mirror of
https://github.com/SerenityOS/serenity.git
synced 2025-01-22 09:21:57 -05:00
AK: Cover TestComplex with more tests
Related: - video detailing the process of writing these tests: https://www.youtube.com/watch?v=enxglLlALvI - PR fixing bugs the above effort found: https://github.com/SerenityOS/serenity/pull/22025
This commit is contained in:
parent
d52ffcd830
commit
5a8781393a
2 changed files with 199 additions and 0 deletions
|
@ -277,6 +277,14 @@ static constexpr Complex<T> cexp(Complex<T> const& a)
|
|||
}
|
||||
}
|
||||
|
||||
template<AK::Concepts::Arithmetic T>
|
||||
struct AK::Formatter<AK::Complex<T>> : Formatter<StringView> {
|
||||
ErrorOr<void> format(FormatBuilder& builder, AK::Complex<T> c)
|
||||
{
|
||||
return Formatter<StringView>::format(builder, TRY(String::formatted("{}{:+}i", c.real(), c.imag())));
|
||||
}
|
||||
};
|
||||
|
||||
#if USING_AK_GLOBALLY
|
||||
using AK::approx_eq;
|
||||
using AK::cexp;
|
||||
|
|
|
@ -8,6 +8,33 @@
|
|||
|
||||
#include <AK/Complex.h>
|
||||
|
||||
using namespace Test::Randomized;
|
||||
|
||||
namespace {
|
||||
|
||||
Complex<f64> gen_complex()
|
||||
{
|
||||
auto r = Gen::number_f64();
|
||||
auto i = Gen::number_f64();
|
||||
return Complex<f64>(r, i);
|
||||
}
|
||||
|
||||
Complex<f64> gen_complex(f64 min, f64 max)
|
||||
{
|
||||
auto r = Gen::number_f64(min, max);
|
||||
auto i = Gen::number_f64(min, max);
|
||||
return Complex<f64>(r, i);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void expect_approximate_complex(Complex<T> a, Complex<T> b)
|
||||
{
|
||||
EXPECT_APPROXIMATE(a.real(), b.real());
|
||||
EXPECT_APPROXIMATE(a.imag(), b.imag());
|
||||
}
|
||||
|
||||
TEST_CASE(Complex)
|
||||
{
|
||||
auto a = Complex<float> { 1.f, 1.f };
|
||||
|
@ -68,3 +95,167 @@ TEST_CASE(real_operators_regression)
|
|||
EXPECT_EQ(c2.imag(), -0.5);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE(constructor_0_is_origin)
|
||||
{
|
||||
auto c = Complex<f64>();
|
||||
EXPECT_EQ(c.real(), 0L);
|
||||
EXPECT_EQ(c.imag(), 0L);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(constructor_1)
|
||||
{
|
||||
GEN(r, Gen::number_f64());
|
||||
auto c = Complex<f64>(r);
|
||||
EXPECT_EQ(c.real(), r);
|
||||
EXPECT_EQ(c.imag(), 0L);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(constructor_2)
|
||||
{
|
||||
GEN(r, Gen::number_f64());
|
||||
GEN(i, Gen::number_f64());
|
||||
auto c = Complex<f64>(r, i);
|
||||
EXPECT_EQ(c.real(), r);
|
||||
EXPECT_EQ(c.imag(), i);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(magnitude_squared)
|
||||
{
|
||||
GEN(c, gen_complex());
|
||||
auto magnitude_squared = c.magnitude_squared();
|
||||
auto magnitude = c.magnitude();
|
||||
EXPECT_APPROXIMATE(magnitude_squared, magnitude * magnitude);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(from_polar_magnitude)
|
||||
{
|
||||
// Magnitude only makes sense non-negative, but the library allows it to be negative.
|
||||
GEN(m, Gen::number_f64(-1000, 1000));
|
||||
GEN(p, Gen::number_f64(-1000, 1000));
|
||||
auto c = Complex<f64>::from_polar(m, p);
|
||||
EXPECT_APPROXIMATE(c.magnitude(), abs(m));
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(from_polar_phase)
|
||||
{
|
||||
// To have a meaningful phase, magnitude needs to be >0.
|
||||
GEN(m, Gen::number_f64(1, 1000));
|
||||
GEN(p, Gen::number_f64(-1000, 1000));
|
||||
|
||||
auto c = Complex<f64>::from_polar(m, p);
|
||||
|
||||
// Returned phase is in the (-pi,pi] interval.
|
||||
// We need to mod from our randomly generated [-1000,1000] interval]
|
||||
// down to [0,2pi) or (-2pi,0] depending on our sign.
|
||||
// Then we can adjust and get into the -pi..pi range by adding/subtracting
|
||||
// one last 2pi.
|
||||
auto wanted_p = fmod(p, 2 * M_PI);
|
||||
if (wanted_p > M_PI)
|
||||
wanted_p -= 2 * M_PI;
|
||||
else if (wanted_p < -M_PI)
|
||||
wanted_p += 2 * M_PI;
|
||||
|
||||
EXPECT_APPROXIMATE(c.phase(), wanted_p);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(imag_untouched_c_plus_r)
|
||||
{
|
||||
GEN(c1, gen_complex());
|
||||
GEN(r2, Gen::number_f64());
|
||||
auto c2 = c1 + r2;
|
||||
EXPECT_EQ(c2.imag(), c1.imag());
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(imag_untouched_c_minus_r)
|
||||
{
|
||||
GEN(c1, gen_complex());
|
||||
GEN(r2, Gen::number_f64());
|
||||
auto c2 = c1 - r2;
|
||||
EXPECT_EQ(c2.imag(), c1.imag());
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(assignment_same_as_binop_plus)
|
||||
{
|
||||
GEN(c1, gen_complex());
|
||||
GEN(c2, gen_complex());
|
||||
auto out1 = c1 + c2;
|
||||
auto out2 = c1;
|
||||
out2 += c2;
|
||||
EXPECT_EQ(out2, out1);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(assignment_same_as_binop_minus)
|
||||
{
|
||||
GEN(c1, gen_complex());
|
||||
GEN(c2, gen_complex());
|
||||
auto out1 = c1 - c2;
|
||||
auto out2 = c1;
|
||||
out2 -= c2;
|
||||
EXPECT_EQ(out2, out1);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(assignment_same_as_binop_mult)
|
||||
{
|
||||
GEN(c1, gen_complex(-1000, 1000));
|
||||
GEN(c2, gen_complex(-1000, 1000));
|
||||
auto out1 = c1 * c2;
|
||||
auto out2 = c1;
|
||||
out2 *= c2;
|
||||
EXPECT_EQ(out2, out1);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(assignment_same_as_binop_div)
|
||||
{
|
||||
GEN(c1, gen_complex(-1000, 1000));
|
||||
GEN(c2, gen_complex(-1000, 1000));
|
||||
auto out1 = c1 / c2;
|
||||
auto out2 = c1;
|
||||
out2 /= c2;
|
||||
EXPECT_EQ(out2, out1);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(commutativity_c_c)
|
||||
{
|
||||
GEN(c1, gen_complex());
|
||||
GEN(c2, gen_complex());
|
||||
expect_approximate_complex(c1 + c2, c2 + c1);
|
||||
expect_approximate_complex(c1 * c2, c2 * c1);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(commutativity_c_r)
|
||||
{
|
||||
GEN(c, gen_complex());
|
||||
GEN(r, Gen::number_f64());
|
||||
expect_approximate_complex(r + c, c + r);
|
||||
expect_approximate_complex(r * c, c * r);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(unary_plus_noop)
|
||||
{
|
||||
GEN(c, gen_complex());
|
||||
EXPECT_EQ(+c, c);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(unary_minus_inverse)
|
||||
{
|
||||
GEN(c, gen_complex());
|
||||
expect_approximate_complex(-(-c), c);
|
||||
}
|
||||
|
||||
RANDOMIZED_TEST_CASE(wrapping_real)
|
||||
{
|
||||
GEN(c, gen_complex(-1000, 1000));
|
||||
GEN(r, Gen::number_f64(-1000, 1000));
|
||||
auto cr = Complex<f64>(r);
|
||||
|
||||
expect_approximate_complex(r + c, cr + c);
|
||||
expect_approximate_complex(r - c, cr - c);
|
||||
expect_approximate_complex(r * c, cr * c);
|
||||
expect_approximate_complex(r / c, cr / c);
|
||||
|
||||
expect_approximate_complex(c + r, c + cr);
|
||||
expect_approximate_complex(c - r, c - cr);
|
||||
expect_approximate_complex(c * r, c * cr);
|
||||
expect_approximate_complex(c / r, c / cr);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue