serenity/Kernel/Storage/IDEChannel.cpp

615 lines
22 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/ByteBuffer.h>
#include <AK/Singleton.h>
#include <AK/StringView.h>
#include <Kernel/FileSystem/ProcFS.h>
#include <Kernel/IO.h>
#include <Kernel/Process.h>
#include <Kernel/Storage/IDEChannel.h>
#include <Kernel/Storage/IDEController.h>
#include <Kernel/Storage/PATADiskDevice.h>
#include <Kernel/VM/MemoryManager.h>
namespace Kernel {
#define PATA_PRIMARY_IRQ 14
#define PATA_SECONDARY_IRQ 15
//#define PATA_DEBUG
#define ATA_SR_BSY 0x80
#define ATA_SR_DRDY 0x40
#define ATA_SR_DF 0x20
#define ATA_SR_DSC 0x10
#define ATA_SR_DRQ 0x08
#define ATA_SR_CORR 0x04
#define ATA_SR_IDX 0x02
#define ATA_SR_ERR 0x01
#define ATA_ER_BBK 0x80
#define ATA_ER_UNC 0x40
#define ATA_ER_MC 0x20
#define ATA_ER_IDNF 0x10
#define ATA_ER_MCR 0x08
#define ATA_ER_ABRT 0x04
#define ATA_ER_TK0NF 0x02
#define ATA_ER_AMNF 0x01
#define ATA_CMD_READ_PIO 0x20
#define ATA_CMD_READ_PIO_EXT 0x24
#define ATA_CMD_READ_DMA 0xC8
#define ATA_CMD_READ_DMA_EXT 0x25
#define ATA_CMD_WRITE_PIO 0x30
#define ATA_CMD_WRITE_PIO_EXT 0x34
#define ATA_CMD_WRITE_DMA 0xCA
#define ATA_CMD_WRITE_DMA_EXT 0x35
#define ATA_CMD_CACHE_FLUSH 0xE7
#define ATA_CMD_CACHE_FLUSH_EXT 0xEA
#define ATA_CMD_PACKET 0xA0
#define ATA_CMD_IDENTIFY_PACKET 0xA1
#define ATA_CMD_IDENTIFY 0xEC
#define ATAPI_CMD_READ 0xA8
#define ATAPI_CMD_EJECT 0x1B
#define ATA_IDENT_DEVICETYPE 0
#define ATA_IDENT_CYLINDERS 2
#define ATA_IDENT_HEADS 6
#define ATA_IDENT_SECTORS 12
#define ATA_IDENT_SERIAL 20
#define ATA_IDENT_MODEL 54
#define ATA_IDENT_CAPABILITIES 98
#define ATA_IDENT_FIELDVALID 106
#define ATA_IDENT_MAX_LBA 120
#define ATA_IDENT_COMMANDSETS 164
#define ATA_IDENT_MAX_LBA_EXT 200
#define IDE_ATA 0x00
#define IDE_ATAPI 0x01
#define ATA_REG_DATA 0x00
#define ATA_REG_ERROR 0x01
#define ATA_REG_FEATURES 0x01
#define ATA_REG_SECCOUNT0 0x02
#define ATA_REG_LBA0 0x03
#define ATA_REG_LBA1 0x04
#define ATA_REG_LBA2 0x05
#define ATA_REG_HDDEVSEL 0x06
#define ATA_REG_COMMAND 0x07
#define ATA_REG_STATUS 0x07
#define ATA_CTL_CONTROL 0x00
#define ATA_CTL_ALTSTATUS 0x00
#define ATA_CTL_DEVADDRESS 0x01
#define PCI_Mass_Storage_Class 0x1
#define PCI_IDE_Controller_Subclass 0x1
NonnullOwnPtr<IDEChannel> IDEChannel::create(const IDEController& controller, IOAddressGroup io_group, ChannelType type, bool force_pio)
{
return make<IDEChannel>(controller, io_group, type, force_pio);
}
RefPtr<StorageDevice> IDEChannel::master_device()
{
return m_master;
}
RefPtr<StorageDevice> IDEChannel::slave_device()
{
return m_slave;
}
IDEChannel::IDEChannel(const IDEController& controller, IOAddressGroup io_group, ChannelType type, bool force_pio)
: IRQHandler(type == ChannelType::Primary ? PATA_PRIMARY_IRQ : PATA_SECONDARY_IRQ)
, m_channel_number((type == ChannelType::Primary ? 0 : 1))
, m_io_group(io_group)
, m_parent_controller(controller)
{
disable_irq();
m_dma_enabled.resource() = !force_pio;
ProcFS::add_sys_bool("ide_dma", m_dma_enabled);
initialize(force_pio);
detect_disks();
enable_irq();
}
IDEChannel::~IDEChannel()
{
}
void IDEChannel::start_request(AsyncBlockDeviceRequest& request, bool use_dma, bool is_slave)
{
ScopedSpinLock lock(m_request_lock);
#ifdef PATA_DEBUG
dbg() << "IDEChannel::start_request";
#endif
m_current_request = &request;
m_current_request_block_index = 0;
m_current_request_uses_dma = use_dma;
m_current_request_flushing_cache = false;
if (request.request_type() == AsyncBlockDeviceRequest::Read) {
if (use_dma)
ata_read_sectors_with_dma(is_slave);
else
ata_read_sectors(is_slave);
} else {
if (use_dma)
ata_write_sectors_with_dma(is_slave);
else
ata_write_sectors(is_slave);
}
}
void IDEChannel::complete_current_request(AsyncDeviceRequest::RequestResult result)
{
// NOTE: this may be called from the interrupt handler!
ASSERT(m_current_request);
ASSERT(m_request_lock.is_locked());
// Now schedule reading back the buffer as soon as we leave the irq handler.
// This is important so that we can safely write the buffer back,
// which could cause page faults. Note that this may be called immediately
// before Processor::deferred_call_queue returns!
Processor::deferred_call_queue([this, result]() {
#ifdef PATA_DEBUG
dbg() << "IDEChannel::complete_current_request result: " << result;
#endif
ASSERT(m_current_request);
auto& request = *m_current_request;
m_current_request = nullptr;
if (m_current_request_uses_dma) {
if (result == AsyncDeviceRequest::Success) {
if (request.request_type() == AsyncBlockDeviceRequest::Read) {
if (!request.write_to_buffer(request.buffer(), m_dma_buffer_page->paddr().offset(0xc0000000).as_ptr(), 512 * request.block_count())) {
request.complete(AsyncDeviceRequest::MemoryFault);
return;
}
}
// I read somewhere that this may trigger a cache flush so let's do it.
m_io_group.bus_master_base().offset(2).out<u8>(m_io_group.bus_master_base().offset(2).in<u8>() | 0x6);
}
}
request.complete(result);
});
}
void IDEChannel::initialize(bool force_pio)
{
m_parent_controller->enable_pin_based_interrupts();
if (force_pio) {
klog() << "IDEChannel: Requested to force PIO mode; not setting up DMA";
return;
}
// Let's try to set up DMA transfers.
PCI::enable_bus_mastering(m_parent_controller->pci_address());
m_prdt_page = MM.allocate_supervisor_physical_page();
prdt().end_of_table = 0x8000;
m_dma_buffer_page = MM.allocate_supervisor_physical_page();
klog() << "IDEChannel: Bus master IDE: " << m_io_group.bus_master_base();
}
static void print_ide_status(u8 status)
{
klog() << "IDEChannel: print_ide_status: DRQ=" << ((status & ATA_SR_DRQ) != 0) << " BSY=" << ((status & ATA_SR_BSY) != 0) << " DRDY=" << ((status & ATA_SR_DRDY) != 0) << " DSC=" << ((status & ATA_SR_DSC) != 0) << " DF=" << ((status & ATA_SR_DF) != 0) << " CORR=" << ((status & ATA_SR_CORR) != 0) << " IDX=" << ((status & ATA_SR_IDX) != 0) << " ERR=" << ((status & ATA_SR_ERR) != 0);
}
void IDEChannel::handle_irq(const RegisterState&)
{
u8 status = m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
m_entropy_source.add_random_event(status);
u8 bstatus = m_io_group.bus_master_base().offset(2).in<u8>();
if (!(bstatus & 0x4)) {
// interrupt not from this device, ignore
#ifdef PATA_DEBUG
klog() << "IDEChannel: ignore interrupt";
#endif
return;
}
ScopedSpinLock lock(m_request_lock);
#ifdef PATA_DEBUG
klog() << "IDEChannel: interrupt: DRQ=" << ((status & ATA_SR_DRQ) != 0) << " BSY=" << ((status & ATA_SR_BSY) != 0) << " DRDY=" << ((status & ATA_SR_DRDY) != 0);
#endif
if (!m_current_request) {
#ifdef PATA_DEBUG
dbg() << "IDEChannel: IRQ but no pending request!";
#endif
return;
}
bool received_all_irqs = m_current_request_uses_dma || m_current_request_block_index + 1 >= m_current_request->block_count();
if (status & ATA_SR_ERR) {
print_ide_status(status);
m_device_error = m_io_group.io_base().offset(ATA_REG_ERROR).in<u8>();
klog() << "IDEChannel: Error " << String::format("%b", m_device_error) << "!";
complete_current_request(AsyncDeviceRequest::Failure);
return;
}
m_device_error = 0;
if (received_all_irqs) {
complete_current_request(AsyncDeviceRequest::Success);
} else {
ASSERT(!m_current_request_uses_dma);
// Now schedule reading/writing the buffer as soon as we leave the irq handler.
// This is important so that we can safely access the buffers, which could
// trigger page faults
Processor::deferred_call_queue([this]() {
if (m_current_request->request_type() == AsyncBlockDeviceRequest::Read) {
dbg() << "IDEChannel: Read block " << m_current_request_block_index << "/" << m_current_request->block_count();
if (ata_do_read_sector()) {
if (++m_current_request_block_index >= m_current_request->block_count()) {
complete_current_request(AsyncDeviceRequest::Success);
return;
}
// Wait for the next block
enable_irq();
}
} else {
if (!m_current_request_flushing_cache) {
dbg() << "IDEChannel: Wrote block " << m_current_request_block_index << "/" << m_current_request->block_count();
if (++m_current_request_block_index >= m_current_request->block_count()) {
// We read the last block, flush cache
ASSERT(!m_current_request_flushing_cache);
m_current_request_flushing_cache = true;
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_CACHE_FLUSH);
} else {
// Read next block
ata_do_write_sector();
}
} else {
complete_current_request(AsyncDeviceRequest::Success);
}
}
});
}
}
static void io_delay()
{
for (int i = 0; i < 4; ++i)
IO::in8(0x3f6);
}
void IDEChannel::detect_disks()
{
// There are only two possible disks connected to a channel
for (auto i = 0; i < 2; i++) {
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0xA0 | (i << 4)); // First, we need to select the drive itself
// Apparently these need to be 0 before sending IDENTIFY?!
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0x00);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0x00);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>(0x00);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>(0x00);
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_IDENTIFY); // Send the ATA_IDENTIFY command
// Wait for the BSY flag to be reset
while (m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_BSY)
;
if (m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() == 0x00) {
#ifdef PATA_DEBUG
klog() << "IDEChannel: No " << (i == 0 ? "master" : "slave") << " disk detected!";
#endif
continue;
}
ByteBuffer wbuf = ByteBuffer::create_uninitialized(512);
ByteBuffer bbuf = ByteBuffer::create_uninitialized(512);
u8* b = bbuf.data();
u16* w = (u16*)wbuf.data();
const u16* wbufbase = (u16*)wbuf.data();
for (u32 i = 0; i < 256; ++i) {
u16 data = m_io_group.io_base().offset(ATA_REG_DATA).in<u16>();
*(w++) = data;
*(b++) = MSB(data);
*(b++) = LSB(data);
}
// "Unpad" the device name string.
for (u32 i = 93; i > 54 && bbuf[i] == ' '; --i)
bbuf[i] = 0;
u8 cyls = wbufbase[1];
u8 heads = wbufbase[3];
u8 spt = wbufbase[6];
if (cyls == 0 || heads == 0 || spt == 0)
continue;
klog() << "IDEChannel: Name=" << ((char*)bbuf.data() + 54) << ", C/H/Spt=" << cyls << "/" << heads << "/" << spt;
if (i == 0) {
m_master = PATADiskDevice::create(m_parent_controller, *this, PATADiskDevice::DriveType::Master, cyls, heads, spt, 3, (m_channel_number == 0) ? 0 : 2);
} else {
m_slave = PATADiskDevice::create(m_parent_controller, *this, PATADiskDevice::DriveType::Slave, cyls, heads, spt, 3, (m_channel_number == 0) ? 1 : 3);
}
}
}
void IDEChannel::ata_read_sectors_with_dma(bool slave_request)
{
auto& request = *m_current_request;
u32 lba = request.block_index();
#ifdef PATA_DEBUG
dbg() << "IDEChannel::ata_read_sectors_with_dma (" << lba << " x" << request.block_count() << ")";
#endif
prdt().offset = m_dma_buffer_page->paddr();
prdt().size = 512 * request.block_count();
ASSERT(prdt().size <= PAGE_SIZE);
// Stop bus master
m_io_group.bus_master_base().out<u8>(0);
// Write the PRDT location
m_io_group.bus_master_base().offset(4).out(m_prdt_page->paddr().get());
// Turn on "Interrupt" and "Error" flag. The error flag should be cleared by hardware.
m_io_group.bus_master_base().offset(2).out<u8>(m_io_group.bus_master_base().offset(2).in<u8>() | 0x6);
// Set transfer direction
m_io_group.bus_master_base().out<u8>(0x8);
while (m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_BSY)
;
m_io_group.control_base().offset(ATA_CTL_CONTROL).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0x40 | (static_cast<u8>(slave_request) << 4));
io_delay();
m_io_group.io_base().offset(ATA_REG_FEATURES).out<u16>(0);
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(request.block_count());
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>((lba & 0x000000ff) >> 0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>((lba & 0x0000ff00) >> 8);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>((lba & 0x00ff0000) >> 16);
for (;;) {
auto status = m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY))
break;
}
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_READ_DMA_EXT);
io_delay();
enable_irq();
// Start bus master
m_io_group.bus_master_base().out<u8>(0x9);
}
bool IDEChannel::ata_do_read_sector()
{
auto& request = *m_current_request;
auto out_buffer = request.buffer().offset(m_current_request_block_index * 512);
ssize_t nwritten = request.write_to_buffer_buffered<512>(out_buffer, 512, [&](u8* buffer, size_t buffer_bytes) {
for (size_t i = 0; i < buffer_bytes; i += sizeof(u16))
*(u16*)&buffer[i] = IO::in16(m_io_group.io_base().offset(ATA_REG_DATA).get());
return (ssize_t)buffer_bytes;
});
if (nwritten < 0) {
// TODO: Do we need to abort the PATA read if this wasn't the last block?
complete_current_request(AsyncDeviceRequest::MemoryFault);
return false;
}
return true;
}
void IDEChannel::ata_read_sectors(bool slave_request)
{
auto& request = *m_current_request;
ASSERT(request.block_count() <= 256);
#ifdef PATA_DEBUG
dbg() << "IDEChannel::ata_read_sectors";
#endif
while (m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_BSY)
;
auto lba = request.block_index();
#ifdef PATA_DEBUG
klog() << "IDEChannel: Reading " << request.block_count() << " sector(s) @ LBA " << lba;
#endif
u8 devsel = 0xe0;
if (slave_request)
devsel |= 0x10;
m_io_group.control_base().offset(ATA_CTL_CONTROL).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(devsel | (static_cast<u8>(slave_request) << 4) | 0x40);
io_delay();
m_io_group.io_base().offset(ATA_REG_FEATURES).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(request.block_count());
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>((lba & 0x000000ff) >> 0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>((lba & 0x0000ff00) >> 8);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>((lba & 0x00ff0000) >> 16);
for (;;) {
auto status = m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY))
break;
}
enable_irq();
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_READ_PIO);
}
void IDEChannel::ata_write_sectors_with_dma(bool slave_request)
{
auto& request = *m_current_request;
u32 lba = request.block_index();
#ifdef PATA_DEBUG
dbg() << "IDEChannel::ata_write_sectors_with_dma (" << lba << " x" << request.block_count() << ")";
#endif
prdt().offset = m_dma_buffer_page->paddr();
prdt().size = 512 * request.block_count();
if (!request.read_from_buffer(request.buffer(), m_dma_buffer_page->paddr().offset(0xc0000000).as_ptr(), 512 * request.block_count())) {
complete_current_request(AsyncDeviceRequest::MemoryFault);
return;
}
ASSERT(prdt().size <= PAGE_SIZE);
// Stop bus master
m_io_group.bus_master_base().out<u8>(0);
// Write the PRDT location
m_io_group.bus_master_base().offset(4).out<u32>(m_prdt_page->paddr().get());
// Turn on "Interrupt" and "Error" flag. The error flag should be cleared by hardware.
m_io_group.bus_master_base().offset(2).out<u8>(m_io_group.bus_master_base().offset(2).in<u8>() | 0x6);
while (m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_BSY)
;
m_io_group.control_base().offset(ATA_CTL_CONTROL).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(0x40 | (static_cast<u8>(slave_request) << 4));
io_delay();
m_io_group.io_base().offset(ATA_REG_FEATURES).out<u16>(0);
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>(0);
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(request.block_count());
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>((lba & 0x000000ff) >> 0);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>((lba & 0x0000ff00) >> 8);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>((lba & 0x00ff0000) >> 16);
for (;;) {
auto status = m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
if (!(status & ATA_SR_BSY) && (status & ATA_SR_DRDY))
break;
}
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_WRITE_DMA_EXT);
io_delay();
enable_irq();
// Start bus master
m_io_group.bus_master_base().out<u8>(0x1);
}
void IDEChannel::ata_do_write_sector()
{
auto& request = *m_current_request;
io_delay();
while ((m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_BSY) || !(m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_DRQ))
;
u8 status = m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>();
ASSERT(status & ATA_SR_DRQ);
auto in_buffer = request.buffer().offset(m_current_request_block_index * 512);
#ifdef PATA_DEBUG
dbg() << "IDEChannel: Writing 512 bytes (part " << m_current_request_block_index << ") (status=" << String::format("%b", status) << ")...";
#endif
ssize_t nread = request.read_from_buffer_buffered<512>(in_buffer, 512, [&](const u8* buffer, size_t buffer_bytes) {
for (size_t i = 0; i < buffer_bytes; i += sizeof(u16))
IO::out16(m_io_group.io_base().offset(ATA_REG_DATA).get(), *(const u16*)&buffer[i]);
return (ssize_t)buffer_bytes;
});
if (nread < 0)
complete_current_request(AsyncDeviceRequest::MemoryFault);
}
void IDEChannel::ata_write_sectors(bool slave_request)
{
auto& request = *m_current_request;
ASSERT(request.block_count() <= 256);
u32 start_sector = request.block_index();
u32 count = request.block_count();
#ifdef PATA_DEBUG
klog() << "IDEChannel::ata_write_sectors request (" << count << " sector(s) @ " << start_sector << ")";
#endif
while (m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_BSY)
;
#ifdef PATA_DEBUG
klog() << "IDEChannel: Writing " << count << " sector(s) @ LBA " << start_sector;
#endif
u8 devsel = 0xe0;
if (slave_request)
devsel |= 0x10;
m_io_group.io_base().offset(ATA_REG_SECCOUNT0).out<u8>(count == 256 ? 0 : LSB(count));
m_io_group.io_base().offset(ATA_REG_LBA0).out<u8>(start_sector & 0xff);
m_io_group.io_base().offset(ATA_REG_LBA1).out<u8>((start_sector >> 8) & 0xff);
m_io_group.io_base().offset(ATA_REG_LBA2).out<u8>((start_sector >> 16) & 0xff);
m_io_group.io_base().offset(ATA_REG_HDDEVSEL).out<u8>(devsel | ((start_sector >> 24) & 0xf));
IO::out8(0x3F6, 0x08);
while (!(m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_DRDY))
;
m_io_group.io_base().offset(ATA_REG_COMMAND).out<u8>(ATA_CMD_WRITE_PIO);
io_delay();
while ((m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_BSY) || !(m_io_group.io_base().offset(ATA_REG_STATUS).in<u8>() & ATA_SR_DRQ))
;
enable_irq();
ata_do_write_sector();
}
}