Ensure your CMake version is >= 3.16 with `cmake --version`. If your system doesn't provide a suitable version of CMake, you can download a binary release from the [CMake website](https://cmake.org/download).
- fuse-ext2 is not available as brew formula so it must be installed using `BuildFuseExt2.sh`
- Xcode and `xcode-tools` must be installed (`git` is required by some scripts)
- coreutils is needed to build gcc cross compiler
- qemu is needed to run the compiled OS image. You can also build it using the `BuildQemu.sh` script
- osxfuse, e2fsprogs, m4, autoconf, automake, libtool and `BuildFuseExt2.sh` are needed if you want to build the root filesystem disk image natively on macOS. This allows mounting an EXT2 fs and also installs commands like `mke2fs` that are not available on stock macOS.
- Installing osxfuse for the first time requires enabling its system extension in System Preferences and then restarting your machine. The output from installing osxfuse with brew says this, but it's easy to miss.
- If you install some commercial EXT2 macOS fs handler instead of osxfuse and fuse-ext2, you will need to `brew install e2fsprogs` to obtain `mke2fs` anyway.
- As of 2020-08-06, you might need to tell the build system about your newer host compiler. Once you've built the toolchain, navigate to `Build/`, `rm -rf *`, then run `cmake .. -G Ninja -DCMAKE_C_COMPILER=gcc-10 -DCMAKE_CXX_COMPILER=g++-10`, then continue with `ninja install` as usual.
For Windows, you will require Windows Subsystem for Linux 2 (WSL2). [Follow the WSL2 instructions here.](https://github.com/SerenityOS/serenity/blob/master/Documentation/NotesOnWSL.md)
Do note the ```Hardware acceleration``` and ```Note on filesystems``` sections, otherwise performance will be terrible.
Once you have installed a distro for WSL2, follow the Linux prerequisites above for the distro you installed, then continue as normal.
Once the toolchain has been built, go into the `Build/` directory and run the commands. Note that while `ninja` seems to be faster, you can also just use GNU make, by omitting `-G Ninja` and calling `make` instead of `ninja`:
This will compile all of SerenityOS and install the built files into `Root/` inside the build tree. `ninja install` actually pulls in the regular `ninja` (`ninja all`) automatically, so there isn't really a need to run it explicitly. `ninja` will automatically build as many jobs in parallel as it detects processors; `make` builds only one job in parallel. (Use the `-j` option with an argument if you want to change this.)
On Linux, QEMU is significantly faster if it's able to use KVM. The run script will automatically enable KVM if `/dev/kvm` exists and is readable+writable by the current user.
Bare curious users may even consider sourcing suitable hardware to [install Serenity on a physical PC.](https://github.com/SerenityOS/serenity/blob/master/Documentation/INSTALL.md)
Outside of QEMU, Serenity will run on VirtualBox. If you're curious, see how to [install Serenity on VirtualBox.](https://github.com/SerenityOS/serenity/blob/master/Documentation/VirtualBox.md)
Later on, when you `git pull` to get the latest changes, there's (usually) no need to rebuild the toolchain. You can simply run `ninja install`, `ninja image`, and `ninja run` again. CMake will only rebuild those parts that have been updated.
To add a package from the ports collection to Serenity, for example curl, go into `Ports/curl/` and run **./package.sh**. The sourcecode for the package will be downloaded and the package will be built. After that, run **make image** from the `Build/` directory to update the disk image. The next time you start Serenity with **make run**, `curl` will be available.