serenity/Kernel/IPv4Socket.cpp

285 lines
8.8 KiB
C++
Raw Normal View History

#include <Kernel/IPv4Socket.h>
#include <Kernel/UnixTypes.h>
#include <Kernel/Process.h>
#include <Kernel/NetworkAdapter.h>
#include <Kernel/IPv4.h>
#include <Kernel/ICMP.h>
#include <Kernel/UDP.h>
#include <Kernel/ARP.h>
#include <LibC/errno_numbers.h>
#define IPV4_SOCKET_DEBUG
Lockable<HashMap<word, IPv4Socket*>>& IPv4Socket::sockets_by_udp_port()
{
static Lockable<HashMap<word, IPv4Socket*>>* s_map;
if (!s_map)
s_map = new Lockable<HashMap<word, IPv4Socket*>>;
return *s_map;
}
Lockable<HashMap<word, IPv4Socket*>>& IPv4Socket::sockets_by_tcp_port()
{
static Lockable<HashMap<word, IPv4Socket*>>* s_map;
if (!s_map)
s_map = new Lockable<HashMap<word, IPv4Socket*>>;
return *s_map;
}
Lockable<HashTable<IPv4Socket*>>& IPv4Socket::all_sockets()
{
static Lockable<HashTable<IPv4Socket*>>* s_table;
if (!s_table)
s_table = new Lockable<HashTable<IPv4Socket*>>;
return *s_table;
}
Retained<IPv4Socket> IPv4Socket::create(int type, int protocol)
{
return adopt(*new IPv4Socket(type, protocol));
}
IPv4Socket::IPv4Socket(int type, int protocol)
: Socket(AF_INET, type, protocol)
, m_lock("IPv4Socket")
{
kprintf("%s(%u) IPv4Socket{%p} created with type=%u, protocol=%d\n", current->name().characters(), current->pid(), this, type, protocol);
LOCKER(all_sockets().lock());
all_sockets().resource().set(this);
}
IPv4Socket::~IPv4Socket()
{
{
LOCKER(all_sockets().lock());
all_sockets().resource().remove(this);
}
if (type() == SOCK_DGRAM) {
LOCKER(sockets_by_udp_port().lock());
sockets_by_udp_port().resource().remove(m_source_port);
}
if (type() == SOCK_STREAM) {
LOCKER(sockets_by_tcp_port().lock());
sockets_by_tcp_port().resource().remove(m_source_port);
}
}
bool IPv4Socket::get_address(sockaddr* address, socklen_t* address_size)
{
// FIXME: Look into what fallback behavior we should have here.
if (*address_size != sizeof(sockaddr_in))
return false;
memcpy(address, &m_destination_address, sizeof(sockaddr_in));
*address_size = sizeof(sockaddr_in);
return true;
}
KResult IPv4Socket::bind(const sockaddr* address, socklen_t address_size)
{
ASSERT(!is_connected());
if (address_size != sizeof(sockaddr_in))
return KResult(-EINVAL);
if (address->sa_family != AF_INET)
return KResult(-EINVAL);
ASSERT_NOT_REACHED();
}
KResult IPv4Socket::connect(const sockaddr* address, socklen_t address_size)
{
ASSERT(!m_bound);
if (address_size != sizeof(sockaddr_in))
return KResult(-EINVAL);
if (address->sa_family != AF_INET)
return KResult(-EINVAL);
ASSERT_NOT_REACHED();
}
void IPv4Socket::attach_fd(SocketRole)
{
++m_attached_fds;
}
void IPv4Socket::detach_fd(SocketRole)
{
--m_attached_fds;
}
bool IPv4Socket::can_read(SocketRole) const
{
return m_can_read;
}
ssize_t IPv4Socket::read(SocketRole, byte*, ssize_t)
{
ASSERT_NOT_REACHED();
}
ssize_t IPv4Socket::write(SocketRole, const byte*, ssize_t)
{
ASSERT_NOT_REACHED();
}
bool IPv4Socket::can_write(SocketRole) const
{
ASSERT_NOT_REACHED();
}
void IPv4Socket::allocate_source_port_if_needed()
{
if (m_source_port)
return;
if (type() == SOCK_DGRAM) {
// This is not a very efficient allocation algorithm.
// FIXME: Replace it with a bitmap or some other fast-paced looker-upper.
LOCKER(sockets_by_udp_port().lock());
for (word port = 2000; port < 60000; ++port) {
auto it = sockets_by_udp_port().resource().find(port);
if (it == sockets_by_udp_port().resource().end()) {
m_source_port = port;
sockets_by_udp_port().resource().set(port, this);
return;
}
}
ASSERT_NOT_REACHED();
}
if (type() == SOCK_STREAM) {
// This is not a very efficient allocation algorithm.
// FIXME: Replace it with a bitmap or some other fast-paced looker-upper.
LOCKER(sockets_by_tcp_port().lock());
for (word port = 2000; port < 60000; ++port) {
auto it = sockets_by_tcp_port().resource().find(port);
if (it == sockets_by_tcp_port().resource().end()) {
m_source_port = port;
sockets_by_tcp_port().resource().set(port, this);
return;
}
}
ASSERT_NOT_REACHED();
}
}
ssize_t IPv4Socket::sendto(const void* data, size_t data_length, int flags, const sockaddr* addr, socklen_t addr_length)
{
(void)flags;
if (addr_length != sizeof(sockaddr_in))
return -EINVAL;
// FIXME: Find the adapter some better way!
auto* adapter = NetworkAdapter::from_ipv4_address(IPv4Address(192, 168, 5, 2));
if (!adapter) {
// FIXME: Figure out which error code to return.
ASSERT_NOT_REACHED();
}
if (addr->sa_family != AF_INET) {
kprintf("sendto: Bad address family: %u is not AF_INET!\n", addr->sa_family);
return -EAFNOSUPPORT;
}
auto& ia = *(const sockaddr_in*)addr;
m_destination_address = IPv4Address((const byte*)&ia.sin_addr.s_addr);
m_destination_port = ntohs(ia.sin_port);
allocate_source_port_if_needed();
kprintf("sendto: destination=%s:%u\n", m_destination_address.to_string().characters(), m_destination_port);
// FIXME: If we can't find the right MAC address, block until it's available?
// I feel like this should happen in a layer below this code.
MACAddress mac_address;
if (type() == SOCK_RAW) {
adapter->send_ipv4(mac_address, m_destination_address, (IPv4Protocol)protocol(), ByteBuffer::copy((const byte*)data, data_length));
return data_length;
}
if (type() == SOCK_DGRAM) {
auto buffer = ByteBuffer::create_zeroed(sizeof(UDPPacket) + data_length);
auto& udp_packet = *(UDPPacket*)(buffer.pointer());
udp_packet.set_source_port(m_source_port);
udp_packet.set_destination_port(m_destination_port);
udp_packet.set_length(sizeof(UDPPacket) + data_length);
memcpy(udp_packet.payload(), data, data_length);
kprintf("sending as udp packet from %s:%u to %s:%u!\n",
adapter->ipv4_address().to_string().characters(),
source_port(),
m_destination_address.to_string().characters(),
m_destination_port);
adapter->send_ipv4(mac_address, m_destination_address, IPv4Protocol::UDP, move(buffer));
return data_length;
}
ASSERT_NOT_REACHED();
}
ssize_t IPv4Socket::recvfrom(void* buffer, size_t buffer_length, int flags, sockaddr* addr, socklen_t* addr_length)
{
(void)flags;
if (*addr_length < sizeof(sockaddr_in))
return -EINVAL;
#ifdef IPV4_SOCKET_DEBUG
kprintf("recvfrom: type=%d, source_port=%u\n", type(), source_port());
#endif
ByteBuffer packet_buffer;
{
LOCKER(m_lock);
if (!m_receive_queue.is_empty()) {
packet_buffer = m_receive_queue.take_first();
m_can_read = !m_receive_queue.is_empty();
}
}
if (packet_buffer.is_null()) {
current->set_blocked_socket(this);
load_receive_deadline();
block(Process::BlockedReceive);
Scheduler::yield();
LOCKER(m_lock);
if (!m_can_read) {
// Unblocked due to timeout.
return -EAGAIN;
}
ASSERT(m_can_read);
ASSERT(!m_receive_queue.is_empty());
packet_buffer = m_receive_queue.take_first();
m_can_read = !m_receive_queue.is_empty();
}
ASSERT(!packet_buffer.is_null());
auto& ipv4_packet = *(const IPv4Packet*)(packet_buffer.pointer());
auto& ia = *(sockaddr_in*)addr;
memcpy(&ia.sin_addr, &m_destination_address, sizeof(IPv4Address));
ia.sin_family = AF_INET;
*addr_length = sizeof(sockaddr_in);
if (type() == SOCK_RAW) {
ASSERT(buffer_length >= ipv4_packet.payload_size());
memcpy(buffer, ipv4_packet.payload(), ipv4_packet.payload_size());
return ipv4_packet.payload_size();
}
if (type() == SOCK_DGRAM) {
auto& udp_packet = *static_cast<const UDPPacket*>(ipv4_packet.payload());
ASSERT(udp_packet.length() >= sizeof(UDPPacket)); // FIXME: This should be rejected earlier.
ASSERT(buffer_length >= (udp_packet.length() - sizeof(UDPPacket)));
ia.sin_port = htons(udp_packet.destination_port());
memcpy(buffer, udp_packet.payload(), udp_packet.length() - sizeof(UDPPacket));
return udp_packet.length() - sizeof(UDPPacket);
}
ASSERT_NOT_REACHED();
}
void IPv4Socket::did_receive(ByteBuffer&& packet)
{
LOCKER(m_lock);
m_receive_queue.append(move(packet));
m_can_read = true;
#ifdef IPV4_SOCKET_DEBUG
kprintf("IPv4Socket(%p): did_receive %d bytes, packets in queue: %d\n", this, packet.size(), m_receive_queue.size_slow());
#endif
}