_t m_euid { 0 };
gid_t m_egid { 0 };
uid_t m_uid { 0 };
gid_t m_gid { 0 };
uid_t m_suid { 0 };
gid_t m_sgid { 0 };
Vector<gid_t> m_extra_gids;
bool m_dumpable { false };
bool m_has_promises { false };
u32 m_promises { 0 };
bool m_has_execpromises { false };
u32 m_execpromises { 0 };
mode_t m_umask { 022 };
VirtualAddress m_signal_trampoline;
Atomic<u32> m_thread_count { 0 };
IntrusiveList<Thread, RawPtr<Thread>, &Thread::m_process_thread_list_node> m_thread_list;
u8 m_termination_status { 0 };
u8 m_termination_signal { 0 };
};
class ProcessBase : public ProtectedProcessBase {
protected:
// Without the alignas specifier here the compiler places this class into
// the parent class' padding which then causes the members for the RefCounted
// class to be placed within the first page of the Process class.
alignas(ProtectedProcessBase) u8 m_process_base_padding[PAGE_SIZE - sizeof(ProtectedProcessBase)];
};
static_assert(sizeof(ProcessBase) == PAGE_SIZE);
class Process
: public ProcessBase
, public RefCounted<Process>
, public Weakable<Process> {
AK_MAKE_NONCOPYABLE(Process);
AK_MAKE_NONMOVABLE(Process);
MAKE_ALIGNED_ALLOCATED(Process, PAGE_SIZE);
friend class Thread;
friend class CoreDump;
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
friend class ProcFSProcessFileDescriptions;
// Helper class to temporarily unprotect a process's protected data so you can write to it.
class ProtectedDataMutationScope {
public:
explicit ProtectedDataMutationScope(Process& process)
: m_process(process)
{
m_process.unprotect_data();
}
~ProtectedDataMutationScope() { m_process.protect_data(); }
private:
Process& m_process;
};
public:
inline static Process* current()
{
auto current_thread = Processor::current_thread();
return current_thread ? &current_thread->process() : nullptr;
}
template<typename EntryFunction>
static void kernel_process_trampoline(void* data)
{
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
(*func)();
delete func;
}
enum class RegisterProcess {
No,
Yes
};
template<typename EntryFunction>
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, EntryFunction entry, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes)
{
auto* entry_func = new EntryFunction(move(entry));
return create_kernel_process(first_thread, move(name), &Process::kernel_process_trampoline<EntryFunction>, entry_func, affinity, do_register);
}
static RefPtr<Process> create_kernel_process(RefPtr<Thread>& first_thread, String&& name, void (*entry)(void*), void* entry_data = nullptr, u32 affinity = THREAD_AFFINITY_DEFAULT, RegisterProcess do_register = RegisterProcess::Yes);
static RefPtr<Process> create_user_process(RefPtr<Thread>& first_thread, const String& path, uid_t, gid_t, ProcessID ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
static void register_new(Process&);
~Process();
static Vector<ProcessID> all_pids();
static NonnullRefPtrVector<Process> all_processes();
template<typename EntryFunction>
RefPtr<Thread> create_kernel_thread(EntryFunction entry, u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true)
{
auto* entry_func = new EntryFunction(move(entry));
return create_kernel_thread([](void* data) {
EntryFunction* func = reinterpret_cast<EntryFunction*>(data);
(*func)();
delete func;
},
priority, name, affinity, joinable);
}
RefPtr<Thread> create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, const String& name, u32 affinity = THREAD_AFFINITY_DEFAULT, bool joinable = true);
bool is_profiling() const { return m_profiling; }
void set_profiling(bool profiling) { m_profiling = profiling; }
bool should_core_dump() const { return m_should_dump_core; }
void set_dump_core(bool dump_core) { m_should_dump_core = dump_core; }
bool is_dead() const { return m_dead; }
bool is_stopped() const { return m_is_stopped; }
bool set_stopped(bool stopped) { return m_is_stopped.exchange(stopped); }
bool is_kernel_process() const { return m_is_kernel_process; }
bool is_user_process() const { return !m_is_kernel_process; }
static RefPtr<Process> from_pid(ProcessID);
static SessionID get_sid_from_pgid(ProcessGroupID pgid);
const String& name() const { return m_name; }
ProcessID pid() const { return m_pid; }
SessionID sid() const { return m_sid; }
bool is_session_leader() const { return m_sid.value() == m_pid.value(); }
ProcessGroupID pgid() const { return m_pg ? m_pg->pgid() : 0; }
bool is_group_leader() const { return pgid().value() == m_pid.value(); }
const Vector<gid_t>& extra_gids() const { return m_extra_gids; }
uid_t euid() const { return m_euid; }
gid_t egid() const { return m_egid; }
uid_t uid() const { return m_uid; }
gid_t gid() const { return m_gid; }
uid_t suid() const { return m_suid; }
gid_t sgid() const { return m_sgid; }
ProcessID ppid() const { return m_ppid; }
bool is_dumpable() const { return m_dumpable; }
void set_dumpable(bool);
mode_t umask() const { return m_umask; }
bool in_group(gid_t) const;
// Breakable iteration functions
template<IteratorFunction<Process&> Callback>
static void for_each(Callback);
template<IteratorFunction<Process&> Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<IteratorFunction<Process&> Callback>
void for_each_child(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<IteratorFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
// Non-breakable iteration functions
template<VoidFunction<Process&> Callback>
static void for_each(Callback);
template<VoidFunction<Process&> Callback>
static void for_each_in_pgrp(ProcessGroupID, Callback);
template<VoidFunction<Process&> Callback>
void for_each_child(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback);
template<VoidFunction<Thread&> Callback>
IterationDecision for_each_thread(Callback callback) const;
void die();
void finalize();
ThreadTracer* tracer() { return m_tracer.ptr(); }
bool is_traced() const { return !!m_tracer; }
KResult start_tracing_from(ProcessID tracer);
void stop_tracing();
void tracer_trap(Thread&, const RegisterState&);
KResultOr<FlatPtr> sys$emuctl();
KResultOr<FlatPtr> sys$yield();
KResultOr<FlatPtr> sys$sync();
KResultOr<FlatPtr> sys$beep();
KResultOr<FlatPtr> sys$get_process_name(Userspace<char*> buffer, size_t buffer_size);
KResultOr<FlatPtr> sys$set_process_name(Userspace<const char*> user_name, size_t user_name_length);
KResultOr<FlatPtr> sys$create_inode_watcher(u32 flags);
KResultOr<FlatPtr> sys$inode_watcher_add_watch(Userspace<const Syscall::SC_inode_watcher_add_watch_params*> user_params);
KResultOr<FlatPtr> sys$inode_watcher_remove_watch(int fd, int wd);
KResultOr<FlatPtr> sys$dbgputch(u8);
KResultOr<FlatPtr> sys$dbgputstr(Userspace<const u8*>, size_t);
KResultOr<FlatPtr> sys$dump_backtrace();
KResultOr<FlatPtr> sys$gettid();
KResultOr<FlatPtr> sys$setsid();
KResultOr<FlatPtr> sys$getsid(pid_t);
KResultOr<FlatPtr> sys$setpgid(pid_t pid, pid_t pgid);
KResultOr<FlatPtr> sys$getpgrp();
KResultOr<FlatPtr> sys$getpgid(pid_t);
KResultOr<FlatPtr> sys$getuid();
KResultOr<FlatPtr> sys$getgid();
KResultOr<FlatPtr> sys$geteuid();
KResultOr<FlatPtr> sys$getegid();
KResultOr<FlatPtr> sys$getpid();
KResultOr<FlatPtr> sys$getppid();
KResultOr<FlatPtr> sys$getresuid(Userspace<uid_t*>, Userspace<uid_t*>, Userspace<uid_t*>);
KResultOr<FlatPtr> sys$getresgid(Userspace<gid_t*>, Userspace<gid_t*>, Userspace<gid_t*>);
KResultOr<FlatPtr> sys$umask(mode_t);
KResultOr<FlatPtr> sys$open(Userspace<const Syscall::SC_open_params*>);
KResultOr<FlatPtr> sys$close(int fd);
KResultOr<FlatPtr> sys$read(int fd, Userspace<u8*>, size_t);
KResultOr<FlatPtr> sys$readv(int fd, Userspace<const struct iovec*> iov, int iov_count);
KResultOr<FlatPtr> sys$write(int fd, Userspace<const u8*>, size_t);
KResultOr<FlatPtr> sys$writev(int fd, Userspace<const struct iovec*> iov, int iov_count);
KResultOr<FlatPtr> sys$fstat(int fd, Userspace<stat*>);
KResultOr<FlatPtr> sys$stat(Userspace<const Syscall::SC_stat_params*>);
KResultOr<FlatPtr> sys$lseek(int fd, Userspace<off_t*>, int whence);
KResultOr<FlatPtr> sys$ftruncate(int fd, Userspace<off_t*>);
KResultOr<FlatPtr> sys$kill(pid_t pid_or_pgid, int sig);
[[noreturn]] void sys$exit(int status);
KResultOr<FlatPtr> sys$sigreturn(RegisterState& registers);
KResultOr<FlatPtr> sys$waitid(Userspace<const Syscall::SC_waitid_params*>);
KResultOr<FlatPtr> sys$mmap(Userspace<const Syscall::SC_mmap_params*>);
KResultOr<FlatPtr> sys$mremap(Userspace<const Syscall::SC_mremap_params*>);
KResultOr<FlatPtr> sys$munmap(Userspace<void*>, size_t);
KResultOr<FlatPtr> sys$set_mmap_name(Userspace<const Syscall::SC_set_mmap_name_params*>);
KResultOr<FlatPtr> sys$mprotect(Userspace<void*>, size_t, int prot);
KResultOr<FlatPtr> sys$madvise(Userspace<void*>, size_t, int advice);
KResultOr<FlatPtr> sys$msyscall(Userspace<void*>);
KResultOr<FlatPtr> sys$purge(int mode);
KResultOr<FlatPtr> sys$select(Userspace<const Syscall::SC_select_params*>);
KResultOr<FlatPtr> sys$poll(Userspace<const Syscall::SC_poll_params*>);
KResultOr<FlatPtr> sys$get_dir_entries(int fd, Userspace<void*>, size_t);
KResultOr<FlatPtr> sys$getcwd(Userspace<char*>, size_t);
KResultOr<FlatPtr> sys$chdir(Userspace<const char*>, size_t);
KResultOr<FlatPtr> sys$fchdir(int fd);
KResultOr<FlatPtr> sys$adjtime(Userspace<const timeval*>, Userspace<timeval*>);
KResultOr<FlatPtr> sys$gettimeofday(Userspace<timeval*>);
KResultOr<FlatPtr> sys$clock_gettime(clockid_t, Userspace<timespec*>);
KResultOr<FlatPtr> sys$clock_settime(clockid_t, Userspace<const timespec*>);
KResultOr<FlatPtr> sys$clock_nanosleep(Userspace<const Syscall::SC_clock_nanosleep_params*>);
KResultOr<FlatPtr> sys$gethostname(Userspace<char*>, size_t);
KResultOr<FlatPtr> sys$sethostname(Userspace<const char*>, size_t);
KResultOr<FlatPtr> sys$uname(Userspace<utsname*>);
KResultOr<FlatPtr> sys$readlink(Userspace<const Syscall::SC_readlink_params*>);
KResultOr<FlatPtr> sys$ttyname(int fd, Userspace<char*>, size_t);
KResultOr<FlatPtr> sys$ptsname(int fd, Userspace<char*>, size_t);
KResultOr<FlatPtr> sys$fork(RegisterState&);
KResultOr<FlatPtr> sys$execve(Userspace<const Syscall::SC_execve_params*>);
KResultOr<FlatPtr> sys$dup2(int old_fd, int new_fd);
KResultOr<FlatPtr> sys$sigaction(int signum, Userspace<const sigaction*> act, Userspace<sigaction*> old_act);
KResultOr<FlatPtr> sys$sigprocmask(int how, Userspace<const sigset_t*> set, Userspace<sigset_t*> old_set);
KResultOr<FlatPtr> sys$sigpending(Userspace<sigset_t*>);
KResultOr<FlatPtr> sys$getgroups(size_t, Userspace<gid_t*>);
KResultOr<FlatPtr> sys$setgroups(size_t, Userspace<const gid_t*>);
KResultOr<FlatPtr> sys$pipe(int pipefd[2], int flags);
KResultOr<FlatPtr> sys$killpg(pid_t pgrp, int sig);
KResultOr<FlatPtr> sys$seteuid(uid_t);
KResultOr<FlatPtr> sys$setegid(gid_t);
KResultOr<FlatPtr> sys$setuid(uid_t);
KResultOr<FlatPtr> sys$setgid(gid_t);
KResultOr<FlatPtr> sys$setreuid(uid_t, uid_t);
KResultOr<FlatPtr> sys$setresuid(uid_t, uid_t, uid_t);
KResultOr<FlatPtr> sys$setresgid(gid_t, gid_t, gid_t);
KResultOr<FlatPtr> sys$alarm(unsigned seconds);
KResultOr<FlatPtr> sys$access(Userspace<const char*> pathname, size_t path_length, int mode);
KResultOr<FlatPtr> sys$fcntl(int fd, int cmd, u32 extra_arg);
KResultOr<FlatPtr> sys$ioctl(int fd, unsigned request, FlatPtr arg);
KResultOr<FlatPtr> sys$mkdir(Userspace<const char*> pathname, size_t path_length, mode_t mode);
KResultOr<FlatPtr> sys$times(Userspace<tms*>);
KResultOr<FlatPtr> sys$utime(Userspace<const char*> pathname, size_t path_length, Userspace<const struct utimbuf*>);
KResultOr<FlatPtr> sys$link(Userspace<const Syscall::SC_link_params*>);
KResultOr<FlatPtr> sys$unlink(Userspace<const char*> pathname, size_t path_length);
KResultOr<FlatPtr> sys$symlink(Userspace<const Syscall::SC_symlink_params*>);
KResultOr<FlatPtr> sys$rmdir(Userspace<const char*> pathname, size_t path_length);
KResultOr<FlatPtr> sys$mount(Userspace<const Syscall::SC_mount_params*>);
KResultOr<FlatPtr> sys$umount(Userspace<const char*> mountpoint, size_t mountpoint_length);
KResultOr<FlatPtr> sys$chmod(Userspace<const char*> pathname, size_t path_length, mode_t);
KResultOr<FlatPtr> sys$fchmod(int fd, mode_t);
KResultOr<FlatPtr> sys$chown(Userspace<const Syscall::SC_chown_params*>);
KResultOr<FlatPtr> sys$fchown(int fd, uid_t, gid_t);
KResultOr<FlatPtr> sys$socket(int domain, int type, int protocol);
KResultOr<FlatPtr> sys$bind(int sockfd, Userspace<const sockaddr*> addr, socklen_t);
KResultOr<FlatPtr> sys$listen(int sockfd, int backlog);
KResultOr<FlatPtr> sys$accept4(Userspace<const Syscall::SC_accept4_params*>);
KResultOr<FlatPtr> sys$connect(int sockfd, Userspace<const sockaddr*>, socklen_t);
KResultOr<FlatPtr> sys$shutdown(int sockfd, int how);
KResultOr<FlatPtr> sys$sendmsg(int sockfd, Userspace<const struct msghdr*>, int flags);
KResultOr<FlatPtr> sys$recvmsg(int sockfd, Userspace<struct msghdr*>, int flags);
KResultOr<FlatPtr> sys$getsockopt(Userspace<const Syscall::SC_getsockopt_params*>);
KResultOr<FlatPtr> sys$setsockopt(Userspace<const Syscall::SC_setsockopt_params*>);
KResultOr<FlatPtr> sys$getsockname(Userspace<const Syscall::SC_getsockname_params*>);
KResultOr<FlatPtr> sys$getpeername(Userspace<const Syscall::SC_getpeername_params*>);
KResultOr<FlatPtr> sys$socketpair(Userspace<const Syscall::SC_socketpair_params*>);
KResultOr<FlatPtr> sys$sched_setparam(pid_t pid, Userspace<const struct sched_param*>);
KResultOr<FlatPtr> sys$sched_getparam(pid_t pid, Userspace<struct sched_param*>);
KResultOr<FlatPtr> sys$create_thread(void* (*)(void*), Userspace<const Syscall::SC_create_thread_params*>);
[[noreturn]] void sys$exit_thread(Userspace<void*>, Userspace<void*>, size_t);
KResultOr<FlatPtr> sys$join_thread(pid_t tid, Userspace<void**> exit_value);
KResultOr<FlatPtr> sys$detach_thread(pid_t tid);
KResultOr<FlatPtr> sys$set_thread_name(pid_t tid, Userspace<const char*> buffer, size_t buffer_size);
KResultOr<FlatPtr> sys$get_thread_name(pid_t tid, Userspace<char*> buffer, size_t buffer_size);
KResultOr<FlatPtr> sys$kill_thread(pid_t tid, int signal);
KResultOr<FlatPtr> sys$rename(Userspace<const Syscall::SC_rename_params*>);
KResultOr<FlatPtr> sys$mknod(Userspace<const Syscall::SC_mknod_params*>);
KResultOr<FlatPtr> sys$halt();
KResultOr<FlatPtr> sys$reboot();
KResultOr<FlatPtr> sys$realpath(Userspace<const Syscall::SC_realpath_params*>);
KResultOr<FlatPtr> sys$getrandom(Userspace<void*>, size_t, unsigned int);
KResultOr<FlatPtr> sys$getkeymap(Userspace<const Syscall::SC_getkeymap_params*>);
KResultOr<FlatPtr> sys$setkeymap(Userspace<const Syscall::SC_setkeymap_params*>);
KResultOr<FlatPtr> sys$module_load(Userspace<const char*> path, size_t path_length);
KResultOr<FlatPtr> sys$module_unload(Userspace<const char*> name, size_t name_length);
KResultOr<FlatPtr> sys$profiling_enable(pid_t, u64);
KResultOr<FlatPtr> sys$profiling_disable(pid_t);
KResultOr<FlatPtr> sys$profiling_free_buffer(pid_t);
KResultOr<FlatPtr> sys$futex(Userspace<const Syscall::SC_futex_params*>);
KResultOr<FlatPtr> sys$chroot(Userspace<const char*> path, size_t path_length, int mount_flags);
KResultOr<FlatPtr> sys$pledge(Userspace<const Syscall::SC_pledge_params*>);
KResultOr<FlatPtr> sys$unveil(Userspace<const Syscall::SC_unveil_params*>);
KResultOr<FlatPtr> sys$perf_event(int type, FlatPtr arg1, FlatPtr arg2);
KResultOr<FlatPtr> sys$get_stack_bounds(Userspace<FlatPtr*> stack_base, Userspace<size_t*> stack_size);
KResultOr<FlatPtr> sys$ptrace(Userspace<const Syscall::SC_ptrace_params*>);
KResultOr<FlatPtr> sys$sendfd(int sockfd, int fd);
KResultOr<FlatPtr> sys$recvfd(int sockfd, int options);
KResultOr<FlatPtr> sys$sysconf(int name);
KResultOr<FlatPtr> sys$disown(ProcessID);
KResultOr<FlatPtr> sys$allocate_tls(Userspace<const char*> initial_data, size_t);
KResultOr<FlatPtr> sys$prctl(int option, FlatPtr arg1, FlatPtr arg2);
KResultOr<FlatPtr> sys$set_coredump_metadata(Userspace<const Syscall::SC_set_coredump_metadata_params*>);
KResultOr<FlatPtr> sys$anon_create(size_t, int options);
KResultOr<FlatPtr> sys$statvfs(Userspace<const Syscall::SC_statvfs_params*> user_params);
KResultOr<FlatPtr> sys$fstatvfs(int fd, statvfs* buf);
template<bool sockname, typename Params>
int get_sock_or_peer_name(const Params&);
static void initialize();
[[noreturn]] void crash(int signal, FlatPtr ip, bool out_of_memory = false);
[[nodiscard]] siginfo_t wait_info();
const TTY* tty() const { return m_tty; }
void set_tty(TTY*);
u32 m_ticks_in_user { 0 };
u32 m_ticks_in_kernel { 0 };
u32 m_ticks_in_user_for_dead_children { 0 };
u32 m_ticks_in_kernel_for_dead_children { 0 };
Custody& current_directory();
Custody* executable() { return m_executable.ptr(); }
const Custody* executable() const { return m_executable.ptr(); }
const Vector<String>& arguments() const { return m_arguments; };
const Vector<String>& environment() const { return m_environment; };
KResult exec(String path, Vector<String> arguments, Vector<String> environment, int recusion_depth = 0);
KResultOr<LoadResult> load(NonnullRefPtr<FileDescription> main_program_description, RefPtr<FileDescription> interpreter_description, const ElfW(Ehdr) & main_program_header);
bool is_superuser() const { return euid() == 0; }
void terminate_due_to_signal(u8 signal);
KResult send_signal(u8 signal, Process* sender);
u8 termination_signal() const { return m_termination_signal; }
u16 thread_count() const
{
return m_thread_count.load(AK::MemoryOrder::memory_order_relaxed);
}
Lock& big_lock() { return m_big_lock; }
Lock& ptrace_lock() { return m_ptrace_lock; }
Custody& root_directory();
Custody& root_directory_relative_to_global_root();
void set_root_directory(const Custody&);
bool has_promises() const { return m_has_promises; }
bool has_promised(Pledge pledge) const { return m_promises & (1u << (u32)pledge); }
2020-01-11 20:48:43 +01:00
VeilState veil_state() const
{
return m_veil_state;
}
const UnveilNode& unveiled_paths() const
{
return m_unveiled_paths;
}
bool wait_for_tracer_at_next_execve() const
{
return m_wait_for_tracer_at_next_execve;
}
void set_wait_for_tracer_at_next_execve(bool val)
{
m_wait_for_tracer_at_next_execve = val;
}
KResultOr<u32> peek_user_data(Userspace<const u32*> address);
KResult poke_user_data(Userspace<u32*> address, u32 data);
void disowned_by_waiter(Process& process);
void unblock_waiters(Thread::WaitBlocker::UnblockFlags, u8 signal = 0);
Thread::WaitBlockCondition& wait_block_condition() { return m_wait_block_condition; }
HashMap<String, String>& coredump_metadata() { return m_coredump_metadata; }
const HashMap<String, String>& coredump_metadata() const { return m_coredump_metadata; }
void set_coredump_metadata(const String& key, String value);
const NonnullRefPtrVector<Thread>& threads_for_coredump(Badge<CoreDump>) const { return m_threads_for_coredump; }
PerformanceEventBuffer* perf_events() { return m_perf_event_buffer; }
Space& space() { return *m_space; }
const Space& space() const { return *m_space; }
VirtualAddress signal_trampoline() const { return m_signal_trampoline; }
private:
friend class MemoryManager;
friend class Scheduler;
friend class Region;
friend class PerformanceManager;
bool add_thread(Thread&);
bool remove_thread(Thread&);
Process(const String& name, uid_t uid, gid_t gid, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd, RefPtr<Custody> executable, TTY* tty);
static RefPtr<Process> create(RefPtr<Thread>& first_thread, const String& name, uid_t, gid_t, ProcessID ppid, bool is_kernel_process, RefPtr<Custody> cwd = nullptr, RefPtr<Custody> executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
KResult attach_resources(RefPtr<Thread>& first_thread, Process* fork_parent);
static ProcessID allocate_pid();
void kill_threads_except_self();
void kill_all_threads();
bool dump_core();
bool dump_perfcore();
bool create_perf_events_buffer_if_needed();
void delete_perf_events_buffer();
KResult do_exec(NonnullRefPtr<FileDescription> main_program_description, Vector<String> arguments, Vector<String> environment, RefPtr<FileDescription> interpreter_description, Thread*& new_main_thread, u32& prev_flags, const ElfW(Ehdr) & main_program_header);
KResultOr<FlatPtr> do_write(FileDescription&, const UserOrKernelBuffer&, size_t);
KResultOr<FlatPtr> do_statvfs(String path, statvfs* buf);
KResultOr<RefPtr<FileDescription>> find_elf_interpreter_for_executable(const String& path, const ElfW(Ehdr) & elf_header, int nread, size_t file_size);
Kernel: Tighten up exec/do_exec and allow for PT_INTERP iterpreters This patch changes how exec() figures out which program image to actually load. Previously, we opened the path to our main executable in find_shebang_interpreter_for_executable, read the first page (or less, if the file was smaller) and then decided whether to recurse with the interpreter instead. We then then re-opened the main executable in do_exec. However, since we now want to parse the ELF header and Program Headers of an elf image before even doing any memory region work, we can change the way this whole process works. We open the file and read (up to) the first page in exec() itself, then pass just the page and the amount read to find_shebang_interpreter_for_executable. Since we now have that page and the FileDescription for the main executable handy, we can do a few things. First, validate the ELF header and ELF program headers for any shenanigans. ELF32 Little Endian i386 only, please. Second, we can grab the PT_INTERP interpreter from any ET_DYN files, and open that guy right away if it exists. Finally, we can pass the main executable's and optionally the PT_INTERP interpreter's file descriptions down to do_exec and not have to feel guilty about opening the file twice. In do_exec, we now have a choice. Are we going to load the main executable, or the interpreter? We could load both, but it'll be way easier for the inital pass on the RTLD if we only load the interpreter. Then it can load the main executable itself like any old shared object, just, the one with main in it :). Later on we can load both of them into memory and the RTLD can relocate itself before trying to do anything. The way it's written now the RTLD will get dibs on its requested virtual addresses being the actual virtual addresses.
2020-01-10 18:28:02 -07:00
2019-11-14 19:16:30 +03:00
KResult do_kill(Process&, int signal);
2020-08-09 01:08:24 +02:00
KResult do_killpg(ProcessGroupID pgrp, int signal);
KResult do_killall(int signal);
KResult do_killself(int signal);
2019-11-14 19:16:30 +03:00
KResultOr<siginfo_t> do_waitid(idtype_t idtype, int id, int options);
KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const char* user_path, size_t path_length) const;
KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(Userspace<const char*> user_path, size_t path_length) const
{
return get_syscall_path_argument(user_path.unsafe_userspace_ptr(), path_length);
}
KResultOr<NonnullOwnPtr<KString>> get_syscall_path_argument(const Syscall::StringArgument&) const;
bool has_tracee_thread(ProcessID tracer_pid);
void clear_futex_queues_on_exec();
void setup_socket_fd(int fd, NonnullRefPtr<FileDescription> description, int type);
inline PerformanceEventBuffer* current_perf_events_buffer()
{
if (g_profiling_all_threads)
return g_global_perf_events;
else if (m_profiling)
return m_perf_event_buffer.ptr();
else
return nullptr;
}
IntrusiveListNode<Process> m_list_node;
String m_name;
OwnPtr<Space> m_space;
RefPtr<ProcessGroup> m_pg;
AtomicEdgeAction<u32> m_protected_data_refs;
void protect_data();
void unprotect_data();
OwnPtr<ThreadTracer> m_tracer;
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
public:
class FileDescriptionAndFlags {
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
friend class FileDescriptionRegistrar;
public:
operator bool() const { return !!m_description; }
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
bool is_valid() const { return !m_description.is_null(); }
FileDescription* description() { return m_description; }
const FileDescription* description() const { return m_description; }
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
InodeIndex global_procfs_inode_index() const { return m_global_procfs_inode_index; }
u32 flags() const { return m_flags; }
void set_flags(u32 flags) { m_flags = flags; }
2019-04-29 04:55:54 +02:00
void clear();
void set(NonnullRefPtr<FileDescription>&&, u32 flags = 0);
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
void refresh_inode_index();
private:
RefPtr<FileDescription> m_description;
u32 m_flags { 0 };
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
// Note: This is needed so when we generate inodes for ProcFS, we know that
// we assigned a global Inode index to it so we can use it later
InodeIndex m_global_procfs_inode_index;
};
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
class FileDescriptions {
friend class Process;
public:
ALWAYS_INLINE const FileDescriptionAndFlags& operator[](size_t i) const { return at(i); }
ALWAYS_INLINE FileDescriptionAndFlags& operator[](size_t i) { return at(i); }
FileDescriptions& operator=(const Kernel::Process::FileDescriptions& other)
{
ScopedSpinLock lock(m_fds_lock);
ScopedSpinLock lock_other(other.m_fds_lock);
m_fds_metadatas = other.m_fds_metadatas;
for (auto& file_description_metadata : m_fds_metadatas) {
file_description_metadata.refresh_inode_index();
}
return *this;
}
const FileDescriptionAndFlags& at(size_t i) const;
FileDescriptionAndFlags& at(size_t i);
void enumerate(Function<void(const FileDescriptionAndFlags&)>) const;
void change_each(Function<void(FileDescriptionAndFlags&)>);
int allocate(int first_candidate_fd = 0);
size_t open_count() const;
bool try_resize(size_t size) { return m_fds_metadatas.try_resize(size); }
size_t max_open() const
{
return m_max_open_file_descriptors;
}
void clear()
{
ScopedSpinLock lock(m_fds_lock);
m_fds_metadatas.clear();
}
// FIXME: Consider to remove this somehow
RefPtr<FileDescription> file_description(int fd) const;
int fd_flags(int fd) const;
private:
FileDescriptions() = default;
static constexpr size_t m_max_open_file_descriptors { FD_SETSIZE };
mutable SpinLock<u8> m_fds_lock;
Vector<FileDescriptionAndFlags> m_fds_metadatas;
};
FileDescriptions& fds() { return m_fds; }
const FileDescriptions& fds() const { return m_fds; }
Kernel: Introduce the new ProcFS design The new ProcFS design consists of two main parts: 1. The representative ProcFS class, which is derived from the FS class. The ProcFS and its inodes are much more lean - merely 3 classes to represent the common type of inodes - regular files, symbolic links and directories. They're backed by a ProcFSExposedComponent object, which is responsible for the functional operation behind the scenes. 2. The backend of the ProcFS - the ProcFSComponentsRegistrar class and all derived classes from the ProcFSExposedComponent class. These together form the entire backend and handle all the functions you can expect from the ProcFS. The ProcFSExposedComponent derived classes split to 3 types in the manner of lifetime in the kernel: 1. Persistent objects - this category includes all basic objects, like the root folder, /proc/bus folder, main blob files in the root folders, etc. These objects are persistent and cannot die ever. 2. Semi-persistent objects - this category includes all PID folders, and subdirectories to the PID folders. It also includes exposed objects like the unveil JSON'ed blob. These object are persistent as long as the the responsible process they represent is still alive. 3. Dynamic objects - this category includes files in the subdirectories of a PID folder, like /proc/PID/fd/* or /proc/PID/stacks/*. Essentially, these objects are always created dynamically and when no longer in need after being used, they're deallocated. Nevertheless, the new allocated backend objects and inodes try to use the same InodeIndex if possible - this might change only when a thread dies and a new thread is born with a new thread stack, or when a file descriptor is closed and a new one within the same file descriptor number is opened. This is needed to actually be able to do something useful with these objects. The new design assures that many ProcFS instances can be used at once, with one backend for usage for all instances.
2021-06-12 04:23:58 +03:00
private:
FileDescriptions m_fds;
mutable RecursiveSpinLock m_thread_list_lock;
const bool m_is_kernel_process;
bool m_dead { false };
bool m_profiling { false };
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_stopped { false };
bool m_should_dump_core { false };
RefPtr<Custody> m_executable;
RefPtr<Custody> m_cwd;
RefPtr<Custody> m_root_directory;
RefPtr<Custody> m_root_directory_relative_to_global_root;
Vector<String> m_arguments;
Vector<String> m_environment;
RefPtr<TTY> m_tty;
WeakPtr<Region> m_master_tls_region;
size_t m_master_tls_size { 0 };
size_t m_master_tls_alignment { 0 };
Lock m_big_lock { "Process" };
Lock m_ptrace_lock { "ptrace" };
2019-06-07 11:30:07 +02:00
2020-12-01 15:44:52 -07:00
RefPtr<Timer> m_alarm_timer;
VeilState m_veil_state { VeilState::None };
UnveilNode m_unveiled_paths { "/", { .full_path = "/" } };
OwnPtr<PerformanceEventBuffer> m_perf_event_buffer;
FutexQueues m_futex_queues;
SpinLock<u8> m_futex_lock;
// This member is used in the implementation of ptrace's PT_TRACEME flag.
// If it is set to true, the process will stop at the next execve syscall
// and wait for a tracer to attach.
bool m_wait_for_tracer_at_next_execve { false };
Thread::WaitBlockCondition m_wait_block_condition;
HashMap<String, String> m_coredump_metadata;
NonnullRefPtrVector<Thread> m_threads_for_coredump;
public:
using List = IntrusiveList<Process, RawPtr<Process>, &Process::m_list_node>;
};
extern Process::List* g_processes;
extern RecursiveSpinLock g_processes_lock;
template<IteratorFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
VERIFY_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_processes_lock);
for (auto it = g_processes->begin(); it != g_processes->end();) {
auto& process = *it;
++it;
if (callback(process) == IterationDecision::Break)
break;
}
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
VERIFY_INTERRUPTS_DISABLED();
ProcessID my_pid = pid();
ScopedSpinLock lock(g_processes_lock);
for (auto it = g_processes->begin(); it != g_processes->end();) {
auto& process = *it;
++it;
if (process.ppid() == my_pid || process.has_tracee_thread(pid())) {
if (callback(process) == IterationDecision::Break)
break;
}
}
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
ScopedSpinLock thread_list_lock(m_thread_list_lock);
for (auto& thread : m_thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
template<IteratorFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
ScopedSpinLock thread_list_lock(m_thread_list_lock);
for (auto& thread : m_thread_list) {
IterationDecision decision = callback(thread);
if (decision != IterationDecision::Continue)
return decision;
}
return IterationDecision::Continue;
}
template<IteratorFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
VERIFY_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_processes_lock);
for (auto it = g_processes->begin(); it != g_processes->end();) {
auto& process = *it;
++it;
if (!process.is_dead() && process.pgid() == pgid) {
if (callback(process) == IterationDecision::Break)
break;
}
}
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each(Callback callback)
{
return for_each([&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each_child(Callback callback)
{
return for_each_child([&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback) const
{
ScopedSpinLock thread_list_lock(m_thread_list_lock);
for (auto& thread : m_thread_list)
callback(thread);
return IterationDecision::Continue;
}
template<VoidFunction<Thread&> Callback>
inline IterationDecision Process::for_each_thread(Callback callback)
{
ScopedSpinLock thread_list_lock(m_thread_list_lock);
for (auto& thread : m_thread_list)
callback(thread);
return IterationDecision::Continue;
}
template<VoidFunction<Process&> Callback>
inline void Process::for_each_in_pgrp(ProcessGroupID pgid, Callback callback)
{
return for_each_in_pgrp(pgid, [&](auto& item) {
callback(item);
return IterationDecision::Continue;
});
}
inline bool InodeMetadata::may_read(const Process& process) const
{
return may_read(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_write(const Process& process) const
{
return may_write(process.euid(), process.egid(), process.extra_gids());
}
inline bool InodeMetadata::may_execute(const Process& process) const
{
return may_execute(process.euid(), process.egid(), process.extra_gids());
}
inline ProcessID Thread::pid() const
{
return m_process->pid();
}
#define REQUIRE_NO_PROMISES \
do { \
if (Process::current()->has_promises()) { \
dbgln("Has made a promise"); \
Process::current()->crash(SIGABRT, 0); \
VERIFY_NOT_REACHED(); \
} \
} while (0)
#define REQUIRE_PROMISE(promise) \
do { \
if (Process::current()->has_promises() \
&& !Process::current()->has_promised(Pledge::promise)) { \
dbgln("Has not pledged {}", #promise); \
Process::current()->coredump_metadata().set( \
"pledge_violation", #promise); \
Process::current()->crash(SIGABRT, 0); \
VERIFY_NOT_REACHED(); \
} \
} while (0)
}
inline static String copy_string_from_user(const Kernel::Syscall::StringArgument& string)
{
return copy_string_from_user(string.characters, string.length);
}
inline static KResultOr<NonnullOwnPtr<KString>> try_copy_kstring_from_user(const Kernel::Syscall::StringArgument& string)
{
return try_copy_kstring_from_user(string.characters, string.length);
}
template<>
struct AK::Formatter<Kernel::Process> : AK::Formatter<String> {
void format(FormatBuilder& builder, const Kernel::Process& value)
{
return AK::Formatter<String>::format(builder, String::formatted("{}({})", value.name(), value.pid().value()));
}
};