LibJS: Implement precise double_to_string

This commit is contained in:
Dan Klishch 2022-10-26 23:16:59 -04:00 committed by Andrew Kaster
parent fdc53a5995
commit 56aa21a7dc

View file

@ -12,6 +12,7 @@
#include <AK/FloatingPointStringConversions.h>
#include <AK/String.h>
#include <AK/StringBuilder.h>
#include <AK/StringFloatingPointConversions.h>
#include <AK/Utf8View.h>
#include <LibCrypto/BigInt/SignedBigInteger.h>
#include <LibCrypto/NumberTheory/ModularFunctions.h>
@ -69,130 +70,129 @@ ALWAYS_INLINE bool both_bigint(Value const& lhs, Value const& rhs)
}
// 6.1.6.1.20 Number::toString ( x ), https://tc39.es/ecma262/#sec-numeric-types-number-tostring
// Implementation for radix = 10
static String double_to_string(double d)
{
auto convert_to_decimal_digits_array = [](auto x, auto& digits, auto& length) {
for (; x; x /= 10)
digits[length++] = x % 10 | '0';
for (i32 i = 0; 2 * i + 1 < length; ++i)
swap(digits[i], digits[length - i - 1]);
};
// 1. If x is NaN, return "NaN".
if (isnan(d))
return "NaN";
// 2. If x is +0𝔽 or -0𝔽, return "0".
if (d == +0.0 || d == -0.0)
return "0";
if (d < +0.0) {
StringBuilder builder;
builder.append('-');
builder.append(double_to_string(-d));
return builder.to_string();
// 4. If x is +∞𝔽, return "Infinity".
if (isinf(d)) {
if (d > 0)
return "Infinity";
else
return "-Infinity";
}
if (d == static_cast<double>(INFINITY))
return "Infinity";
StringBuilder number_string_builder;
size_t start_index = 0;
size_t end_index = 0;
size_t int_part_end = 0;
// generate integer part (reversed)
double int_part;
double frac_part;
frac_part = modf(d, &int_part);
while (int_part > 0) {
number_string_builder.append('0' + (int)fmod(int_part, 10));
end_index++;
int_part = floor(int_part / 10);
}
auto reversed_integer_part = number_string_builder.to_string().reverse();
number_string_builder.clear();
number_string_builder.append(reversed_integer_part);
int_part_end = end_index;
int exponent = 0;
// generate fractional part
while (frac_part > 0) {
double old_frac_part = frac_part;
frac_part *= 10;
frac_part = modf(frac_part, &int_part);
if (old_frac_part == frac_part)
break;
number_string_builder.append('0' + (int)int_part);
end_index++;
exponent--;
}
auto number_string = number_string_builder.to_string();
// FIXME: Remove this hack.
// FIXME: Instead find the shortest round-trippable representation.
// Remove decimals after the 15th position
if (end_index > int_part_end + 15) {
exponent += end_index - int_part_end - 15;
end_index = int_part_end + 15;
}
// remove leading zeroes
while (start_index < end_index && number_string[start_index] == '0') {
start_index++;
}
// remove trailing zeroes
while (end_index > 0 && number_string[end_index - 1] == '0') {
end_index--;
exponent++;
}
if (end_index <= start_index)
return "0";
auto digits = number_string.substring_view(start_index, end_index - start_index);
int number_of_digits = end_index - start_index;
exponent += number_of_digits;
StringBuilder builder;
if (number_of_digits <= exponent && exponent <= 21) {
builder.append(digits);
builder.append(String::repeated('0', exponent - number_of_digits));
return builder.to_string();
}
if (0 < exponent && exponent <= 21) {
builder.append(digits.substring_view(0, exponent));
builder.append('.');
builder.append(digits.substring_view(exponent));
return builder.to_string();
}
if (-6 < exponent && exponent <= 0) {
builder.append("0."sv);
builder.append(String::repeated('0', -exponent));
builder.append(digits);
return builder.to_string();
}
if (number_of_digits == 1) {
builder.append(digits);
builder.append('e');
// 5. Let n, k, and s be integers such that k ≥ 1, radix ^ (k - 1) ≤ s < radix ^ k,
// 𝔽(s × radix ^ (n - k)) is x, and k is as small as possible. Note that k is the number of
// digits in the representation of s using radix radix, that s is not divisible by radix, and
// that the least significant digit of s is not necessarily uniquely determined by these criteria.
//
// Note: guarantees provided by convert_floating_point_to_decimal_exponential_form satisfy
// requirements of NOTE 2.
auto [sign, mantissa, exponent] = convert_floating_point_to_decimal_exponential_form(d);
i32 k = 0;
AK::Array<char, 20> mantissa_digits;
convert_to_decimal_digits_array(mantissa, mantissa_digits, k);
if (exponent - 1 > 0)
builder.append('+');
else
builder.append('-');
i32 n = exponent + k; // s = mantissa
builder.append(String::number(AK::abs(exponent - 1)));
return builder.to_string();
}
builder.append(digits[0]);
builder.append('.');
builder.append(digits.substring_view(1));
builder.append('e');
if (exponent - 1 > 0)
builder.append('+');
else
// 3. If x < -0𝔽, return the string-concatenation of "-" and Number::toString(-x, radix).
if (sign)
builder.append('-');
builder.append(String::number(AK::abs(exponent - 1)));
// 6. If radix ≠ 10 or n is in the inclusive interval from -5 to 21, then
if (n >= -5 && n <= 21) {
// a. If n ≥ k, then
if (n >= k) {
// i. Return the string-concatenation of:
// the code units of the k digits of the representation of s using radix radix
builder.append(mantissa_digits.data(), k);
// n - k occurrences of the code unit 0x0030 (DIGIT ZERO)
builder.append_repeated('0', n - k);
// b. Else if n > 0, then
} else if (n > 0) {
// i. Return the string-concatenation of:
// the code units of the most significant n digits of the representation of s using radix radix
builder.append(mantissa_digits.data(), n);
// the code unit 0x002E (FULL STOP)
builder.append('.');
// the code units of the remaining k - n digits of the representation of s using radix radix
builder.append(mantissa_digits.data() + n, k - n);
// c. Else,
} else {
// i. Assert: n ≤ 0.
VERIFY(n <= 0);
// ii. Return the string-concatenation of:
// the code unit 0x0030 (DIGIT ZERO)
builder.append('0');
// the code unit 0x002E (FULL STOP)
builder.append('.');
// -n occurrences of the code unit 0x0030 (DIGIT ZERO)
builder.append_repeated('0', -n);
// the code units of the k digits of the representation of s using radix radix
builder.append(mantissa_digits.data(), k);
}
return builder.to_string();
}
// 7. NOTE: In this case, the input will be represented using scientific E notation, such as 1.2e+3.
// 9. If n < 0, then
// a. Let exponentSign be the code unit 0x002D (HYPHEN-MINUS).
// 10. Else,
// a. Let exponentSign be the code unit 0x002B (PLUS SIGN).
char exponent_sign = n < 0 ? '-' : '+';
AK::Array<char, 5> exponent_digits;
i32 exponent_length = 0;
convert_to_decimal_digits_array(abs(n - 1), exponent_digits, exponent_length);
// 11. If k is 1, then
if (k == 1) {
// a. Return the string-concatenation of:
// the code unit of the single digit of s
builder.append(mantissa_digits[0]);
// the code unit 0x0065 (LATIN SMALL LETTER E)
builder.append('e');
// exponentSign
builder.append(exponent_sign);
// the code units of the decimal representation of abs(n - 1)
builder.append(exponent_digits.data(), exponent_length);
return builder.to_string();
}
// 12. Return the string-concatenation of:
// the code unit of the most significant digit of the decimal representation of s
builder.append(mantissa_digits[0]);
// the code unit 0x002E (FULL STOP)
builder.append('.');
// the code units of the remaining k - 1 digits of the decimal representation of s
builder.append(mantissa_digits.data() + 1, k - 1);
// the code unit 0x0065 (LATIN SMALL LETTER E)
builder.append('e');
// exponentSign
builder.append(exponent_sign);
// the code units of the decimal representation of abs(n - 1)
builder.append(exponent_digits.data(), exponent_length);
return builder.to_string();
}